Resource-Centric Serverless Computing

Yiying Zhang
Outline

• PL for disaggregation: Mira [SOSP’23]

• Serverless on disaggregation: Zenix

• Quiz 2 this Wed (covers lectures from cloud computing to today’s)

• Project progress report due this Thur
Existing Far Memory Systems

• How to **run applications with** far memory?
• Existing approaches in two broad categories:

1. New memory programming model:
 AIFM [OSDI22], Clio [ASPLOS22]

2. Transparent far memory:
 LegoOS [OSDI18], FastSwap [EuroSys21], MemLiner [OSDI22]
New Far Mem Programmnig Model

• Programs rewritten to access far memory with new APIs
 + Explicitly express access pattern
 - Require programmers’ effort
 - Cannot adapt to dynamic behavior

Overhead on both human and runtime
Transparent Far Memory

• Transparently swap to far memory at runtime or OS layer

+ No program changes

- Unaware of application semantics
- No adaptation to different applications

Inefficient far memory operation
(read/write amplification, no or wrong prefetch, …)
How to build a **transparent and efficient** far memory system?
Solution: Behavior-Guided Far Memory via Program Analysis, Compiling, and Profiling
Mira: Behavior-Guided Far Memory

- **Program analysis** for capturing *static behavior*
- **Profiling** for capturing *dynamic behavior*
- **Compiler** for behavior-guided *transparent far memory generation*

Unmodified Application \(\xrightarrow{\text{Program Analysis}}\) Program Analysis \(\xrightarrow{\text{Compiling}}\) Mira Generated Program

- Application on Far Memory
- Configured Runtime System

- Object size, execution overhead
- Access sequence, locality
Mira: Behavior-Guided Far Memory

- **Program analysis** for capturing **static behavior**
- **Profiling** for capturing **dynamic behavior**
- **Compiler** for behavior-guided **transparent far memory generation**
Mira: Behavior-Guided Far Memory

- Captures and utilizes a full view of program behavior
- Outperforms state-of-the-art far memory systems by 43% to 70%

* Data collected on the DataFrame application, with local memory size 20%
Challenge:
How to generate efficient far memory program based on program behaviors?
The Key to Far Memory Performance

- Far memory has **non-trivial overhead**

```cpp
x = arr[i];
```

Local Memory

- Approximate access time: ~50ns
The Key to Far Memory Performance

- Far memory has **non-trivial overhead**
The Key to Far Memory Performance

- Far memory has **non-trivial overhead**
- **Accessing** and **caching** policies are key to far memory performance

Problem: Existing system use **single unified global cache**

```
x = arr[i];
```

- Local Memory & Far Memory Cache
 - ~50ns

- Far Memory
 - ~2 µs
Problem of a Unified, Global Cache

- Objects with different behaviors co-exists in a single program

```cpp
arr = vector<int>;
table = hash<int, int>;
for (i <- 0 to len(arr)){
    idx = arr[i];
    acc += table[idx];
}
```

Sequential, Accessed once, …

Random, No spatial locality, Non-predictable temporal locality …

Need to capture both behaviors
Problem of a Unified, Global Cache

• Objects with different behaviors **co-exists** in a single program
• Different behaviors require different **access and cache** configurations

```
arr = vector<int>;
table = hash<int, int>;
for (i <- 0 to len(arr)){
    idx = arr[i];
    acc += table[idx];
}
```

Optimal Access Policies

<table>
<thead>
<tr>
<th>Batching</th>
<th>No Batching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential</td>
<td>No program</td>
</tr>
<tr>
<td>Prefetch</td>
<td>Prefetch</td>
</tr>
</tbody>
</table>

Optimal Cache Config

<table>
<thead>
<tr>
<th>Small size</th>
<th>Large size</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct</td>
<td>Full-assoc</td>
</tr>
</tbody>
</table>

Unified cache cannot optimize for all
Solution: Separate local cache into sections based on program behaviors
Solution: Separate Cache Sections

• Leveraging software-managed DRAM cache

• Each section customized for one single type of behavior

With different \{cache size, cache structure, prefetch/eviction policy, \ldots\}

\[
\text{arr} = \text{vector<int>}
\]

\[
\text{tab} = \text{hash<int, int>};
\]
Using Separated Cache Sections

1. **Configure** each separated section according to its behavior

\[
\text{arr= ...} \quad \rightarrow \quad \text{Cache Section 1}
\]

Cache Configuration
Using Separated Cache Sections

1. Configure each separated section according to its behavior

2. **Generate** accesses based on section configuration and behavior
Iterative Cache Section Configuration

1st Iteration:
All data objects are placed into the generic swap section with profiling

Application

arr = malloc(...)
tab = malloc(...)
other = malloc(...)

func(tab);
func(arr, tab);
func(other);

Local DRAM Cache

Remote Memory Server

Default swap section

Space for all objects
Iterative Cache Section Configuration

2nd Iteration:

1. Profiling finds optimization targets: highest overhead \textbf{objects} and \textbf{functions}

\begin{verbatim}
arr = malloc(...)
tab = malloc(...)
other = malloc(...)

func(tab);
func(arr, tab);
func(other)
\end{verbatim}
Iterative Cache Section Configuration

2nd Iteration:
2. Separate cache sections for selected objects

Application
arr = malloc(...)
tab = malloc(...)
other = malloc(...)

func(tab);
func(arr, tab);
func(other)

Local DRAM Cache
Default swap section
Section for arr (parameter = ?)

Remote Memory Server
Space for other objects
Space for allocated arr
Iterative Cache Section Configuration

2nd Iteration:
3. Configure cache section based on static and dynamic behavior

Application

arr = malloc(...)
tab = malloc(...)
other = malloc(...)

func(tab);
func(arr, tab);
func(other)

Local DRAM Cache

Default swap section

Section for arr
(linesize = 1K, prefetch=seq, ...)

Remote Memory Server

Space for other objects

Space for allocated arr
Iterative Cache Section Configuration

• **In later iterations**, Mira continues the optimization loop
• Until no optimization target is found or maximum iteration is reached
• Evaluated applications converge **within 4 iterations**

<table>
<thead>
<tr>
<th>1st Iter</th>
<th>2nd Iter</th>
<th>3rd Iter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default Swap Section</td>
<td>Default Swap Section</td>
<td>Default Swap Section</td>
</tr>
<tr>
<td></td>
<td>Section for arr (linesize = 1K, prefetch=seq, ...)</td>
<td>Section for arr (linesize = 2K, prefetch=true, ...)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section for tab (linesize = 256B, prefetch=false, ...)</td>
</tr>
</tbody>
</table>
Implementation

• Compiler implemented on top of MLIR*
 • Implemented as two new dialects: remotable and rmref

• Configurable runtime library implemented in user space
 • With kernel-bypassing RDMA and userfaultfd

• LoC: 7.7K C++ (compiler), 12.1K C++ (runtime)

* MLIR = Multi-Level Intermediate Representation, https://mlir.llvm.org/
Evaluation

• Compared **Mira** with **FastSwap**[EuroSys 20] and **AIFM**[OSDI 20]

• On Dataframe, Mira achieves near-optimal performance

Compared to **AIFM**,
- **Adaptive code generation** reduces runtime overhead

Compared to **FastSwap**,
- **Section separation** reduce the interference between accesses
- **Analysis based prefetch** hide more latency
Comparing Typical Applications

- Dataframe reduces interference and could benefit from function offload
- GPT2-Inference has fixed access sequence and statically scheduled
- MCF section isolation and prefetch still benefits indirect access pattern
Summary of Mira

Mira: the first attempt to behavior-guided far-memory system

Achieves application-aware and transparent at the same time!

Program semantic should be captured and utilized in system layers
Discussion of Disaggregation

• Pros and cons of resource disaggregation?

• Do you believe this can be the future?

• New developments in the space: CXL
Outline

• PL for disaggregation: Mira [SOSP’23]

• Serverless on disaggregation: Zenix
Serverless Computing

- **No Management:** Users do not manage server or provision resources
- **Auto-Scale:** User computation is event triggered and auto scaled
- **Cost Efficient:** Users only pay for what they use

![Cloud Function Logos](image)
Serverless Computing

Applications

TensorFlow

pandas

Web Tasks

Data Analysis

ML Inference

Serverless Services

port

FaaS

Function

a Function-as-a-Service (FaaS) model:
Adapting user applications to Fix-Sized Functions
Does FaaS Meet All Serverless Goals?

- **No Management:** Users do not manage server or provision resources

- **Auto-Scale:** User computation is event triggered and auto scaled

- **Cost Efficient:** any allocated but unused resources?
FaaS is Resource Inefficient

Why? Function is a fixed box

- Running Logistic Regression with 10 different input data samples

FaaS Issue 1: Fixed Resource Type Ratios

AWS Lambda Allocation:

Fixed Ratio, 1 vCPU : 1.7G Memory

* Data Collected from Image Recognition, HTML and MapReduce examples, from SeBS benchmarks
FaaS Issue 1: Fixed Resource Type Ratios

Resource Consumption Heatmap
lighter color: lower cost

Perf-per-Dollar Heatmap
darker color: better perf/$
FaaS Issue 2: Fixed Amount across Invocations

CPU
MEM
Provision for avg?
Execution fails when larger than avg
Provision for the peak?
Resource wastage for non peaks

Uses set one function size across invocations

=> Different inputs cause different usages
FaaS Issue 3: Fixed Amount throughout Execution

One function size throughout execution

=> Resource usage changes in real apps

*Image Processing Example. On a large size image, each line showing one object.
Running “Bulky” Applications on FaaS

- Bulky applications like data analytics, ML, video processing, scientific computing
- Exhibit resource usage variations across different phases of computation
- Require different amounts of resources with different inputs
- Run longer or consume more memory than function size limits
- Running bulky applications on today’s FaaS
 - Manually split or rewrite a program as a set of functions
 - Provider increasing function sizes (AWS: 3GB to 10GB and 5 min to 15 min in 2020)
Root cause for FaaS issues:

User Applications Adapt to Provider-Defined Functions
Resource-Centric Serverless Computing:

Adapt Execution Towards User Applications
Zenix: a Resource-Centric Serverless Computing Platform

Logistic Regression Example with 10 different input data samples
Zenix: Resource-Centric Serverless Computing

Center serverless computing around the resource features of applications by decomposing them on a disaggregated system
Resource-Centric Serverless Computing

- Decomposing and executing applications according to their resource needs
Resource Graph: A New Model for Capturing Application Resource Behavior

- Resource component (nodes in a resource graph)
- A piece of code or data object that captures unique $<$type, lifetime, amount$>$
- Each component autoscaled on its own
- Scale without limits, and adapt to each input
Edges in a resource graph:

- **Triggering** another component
- **Communicating** with other components
Zenix: A Resource-Centric Serverless Computing Platform

Annotated or Original User Programs → Zenix Compilers → Resource Graph → Materialization → Scheduling → Execution Runtime

- Physical Components
- Execution Plan
- Triggering/Scaling Request
- Profiling and Monitoring

Static, happens when deploy
Dynamic, happens when invoke
Resource Graph Generation

• Users annotate their code with `@compute (par=K)` and `@data`

• or, Zenix automatically inserts annotations at every function and data object

• Profile: object size, CPU utilization

• Determine graph components: group by CPU util and object lifetime

• Compilation: generating both a local and a disaggregated version (with Mira)
Adaptive Materialization

- Co-locate if possible (no reservation, but mark future resources as low priority for other scheduling)
- Co-locate compute components and their accessed data components => low comm overhead
- Co-locate triggered and triggering compute components => no startup overhead
- Sizes each component according to profiled history
- Adaptively scales components on demand

![Resource Graph and Invocation Diagram]
Two-Level Scheduling Mechanism

Global Scheduler
- Schedule once per resource graph
- Scale: # of racks

Rack-Level Sched
- Schedule once per physical component
- Scale: # of servers in a rack

Executor
Executor

Decompose scheduling tasks into two levels solves scheduling scalability problem
Async Communication Mechanism

Utilize pre-setup scheduler links to build connections between auto-scaled components: sub-100µs setup time, and largely hidden.
Memory Accesses

- Native accesses when compute and data components scheduled locally
- Remote accesses via Zenix API calls (possibly to multiple servers)
- Local accesses via transparent swapping (when compute component scales beyond allocated size)
- Native/swap or API calls chosen at scheduling time and use different compilations
Implementation

• Compiler implemented on Mira (1.4K LOC)
• Scheduling/Monitoring built on top of OpenWhisk with 9K Scala LOC
• Two proof-of-concept add-on compiler: annotation-based and library based
• TCP/RDMA-enabled container runtime library with 6.4K C++/Python LOC.
Evaluation Results - ML Training

• Logistic regression with two inputs

• Comparing with AWS Lambda, Lambda+Step Function with Orion resource tuning and with Redis storing intermediate results, OpenWhisk, and FastSwap

• Zenix reduces resource consumption by 40% to 85%

Figure 8: LR Memory Consumption with Small Input.
Figure 9: LR Memory Consumption with Large Input.
Figure 10: LR Execution Time Breakdown with Large Input.
Evaluation Results - Video Processing

• Video transcoding (ported from ExCamera) with three video sizes

• Compared to gg (serverless for video), vpxenc (running on a single server)

Figure 13: Video Transcoding Execution Time. With 3 video resolutions.
Figure 14: Video Transcoding Memory Consumption.
Figure 15: Video Transcoding CPU Consumption.
Evaluation Results - Resource Materialization Policies

- Zenix monitor system could adjust allocation policy at resource granularity to reduce the performance.

- For both small, single element applications and large multistage operations, Scad could achieve over 90% resource utilization and performance.
Summary of Zenix

Serverless computing can and benefit from being resource centric!

We built Zenix, a resource-centric serverless computing platform with resource graphs executed with disaggregation and materialization achieves high performance, scalability, and resource utilization.

Check our paper for more details! https://arxiv.org/abs/2206.13444