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Abstract

In the problem of ranking from pairwise comparisons, the learner has access to pairwise preferences
among n objects and is expected to output a total order of these objects. This problem has a wide range
of applications not only in computer science but also in other areas such as social science and economics.
In this report, we will give a survey of passive and active learning algorithms for ranking from pairwise
comparisons. We will first survey algorithms for learning to rank in a general setting, and then we will
discuss ranking problems with special structures like bounded noise, the Bradley-Terry-Luce model, and
embedding in a low dimensional Euclidean space. Finally, we will briefly survey efficient algorithms for
practical applications.

1 Introduction
Ranking (a.k.a. learning to rank) is, given some information about a set of objects, to output a total order
of these objects. This problem has a wide range of applications including data mining, information retrieval,
as well as economics and sociology [Ail13]. For example, in information retrieval, the search engine needs to
list the results for user queries in a good order such that the most relevant links should be at the top of the
page. In sociology, there has been a long line of research in how to design a voting scheme such that election
results reflect true preferences of voters.

The task of learning to rank is closely related to some problems in computer science. It is similar to
a combinatorial optimization problem called Minimum Feedback Arc Set in Tournaments which has been
proved to be NP-hard [Alo06], but admits a Polynomial-Time Approximation Scheme [KMS07]. [ACN08]
applies the idea in [KMS07] to design an active ranking algorithm. Learning to rank is also similar to
the problem of sorting from noisy information. Many noisy sorting algorithms are also efficient active
ranking algorithms [BM08, MG15b]. Many works also study the relation between ranking and other machine
learning problems like binary classification [AM07, BBB+08] and multiclass/multilabel classification [DSM03,
HFCB08].

In machine learning, people study ranking problems from various kinds of information including pointwise
information, pairwise information, and listwise information [Liu09]. In this report, we will focus on learning
to rank from pairwise information, where learner only has access to pairwise preferences among objects.

The reasons for considering pairwise comparisons are as follows. First, pairwise comparisons are easier
to obtain than the total order. For example, for movie recommendation, it would take a lot of time to let
users give a total order, or even a partial order, of a list of movies, but it will not take too much time to let
users make some pairwise comparisons. Second, in many cases, pairwise comparisons are more accurate than
pointwise information. Considering movie recommendation again, it would be hard for a user to accurately
quantize to which extent he/she likes a movie, but it would be easier to decide which one is preferred
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between two objects. Moreover, many studies show that pairwise comparison results are more reliable in
many applications like clickthrough data [Joa02] and crowd sourcing [YJJJ13].

In this report, instead of time complexity, we focus on sample complexity which is defined as how many
comparisons are required to find a good total order. When comparisons are noiseless, in order to rank
n objects, the optimal sample complexity is O(n log n) which can be achieved by any comparison-based
sorting algorithms that run in O(n log n) time. This report will address the problem in more complicated
settings where comparisons are noisy, or the objects to rank have certain special structure (for instance, a
low dimensional embedding).

We will survey and compare both passive ranking and active ranking algorithms. The difference between
the two paradigms is that in passive ranking, the learner will receive a set of independent and identically
distributed (i.i.d.) pairs and their comparison results as training data at once, and use these data to learn a
total order, whereas in active ranking, the learner can interactively choose which pair to compare, and this
choice can depend on the previous queries and responses. Thus it is reasonable to expect that active ranking
will require less comparisons because the interactive process allows the learner to make use of comparison
results more effectively.

This report is organized as follows: in Section 2, we will give the formal setting of learning to rank
from pairwise comparisons; in Section 3, we will compare our ranking problem with related ranking models;
in Section 4, we will survey algorithms and analyses for learning to rank in the general setting where
few assumptions are made on the objects to rank or the comparison process; in Section 5, we will survey
the learning algorithms for learning to rank with special structures, including bounded noise model, the
Bradley-Terry-Luce model, and embedding in a low dimensional Euclidean space; in Section 6, we will briefly
survey the efficient algorithms (without theoretical guarantee) for practical applications; finally Section 7
will summarize the report and discuss open problems for future research.

2 Problem definition

2.1 Notations
Let V be a set of n elements {v1, . . . , vn}. The input space X = V ×V contains all pairs of V . The label space
Y is defined as {0, 1} which represents the comparison result of a pair. For any unordered pair (u, v) ∈ X ,
its label is 1 when u ranks higher than v and 0 otherwise. We will also use u ≺ v and ordered pair 〈u, v〉 to
represent u ranks higher than v.

Denote by
(
V
2

)
the set of pairs from V . Denote by D the underlying distribution over X × Y, by DX

the marginal distribution over X , and by D|x the conditional distribution of the label given a sample x. We
assume DX is uniform over

(
V
2

)
.

The hypothesis space H is the set of all permutations of V . For a permutation π, with some abuse of
notations, we make following definitions. For any pair u, v ∈ V , define π(u, v) = 1 if u is before v in π (in
other words, u ranks higher than v), and 0 otherwise. Define π(i) to be the index of vi in π, and define
π−1(i) to be the rank i element (in other words, π−1 is the inverse function of π, π(π−1(i)) = i). Define πji
to be the ordered sequence π−1(i), π−1(i + 1), . . . , π−1(j). For example, for permutation π = 〈3, 5, 4, 1, 2〉,
by definition, π(5, 2) = 1, π(2, 5) = 0, π(3) = 1, π(4) = 3, π−1(1) = 3, π−1(3) = 4, and π4

2 = 〈5, 4, 1〉.
We define the indicator function I[A] to be 1 if A is true, and 0 otherwise.
For any permutations π1, π2, define erD(π1) = E〈u,v〉∼DI[π1(u, v) 6= 1], Pr(π1 6= π2) = Pr(u,v)∼DX (π1(u, v) 6= π2(u, v)),

and ν = minπ∈H erD(π).

2.2 Passive ranking and Active ranking
In this report, we will survey both passive ranking algorithms and active ranking algorithms, which are
defined as follows:
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Passive ranking The input is a set of i.i.d. samples from D, and the output is some permutation π ∈ H
that minimizes the loss function (to be specified later).

Active ranking There is an Oracle that on query x ∈ X returns a label y ∈ Y drawn from distribution
D|x. The algorithm can interactively query any x ∈ X and receive its label from the Oracle. Each query can
be dependent with previous queries and Oracle responses. The output should be some permutation π ∈ H
that minimizes the loss function (to be specified later).

Throughout this report, instead of focusing on computational complexity, we mostly care sample com-
plexity which measures how many comparisons are needed to guarantee a given loss. More formally, for a
loss function L : H → [0, 1], for any ε, δ ∈ (0, 1), for any learning algorithm A, when A is a passive ranking
algorithm, its sample complexity is defined as the minimum natural number m(ε, δ, n,A) such that with
probability at least 1 − δ, if A receives at least m(ε, δ, n,A) pairwise comparison results drawn i.i.d. from
D, then it can output a permutation with L(π) ≤ ε; when A is an active ranking algorithm, its sample
complexity is defined as the minimum natural number m(ε, δ, n,A) such that with probability at least 1− δ,
if A makes at least m(ε, δ, n,A) queries for pairwise comparisons, then it can output a permutation with
L(π) ≤ ε.

2.3 Different loss functions
There are many different loss functions for the task of learning to rank. For learning to rank in the general set-
ting discussed in Section 4, the loss function we use is L(π) = erD(π), which is a variant of Kendall-τ distance
defined as dK(π1, π2) =

∑
(i,j) I[π1(i, j) 6= π2(i, j)] for any two permutations π1, π2. Kendall-τ distance counts

how many pairs are ordered differently by the two permutations. There are also other distances between per-
mutations. The Spearman Footrule distance is defined as dF (π1, π2) =

∑
i |π1(i)− π2(i)|, which measures the

accumulated displacement of objects. [DG77] proves that ∀π1, π2, dK(π1, π2) ≤ dF (π1, π2) ≤ 2dK(π1, π2),
so asymptotically Spearman Footrule distance is equivalent to Kendall-τ distance. Some papers (for ex-
ample [BM08, WJJ13]) also consider the distance d(π1, π2) = maxi |π1(i)− π2(i)|, which measures uniform
displacement instead of accumulated displacement in Spearman Footrule distance.

In Section 5, we will discuss some learning to rank problems where there exists a true total order π∗.
For these problems, the loss function we use is L(π) = Pr(π 6= π∗) which is the probability that π orders
a pair differently from how the ground truth permutation will order. By triangle inequality, for any π ∈ H
L(π) ≤ erD(π) + ν, but this bound is often quite loose.

3 Related problems

3.1 Learning to rank and Minimum Feedback Arc Set in Tournaments
The task of learning to rank is similar to the Minimum Feedback Arc Set in Tournaments (MFAST) problem
in combinatorial optimization. In MFAST, one is given a set of n elements V = {v1, . . . , vn}, and a matrix
W ∈ Rn∗n satisfying ∀i, j ∈ {1, 2, . . . , n}, b ≤ Wij + Wji ≤ 1 for some constant b ∈ [0, 1]. The matrix W
can be seen as the pairwise comparison results . The goal for MFAST is to find a permutation π minimizing∑
u,v:π(u,v)=1Wu,v.
For our purpose, the most important difference between MFAST and learning to rank is that in MFAST,

the goal is to design a computationally efficient algorithm, and the comparison matrix W is given as input
at no cost; whereas in learning to rank, computational complexity is not the primary concern. In learning
to rank, one can only get a sequence of samples of comparison results, and wants to minimize the loss with
as few comparisons as possible.

MFAST has been proved to be NP-hard by [Alo06], and [KMS07] designs a polynomial-time approxima-
tion scheme (PTAS) for it. Although the algorithm in [KMS07] is not query-efficient, [Ail12] proposes an
active ranking algorithm based on it.

3



Algorithm Error rate Sample Complexity
Passive ranking, ERM [Ail12] erD(π) ≤ ν + ε ε−2n log n

Active ranking [Ail12] erD(π) ≤ (1 + ε)ν ε−6n log5 n in expectation
Active ranking using SRRA [ABE14] erD(π) ≤ (1 + ε)ν ε−3n log5 n

Table 1: Results for ranking in the general setting

3.2 Learning to rank and sorting
Every comparison-based sorting algorithm is also an algorithm for active ranking from pairwise comparisons.
There are many works discussing sorting algorithms when comparisons are noisy [FPRU90, KK07, BM08].
They assume that there is an underlying true total order, and the pairwise comparisons observed are certain
noisy versions of their true relative orders (Note that in Section 2 we do not assume the existence of an
underlying true total order). Many algorithms in noisy sorting also work for MFAST[ACN08] and active
ranking (we will see an active ranking from sorting in Subsection 5.1).

Another classical model for noisy ranking is the Mallow’s model where the algorithm is given a set of i.i.d.
samples of permutations instead of pairwise comparisons, and the probability of observing a permutation σ
is proportional to e−βdK(π,σ) where β is some constant and π is the underlying true permutation. This is
similar to the setting of list-wise learning to rank in information retrieval. This model is beyond the scope
of this report because we are focusing on ranking from pairwise comparisons.

3.3 Other related ranking problems
One interesting theoretical problem is bipartite ranking which involves both ranking and classification. The
algorithm is expected to output a total order, but unlike our problem, in bipartite ranking each object is
associated with a positive/negative label, and the loss is measured by how many the negative objects are
put ahead of the positive samples in the output. Many works study the relation between bipartite ranking
and binary classification [Aga05, AM07, BBB+08].

For applications, there has been extensive research on various learning to rank models in information
retrieval. The models include the pointwise approach (where the algorithm aims at modeling the score func-
tion of each object), the pairwise approach (where the algorithm aims at modeling the pairwise preference),
and the listwise approach (where the input can be some random copies of partial/total order of some objects,
and the goal is to output a sorted list) [Liu09]. And instead of Kendall-τ distance or Spearman Footrule
distance, many works employ measures (for example, Mean Reciprocal Rank, Mean Average Precision, and
Discounted Cumulative Gain) that give a higher weight to the objects that rank higher to accommodate the
phenomena that users often only care the first few items returned by the search engine.

In addition, in collaborate filtering, many works are on personalized ranking where instead of giving a
global order of objects, it is expected to give different rankings for different users based on some user-specific
features ([CXL+06, RFGST09]).

Another interesting problem is label ranking in multiclass classification problem, and its difference with
the classical multiclass classification setting is that here the for each object, the algorithm will receive a
(partial) order of labels (for example, a partial order of labels can be “this image is more likely to be a cat
than a dog”) [DSM03, HFCB08].

4 Learning to rank in the general setting
In this section, we survey algorithms for learning to rank in a general agnostic setting that does not assume
any structures underlying the n objects, and does not assume any ground truth permutation. The results
are summarized in Table 1.
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4.1 An additive VC bound for passive ranking
Note that each permutation induces a binary classifier on pairs: for a permutation π, for any pair (u, v) ∈
[n]× [n], recall that π(u, v) = 1 if vu is before vv in π, and 0 otherwise. [Ail12] proves that the VC dimension
of the set of binary classifiers induced by permutations of n objects is n − 1. Consequently, we have the
following VC bound.

Theorem 1. [Ail12] If E is a set containing m i.i.d. samples from D, then with probability at least 1 − δ,
for any permutation π,∣∣∣∣∣∣E〈u,v〉∼DI[π(u, v) 6= 1]− 1

m

∑
〈u,v〉∈E

I[π(u, v) 6= 1]

∣∣∣∣∣∣ = O

√n logm+ log 1
δ

m


This implies that in order to achieve an additive error of ε, i.e., erD(π) ≤ ν + ε, an passive learner can

simply do Empirical Risk Minimization (ERM) (assume the learner has unlimited computational power)
which requires ε−2n log n comparisons asymptotically. But in many cases, it is required to achieve a multi-
plicative error of ε, i.e., erD(π) ≤ (1 + ε) ν. A multiplicative error is more meaningful when ν is very small
(for instance, in the realizable case where ν = 0). In the following subsections, we will see that an active
learner could achieve a multiplicative error of ε with O

(
npoly(ε−1, log 1

δ , log n)
)
labels.

4.2 Active ranking based on the PTAS for MFAST
[Ail12] proposes an active ranking algorithm consisting of two steps: first decompose V , the set of n objects
to rank, into groups, and then find a good permutation for each group.

Formally, in the decomposition step, the algorithm tries to find an ε-good decomposition, which is defined
as follows.

Definition 2. We say V1, . . . , Vk ⊆ V is a decomposition if V1, . . . , Vk are pairwise disjoint, and ∪ki=1Vk = V .
Let Π(V ) be the set of permutations on V . For a decomposition, let Π(V1, . . . , Vk) = {π ∈ Π(V ) : π(u, v) =
1 for any 1 ≤ i < j ≤ k, u ∈ Vi, v ∈ Vj}. We say U ⊆ V is small if |U | ≤ log n/ log log n, otherwise we say U
is big.

A decomposition is ε-good if both of the following hold:
(1) Local chaos:

min
π∈Π(V )

∑
i:Vi is big

(
|Vi|
2

)
E〈u,v〉∼D [I[π(u, v) 6= 1]|u, v ∈ Vi] ≥ ε2

∑
i:Vi is big

(
|Vi|
2

)
,

(2) Approximate optimality

min
π∈Π(V1,...,Vk)

erD(π) ≤ (1 + ε)ν

In other words, a decomposition is ε-good if every big group is hard to rank, and if one could rank each
group well, it will have low error overall.

If one can construct a ε-good decomposition V1, . . . , Vk, then by standard VC bound and the definition
of ε-good decomposition, the following lemma holds:

Lemma 3. [Ail12]Let B = {i ∈ [k] : Vi is big}, E be random samples of size O
(
ε−6n log n

)
drawn uniformly

at random from ∪i∈B
(
Vi

2

)
, Ei = E ∩

(
Vi

2

)
for i ∈ B. For any π ∈ Π(V1, . . . , Vk), define

Ĉ(π) =

(
|E|−1

∑
i∈B

(
|Vi|
2

))∑
i∈B

∑
〈u,v〉∈Ei

I[π(u, v) 6= 1 and u, v ∈ Vi]

+
∑
i∈Bc

(
|Vi|
2

)
E〈u,v〉∼D [I[π(u, v) 6= 1]|u, v ∈ Vi]
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if π∗ ∈ Π(V1, . . . , Vk) is a minimizer of Ĉ(π), then

erD(π∗) ≤ (1 + ε)ν

Lemma 3 implies that a minimizer of Ĉ(π) is also a good ranking. To minimize Ĉ(π), for the first term,
it is just a combinatorial optimization problem. Although this is known as Minimum Feedback Arc Set
(MFAS) problem which is even computational harder than MFAST [Kar72], since we only care about query
complexity, it can be solved without any extra comparisons. For the second term, since

∑
i∈Bc

(|Vi|
2

)
is as

small as O(n log n/ log log n), one can simply make comparisons of all pairs among them.
What remains is to find a ε-good decomposition with few comparisons. The procedure for finding a good

decomposition is similar to the PTAS of [KMS07], which first finds a ranking with constant multiplicative
error, then repetitively tries to make local improvements. To make local improvements, one needs to evaluate
the change of error rate after modifying the ranking. In [KMS07], one could directly recalculate the loss
function, but here, we need to find a query-efficient method to get a good estimation of the loss. The
algorithm proposed by [Ail12] is presented as Algorithm 1.

The procedure Decompose in Algorithm 1 first finds some ranking with constant multiplicative error, and
then calls procedure SampleAndDecompose to recursively construct the decompositions. Before recursion,
SampleAndDecompose will first check between line 6 and line 12 if current set V is a small set or already
satisfies local chaos, and then try to make local improvement by calling ApproxLocalImprove. Line 23 to
line 27 draws samples with different granularity which is used to guarantee a good estimation accuracy for
evaluating the effect of a local move in line 28. To keep this good granularity after each move, line 30 will
adjust the sample set and make extra samples when necessary.

It can be shown that Algorithm 1 will return an ε-good decomposition with probability at least 1−n−2 and
querying O(ε−6n log5 n) comparisons in expectation. The running time for this step is O(npoly(log n, ε−1)).
Combining with Lemma 3, we have the following guarantee overall:

Theorem 4. Let π be the result by first finding an ε-good decomposition with Algorithm 1 and then optimizing
Ĉ(π). Then π satisfies erD(π) ≤ (1 +O(ε)) ν with probability at least 1 − n−2, and the expect number of
comparisons made is O

(
ε−6n log5 n

)
.

4.3 Active ranking using Smooth Relative Regret Approximations
[ABE14] proposes a general scheme for active learning called Smooth Relative Regret Approximations
(SRRA) and applies it to active ranking. We will first introduce SRRA in a general active learning set-
ting, and then demonstrate how it can be used for active ranking.

4.3.1 Some additional definitions for general active learning

Denote by X the sample space, and by Y = {0, 1} the label space. Denote by D the underlying distribution
over X ×Y, by D|x the conditional distribution of label given a sample x, Dx the marginal distribution over
X . The hypothesis space H is a subset of XY , the set of functions mapping from X to Y.

Define erD(h) = E(x,y)∼D [I[h(x) 6= y]], ν = infh∈H erD(h), d(h1, h2) = Prx∼Dx (h1(x) 6= h2(x)).

4.3.2 The SRRA algorithm

Define regh(h′) = erD(h′)− erD(h) to be the relative regret function with respect to h. Let f : H → R be any
function, 0 ≤ ε ≤ 1

5 , 0 ≤ µ ≤ 1, we say f is an ε-smooth relative regret approximation (ε-SRRA) with respect
to a pivot hypothesis h if ∀h′ ∈ H, |f(h′)− regh(h′)| ≤ εd(h, h′). An SRRA is often an empirical estimation
of the relative regret function. Note that an SRRA should have a low multiplicative error compared with
the true distance instead of additive error, which requires SRRA to be even more precise when h′ gets closer
to the pivot hypothesis.

If one can construct an ε-SRRA, then the following theorem states that Algorithm 2 will learn a classifier
with good generalization error.

6



Algorithm 1 Finding an ε-good Decomposition
1: procedure Decompose(V , ε)
2: π ← an expected O(1)-approximate solution to MFAST using O(|V | log |V |) queries on expectation

(e.g. the algorithm in [ACN08])
3: return SampleAndDecompose(V , |V |, ε, π)
4: end procedure
5: procedure SampleAndDecompose(V , n, ε, π)
6: if |V | ≤ log n/ log log n then
7: return trivial partition {V }
8: end if
9: E ← uniformly draw at random O

(
ε−4 log n

)
samples from

(
V
2

)
and for their comparisons

10: if |E|−1
∑
〈u,v〉∈E I[π(u, v) 6= 1] ≥ Ω(ε2) then

11: return trivial partition {V }
12: end if
13: π′ ← ApproxLocalImprove(V , ,n, ε, π)
14: k ← draw an integer uniformly at random from [|V |/3, 2|V |/3]

15: decomposeL ← SampleAndDecompose({π′(i) : i = 1, . . . , k}, n, ε, π′k1)
16: decomposeR ← SampleAndDecompose({π′(i) : i = k + 1, . . . , |V |}, n, ε,π′|V |k+1)
17: return concatenation of decomposeL and decomposeR
18: end procedure
19: procedure ApproxLocalImprove(V , n, ε, π)
20: if |V | ≤ ε−3 log3 n then
21: return π
22: end if
23: for i = 1, . . . , |V | do
24: for j = log ε|V |

logn , . . . , log |V | do
25: Ei,j ← draw Θ(ε−2 log2 n) integers from [max{1, i−2j},min{|V |, i+2j}] uniformly at random,

and query for the comparisons between vi and each of them
26: end for
27: end for
28: while ∃i, j ∈ [|V |] s.t. (let l = log |i− j|, π̃ = switch i-th element and j-th element in π)∑

〈u,v〉∈Ei,l

I[π̃(u, v) 6= 1] ≤
∑

〈u,v〉∈Ei,l

I[π(u, v) 6= 1]− ε|Ei,l|
log n

do
29: π ← π̃
30: refresh samples Ei,j for all i, j with respect to the new permutation π
31: end while
32: return π
33: end procedure

Algorithm 2 SRRA Algorithm
1: Input: ε, the number of iterations T
2: h0 ← an initial hypothesis
3: for k = 1, 2, . . . , T do
4: Derive an ε-SRRA f with respect to hk−1

5: hk ← arg minh∈H f(h)
6: end for
7: Output: hT
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Lemma 5. [ABE14] Let h be the output of Algorithm 2 with parameter ε, T . Then erD = (1 +O(ε)) ν +
O(εT )erD(h0) +O(εµ).

4.3.3 Active ranking with SRRA Algorithm

Algorithm 2 is a generic scheme for active learning with theoretical guarantee on the generalization error.
Labels are used to derive ε-SRRAs. In [ABE14], the authors propose a general algorithm to get ε-SRRAs.
Their construction involves disagreement coefficient [Han07] which is a key parameter to characterize active
learning problems [BBL09, BDL09, BHLZ10, BL13]. Intuitively, the harder to distinguish between two
hypotheses, the more labels need to be queried so that the approximated regret f will be accurate enough
up to a multiplicative error. This method is computationally inefficient in general, but the same intuition
could be applied to derive an efficient sampling method to construct SRRAs for active ranking, which is
presented as Algorithm 3.

Algorithm 3 SRRA Construction
1: Input: ε, n, a pivot permutation π
2: Output: An ε-SRRA with respect to π
3: p← O

(
ε−3 log3 n

)
4: for u = 1, 2, . . . , n do
5: for i = 1, 2, . . . , log n do
6: Iu,i ←

{
v : (2i − 1)p < |π(u)− π(v)| < 2i+1p

}
7: Draw p samples uniformly at random, and get vu,i,1, . . . , vu,i,p
8: Ask the Oracle to compare u with vu,i,1, . . . , vu,i,p, and get p labels yu,i,1, . . . , yu,i,p
9: end for

10: end for
11: Define êr as

êr(σ) =

n∑
u=1

logn∑
i=0

p∑
t=1

|Iu,i|(
n
2

)
p
I [σ(u, vu,i,t) 6= yu,i,t]

12: Define f as f(σ) = êr(σ)− êr(π)
13: Return f

The intuition for Algorithm 3 is the same with the general sampling method mentioned above. For a
given permutation π, for any element u, it will make more comparisons between u and nearby elements of
u in π such that f has a low multiplicative approximation error. It is also interesting to point out that this
sampling scheme is similar to the one in ApproxLocalImprove in Algorithm 1. It can be shown that Algorithm
3 outputs an ε-SRRA, so we have the following error bound for active ranking with SRRA algorithm.

Theorem 6. [ABE14] Let π be the output of Algorithm 2 with T = log n and use Algorithm 3 to construct
ε-SRRAs. Then at most O

(
ε−3n log5 n

)
comparisons are made, and with probability at least 1 − n−2, π

satisfies erD(π) ≤ (1 +O(ε)) ν.

Remark 7. Although Algorithm 3 is computational efficient, the active ranking algorithm is not efficient
overall without additional assumptions since one still needs to optimize over the SRRA in Algorithm 2.

4.4 Discussion
In order to achieve a good multiplicative error erD(π) ≤ (1 +O(ε)) ν, the sample complexity for Algorithm
3 is O

(
ε−3n log5 n

)
, which is better than the O

(
ε−6n log5 n

)
for Algorithm 1. For the passive ranking, to

achieve an additive error erD(π) ≤ ν + ε, it requires O
(
ε−2n log n

)
samples, which seems to be smaller, but

note that an additive error guarantee is much weaker than that of a multiplicative error. To see that, in
order to achieve erD(π) = Θ(ν), the passive learner requires O

(
ν−2n log n

)
samples, while the active learner
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Assumption Algorithm Error rate Sample Complexity
None Passive, ERM [Ail12] erD(π) ≤ ν + ε ε−2n log n

None Active ranking using SRRA [ABE14] erD(π) ≤ (1 + ε)ν ε−3n log5 n
Bounded noise Passive, Borda count [WJJ13] Pr(π 6= π∗) ≤ 1√

n
n2

Bounded noise Active, noisy sorting [BM08] Pr(π 6= π∗) ≤ 1
n n log2 n

BTL with additional assumptions Active, quick sort [MG15b] Pr(π 6= π∗) ≤ 1
n n log n

Embedding, no noise Passive [JN11a] Exactly recover Ω
(
n2
)
on average

Embedding, no noise Active, disagreement-based [JN11a] Exactly recover d log n on average

Table 2: Results for ranking with additional structures. For comparison reasons, in the first two rows we
also list results under the general setting in Section 4. The loss function for algorithms in bounded noise
and the BTL model is different with the general setting. The relationship between these two loss functions
is discussed in Subsection 5.1.4. We do not include the results in [RA14] for BTL models because its results
are just consistency results.

requires O
(
n log5 n

)
samples which is independent of ν. In the extreme case where ν = 0, the active learner

still requires O
(
n log5 n

)
samples, but for passive ranking Ω(n2) samples are actually necessary, because

to achieve zero error the algorithm must know every consecutive pairs in the optimal permutation, which
requires Ω(n2) draws if the samples are drawn i.i.d.. In this sense, active ranking is better than passive
ranking. It would be interesting to see if one could improve the sample complexity for active ranking.

5 Learning to rank with additional structures
In this section, we will make some additional assumptions on structures underlying the n objects to rank.
First, we will consider ranking with bounded noise, which assumes an optimal order and that the comparison
results are flipped with some probability bounded away from 1

2 . Next, we will see another model that also
assumes an optimal order. The comparison results in this model can be noisier but follow a probabilistic
model. Last, we will discuss the setting that assumes an embedding in Euclidean space. The results are
summarized in Table 2.

5.1 Ranking with bounded noise
5.1.1 The model

In this subsection, we assume that there is a true underlying order π∗. The noise is bounded in the sense
that there is a constant γ ∈ (0, 1

2 ) such that for any two objects vi, vj , Pr(vi ≺ vj |π∗(i, j) = 1) ≥ 1
2 + γ.

Since we assume the existence of a ground truth π∗, we will use Pr(σ 6= π∗) = Pr(u,v)∼DX (σ(u, v) 6= π∗(u, v))
to measure prediction error in this subsection. Recall that by triangle inequality for any σ, Pr(σ 6= π∗) ≤
erD(σ) + ν, and that under the bounded noise condition, ν ≤ 1

2 − γ.

5.1.2 Balanced Rank Estimation algorithm

[WJJ13] gives an analysis of a very simple counting algorithm called Balanced Rank Estimation which is
also known as Borda Count algorithm, shown as Algorithm 4.

Theorem 8. [WJJ13] Let the σ be the output of Algorithm 4, and assume {〈ui, vi〉}Mi=1 are i.i.d drawn
from D without replacement. If m ≥ Ω

(
n

η2γ2

)
, and n is large enough, then Pr(σ 6= π∗) ≤ η. If further

m ≥ Ω(n log n), then with probability at least 1 − n1−canγ2η2 , maxj |σ(j)− π∗(j)| ≤ ηn, where {an} is a
sequence of numbers that converge to 1.

9



Algorithm 4 Balanced Rank Estimation

1: Input: n, M training samples 〈ui, vi〉Mi=1

2: Output: the ordering of the objects
3: for k = 1, 2, . . . , n do
4: ck ←

∑M
i=1 I [ui = k]

5: end for
6: Let σ be the permutation according to the increacing order of ck
7: Return σ

Note that this theorem requires {〈ui, vi〉}Mi=1 are drawn without replacement, so η ≥ Ω( 1√
n

).

[RA14] also analyses this algorithm that assumes {〈ui, vi〉}Mi=1 are drawn with replacement. But unlike
the low error rate sample complexity bound in [WJJ13] , the analysis in [RA14] is on the consistency of the
algorithm that shows, roughly speaking, if m ? n4 log n and further D|x satisfies some low noise condition,
then with high probability Pr(σ 6= π∗) = 0.

5.1.3 An active ranking algorithm from sorting

[BM08] discusses noisy sorting which can also be seen as active ranking from pairwise comparisons.
If repetitions are allowed in querying, then it is easy to see that by applying any standard sorting algorithm

running in O(n log n) time and repeating each comparison for O(log n) times, then with high probability one
can recover π∗ using O(n log2 n) queries.

It is more sophisticated and interesting to consider the case where repetitions are not allowed. [BM08]
designs a randomized algorithm shown as Algorithm 5.

Algorithm 5 Noisy Sorting
1: Input: V , γ
2: Output: the ordering of the objects
3: S0 ← ∅, σ0 ← an empty permutation
4: for k = 1, 2, . . . , n do
5: ak ← choose an object from V \Sk−1 uniformly at random
6: Sk ← Sk−1 ∪ {ak}
7: Split σk−1 into blocks B1, . . . , Bl(k) such that each block is of size Θ(log n)
8: Use a noisy binary search procedure to find a t such that any object in B1, . . . , Bt−1 is smaller than
ak and any object in Bt+1, . . . , Bl(k) is larger than ak with high probability

9: σ̂k ← B1, . . . , Bt−1, Bt, {ak}, Bt+1, . . . , Bl(k)

10: Use a dynamic programming to find a permutation σk based on σ̂k with low error rate
11: end for
12: Return σn

Algorithm 5 uses a framework of insertion sort. For each object to insert, it first roughly estimates
the position of this new object by a variant of noisy binary search in [KK07], and then uses a dynamic
programming at line 10 which is guaranteed to find a permutation that maximizes s(σ) =

∑
i,j:σ(i,j)=0 I(vi ≺

vj) given the assumption that maxi |σ̂k(i)− π∗(i)| = O(log n).
[BM08] shows that with high probability, the permutation that maximizes s(σ) is close to π∗, the binary

search process at line 10 will guarantee maxi |σ̂k(i)− π∗(i)| = O(log n), and the dynamic programming at
line 10 will only require O(log n) queries each time. Therefore, Algorithms 5 has following guarantee:

Theorem 9. [BM08] Let σ be the output of Algorithms 5 and β be a positive real number. Then with
probability at lest 1− n−β, Algorithms 5 makes at most O (C(β, γ)n log n) comparisons, and

max
i
|σ(i)− π∗(i)| ≤ C1(β) log n , Pr(σ 6= π∗) ≤ C2(β)

n

10



, where C(β, γ), C1(β), C2(β) is independent with n.

Remark 10. One drawback for this algorithm is that it cannot achieve a lower error by increasing sample
size.

5.1.4 Discussion

Comparing the guarantee for passive ranking and active ranking, Theorem 8 does not give sample complexity
to achieve Pr(σ 6= π∗) ≤ O

(
1
n

)
or maxi |σ̂k(i)− π∗(i)| = O (log n), while Theorem 9 shows O(n log n) queries

are enough for active ranking to achieve Pr(σ 6= π∗) = O
(

1
n

)
.

It is not clear how the algorithms for the general setting in Section 4 perform under this bounded noise
setting. It is tentative to use the triangle inequality Pr(σ 6= π∗) ≤ erD(σ) + ν to relate the erD(σ) with
Pr(σ 6= π∗), but to achieve Pr(σ 6= π∗) = O( 1

n ), one has to set ν = O
(

1
n

)
which contradicts with the fact

that ν = 1
2 − γ where γ is a constant.

5.2 Ranking with Bradley-Terry-Luce model
Bradley-Terry-Luce (BTL) model is a popular probabilistic model that models how likely one object gets
ranked higher than another. It assigns a score to each object, and the higher the score is, the more likely
the object ranks higher. When two objects have similar scores, it will be very hard to compare them.

More formally, each object vi (i = 1, . . . , n) is associated with a score wi ∈ (0, 1] satisfying
∑n
i=1 wi = 1.

For any two objects vi, vj , Pr(vi ≺ vj) =
wj

wi+wj
.

To state the results, we introduce following notations.

Notation 11. Define π∗ to be the permutation that ranks the objects in increasing order of wi. Define
µm = minu,v∈V Pr(u,v)∼DX ((u, v)) to be the minimum of the probability of observing a certain pair. Define
P ∈ Rn×n to be the preference matrix such that Pij = Pr(vi ≺ vj). Define P̂ ∈ Rn×n to be the empirical
comparison matrix such that

P̂ij =

{∑
〈u,v〉∈E I[〈u,v〉=〈i,j〉]∑
(u,v)∈E I[(u,v)=(i,j)]

∑
(u,v)∈E I [(u, v) = (i, j)] > 0

0 otherwise

Again, we will use Pr(u,v)∼DX (σ(u, v) 6= π∗(u, v)) to measure prediction error in this subsection due to
the existence of a ground truth π∗.

5.2.1 Maximum likelihood algorithm

Maximum likelihood algorithm for BTL model is straightforward. It consists of two steps. First, it makes a
maximum likelihood estimation of w1, . . . , wn:

ŵ = arg max
w

∏
〈u,v〉∈E

Pr (u ≺ v|w)

Then it ranks the objects in increasing order of ŵi.
[RA14] provides a consistency result of this algorithm (in fact, it shows that Theorem 12 holds for a more

general model called Low-Noise Condition):

Theorem 12. [RA14] Assume µm > 0, ∃i, j s.t. Pr(vi ≺ vj) 6= 1
2 , and let σ be the order given by the above

maximum likelihood algorithm. If the sample size |E| ≥ O
(

1
µ2
m

log n
δ

)
, then with probability at least 1 − δ,

Pr(u,v)∼DX (σ(u, v) 6= π∗(u, v)) = 0.
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5.2.2 Rank Centrality algorithm

Another popular passive ranking algorithm is the Rank Centrality algorithm [NOS12, RA14] based on a
random walk interpretation of BTL model.

We define the transition matrix Q for the Markov chain induced by a preference matrix P as

Qi,j =

{
Pij/n if i 6= j

1−
∑
k 6=i Pkj/n if i = j

. Recall that Q is time-reversible if and only if Q is irreducible and aperiodic, and its stationary distribution
π satisfies πiQij = πjQji. [RA14] shows that the Markov chain induced by a preference matrix P is time-
reversible if and only if P corresponds to some BTL model.

The intuition for Rank Centrality algorithm is as follows. Imagine a random walk on this Markov chain.
One is more likely to walk from vi to vj if vj ranks higher than vi. Thus, the “stronger” an object is, the
random walk will visit the object more frequently. Note that if the induced Markov chain of P satisfies the
time-reversible condition, then for the stationary distribution π, ∀i, j, wj ≥ wi ⇐⇒ Pij > Pji =⇒ πj ≥ πi.
Thus, ranking the objects in the increasing order of stationary probabilities will yield the optimal order of
BTL model. In the learning task, one has no access to the preference matrix, and it can only use the
empirical preference matrix.

The rank centrality algorithm is demonstrated as Algorithm 6.

Algorithm 6 Rank Centrality

1: Input: the empirical comparison matrix P̂ , n
2: Output: the ordering of the objects
3: Construct the transition matrix Q̂ for the Markov chain induced by P̂
4: Calculate the stationary distribution π̂ of Q̂
5: Let σ be the permutation according to the increacing order of π̂
6: Return σ

[RA14] provides a consistency result of this algorithm:

Theorem 13. [RA14] Assume µm > 0, and let σ be the order given by Algorithm 6. If the sample size
|E| ≥ O

(
n
µ2
m

log n
δ

)
, then with probability at least 1− δ, Pr(u,v)∼DX (σ(u, v) 6= π∗(u, v)) = 0.

Remark 14. Note that 1
µ2
m

is at least n4, the bounds in Theorem 13 and Theorem 12 require a huge amount
of samples. But these two theorems focus on the consistency of the algorithms: how many samples it needs
to obtain the optimal ranking. It would be interesting to see how many samples it needs to obtain a ranking
that has low error rate compared with the optimal ranking.

Remark 15. [NOS12] gives a bound that requires less samples but with a stronger assumption. Their sample
generating process as follows: first select some pairs uniformly at random, then compare each of these
pairs for a fixed number of times. They show that under this generative assumption, if |E| ≥ O

(
n log3 n

)
,

then ‖π̂ − π‖2 = o((log n)
−1/2

). Note that this only guarantees the estimation accuracy of the stationary
distribution. They demonstrate experimental results to show that a weighted version of prediction error
goes down at the same speed of a maximum likelihood estimator, but they do not provide any theoretical
guarantee on the error rate.

5.2.3 A quicksort-style active ranking algorithm

There is only a few works on active ranking for the BTL model. The only work known to the author that
has theoretical guarantee is [MG15b].

[MG15b] makes an additional assumption about the BTL model: it assumes that the model parameters
w1, . . . , wn are generated according to some Poisson process, and DX is uniform. The generating process is

12



as follows: first, draw n random variables ξ1, . . . , ξn i.i.d. from the exponential distribution with parameter
λ, then let wi = exp(

∑i
j=1 ξi)/C where C is a normalization term to make

∑
i wi = 1.

They show that under this strong assumption, the classical randomized quicksort algorithm will guarantee
that with probability at least 1− 1

n , it will output a permutation σ such that Pr(u,v)∼DX (σ(u, v) 6= π∗(u, v)) ≤
λ3

n .

5.2.4 Extensions

There are many generalizations of the BTL model. For example, [RA14] discusses the Low-Noise model.
Its assumption is that Pij > Pji =⇒

∑
k Pkj ≥

∑
k Pki (in other words, imagine n teams compete in a

tournament, the stronger team should win more games than others). And they show that the BTL model
follows this assumption, and that the maximum likelihood algorithm for BTL model actually works under
this general assumption as well. They also consider a even more general model called generalized low-noise
condition, and propose a SVM style algorithm that is consistent under this assumption.

Another popular extension is the Plackett-Luce (PL) model, where instead of observing the comparison
of a pair at each time, the learner will get a permutation of a subset of the objects and the permutation is
generated according to a probabilistic model similar to the BTL model [HOX14, MG15a].

5.2.5 Discussion

As far as we know, the maximum likelihood algorithm only has a consistency result, and the Rank Cen-
trality algorithm only has a consistency result in general and a parameter estimation error result with some
additional assumptions. It would be interesting to see if one could derive a sample complexity bound to
guarantee a low prediction error (Pr(u,v)∼DX (σ(u, v) 6= π∗(u, v)) or erD(σ)) for passive ranking algorithms.

Besides, active ranking has not been intensively studied in this BTL model. The only algorithm ([MG15b])
known to the author has a strong assumption on the model parameters. It would be also interesting to explore
active ranking methods for BTL models.

5.3 Ranking with underlying embedding
5.3.1 The model

Jamieson and Nowak assume that the n elements to be sorted are embedded in a d dimensional Euclidean
space (d < n) and the comparisons are induced according to the distances to a fixed reference point [JN11a,
JN11b]. Furthermore, they assume that the responses of the Oracle is noiseless, so the goal is to exactly
recover the true permutation. In this noiseless setting, by simply applying sorting algorithms one could
exactly recover the true permutation with O(n log n) time. Here, they want to find an algorithm which
exploits the low dimensional embedding and requires a small number of comparisons that grows sublinear
in n.

More formally, they assume vi ∈ Rd for any i = 1, . . . , n (known to the learner), and there is a reference
point θ ∈ Rd (unknown to the learner) which induces a permutation σ such that σ(vi, vj) = 1 if and
only if ‖θ − vi‖ ≤ ‖θ − vj‖. They also assume the ground truth permutation σ is generated uniformly at
random from all possible permutations that admit a d dimensional embedding. Let Mn(σ) be the number
of comparisons required by an algorithm to exactly identify σ. They consider the average query complexity
which is defined as EσMn(σ).

5.3.2 Main results

They first prove that there is an embedding of n objects such that any learning algorithm must make Ω(n)
comparisons. This justifies the use of average-case analysis instead of worst-case analysis as we did in previous
sections.

By counting the total number of permutations that admit a d dimensional embedding, they derive the
following lower bound.
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Theorem 16. [JN11a] For any permutation that admits a d dimensional embedding, any algorithm will
require at least Θ (d log2 n) comparisons to exactly identify it.

Also by counting the number of permitted permutations, they prove the following theorem to show the
inefficiency of passive ranking.

Theorem 17. [JN11a] If o(n2) pairwise comparisons are made uniformly at random without replacement
from all possible

(
n
2

)
pairs, then with probability at least 1

2 , there are at least two permutations that admits
some d dimensional embedding and consistent with the comparisons made.

They design a disagreement-based active ranking algorithm shown as Algorithm 7. In brief, the algorithm
will maintain a set of possible positions of the reference point, and will make comparison of a pair only if
there are two possible reference points in the set that induce different pairwise order of the pair. In other
words, this algorithm will only make comparisons when the relative order of a pair cannot be determined
from the comparisons already made. To check this, note that for each pair (vi, vj), vi ranks higher than vj
if and only if ‖θ − vi‖ ≤ ‖θ − vj‖, which is equivalent to (v2 − v1)

T
θ + vT1 v1 − vT2 v2 ≤ 0. Therefore, each

comparison induces a half-space, and the comparisons made so far define a (maybe unbounded) polytope in
Rd which is the set of possible positions of θ. The order of a pair is undetermined if and only if the half-space
induced by this pair intersects the polytope. If the induced half-space and the polytope do not intersect, the
order can be inferred by checking which side they polytope lies in the half-space.

Algorithm 7 Ranking with embedding
1: Input: n objects v1, . . . , vn ∈ Rd
2: Randomly shuffle v1, . . . , vn and get U1, . . . , Un
3: for i = 1, 2, . . . , n do
4: for j = 1, 2, . . . , i− 1 do
5: if the relative order between Ui and Uj cannot be determined then
6: Request to compare Ui and Uj
7: else
8: Infer the relative order between Ui and Uj
9: end if

10: end for
11: end for
12: Return the ranking inferred from pairwise orders

Theorem 18. [JN11a] Let Mn be the number of pairwise comparisons requested by Algorithm 7, and P (n, i)
be the probability that the relative order between Ui and Uj cannot been determined at line 5 of Algorithm 7.
Then P (n, i) = O( di2 ) and thus E[Mn] = O(d log n).

Therefore, active ranking requires much less comparisons than passive ranking (whose sample complexity
lower bound is Ω(n2)).

When the Oracle’s responses are noisy (i.e., the responses will flip between 0 and 1), if the flipping
probability is bounded away from 1

2 and each query can be repeated to obtain multiple independent samples,
then one can simply repeat each query for multiple times and use the majority vote. This only adds
a logarithm term to the query complexity. When the noise is consistent (i.e., repetitive querying is not
allowed), [JN11a] designs an algorithm for this case, but it does not have any theoretical guarantee on the
query complexity.

6 Algorithms in applications
Most algorithms mentioned above are not computationally efficient. On the application side, many efficient
passive and active learning to rank methods have been proposed. Most of them lack theoretical guarantees,
but report good empirical results.
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There is a popular line of research starting from the seminal work of [Joa02] that uses SVM to learn to
rank. In [Joa02], each object vi is associated with a feature vector φ(vi), and it assumes a linear model that
there is a weight vector w such that ∀i, j vi ≺ vj ⇐⇒ wTφ(vi) ≤ wTφ(vj). The algorithm is to minimize
the SVM style objective function:

minL(w, ξ) =
1

2
wTw + C

∑
ξi,j

s.t.∀i, j vi ≺ vj : wTφ(vj)− wTφ(vj) ≥ 1− ξi,j
∀i, j ξi,j ≥ 0

Following this, some works discuss active sampling. For instance [Yu05] will query the pair that is closest
to the decision boundary, and [DC09] will query the pair that has the largest “expected” hinge loss.

Some algorithms assume a generative model. For instance, [RJ07] uses a Bayesian framework that
maintains Pr(M |D) where M is the vector of “relevant” scores for each objects, and D is the comparison
results. They assume Pr(D|M) follows the BTL model, and will actively make queries to update Pr(M |D)
by choosing the pair that maximizes some expected loss with respect to current Pr(M |D) or maximizes the
decrease of some expected overall loss.

Another class of methods is the score-based approach. For instance, [ZCSZ07] assumes that each object
has a feature vector, and that there is a score function defined over the feature vector such that the larger
the score is, the higher the object ranks. It then designs a regression framework to learn a ranking through
learning the score function.

7 Conclusion
In this report, we give a survey on passive and active algorithms for learning to rank from pairwise com-
parisons. We focus on the algorithms with theoretical guarantees in the general agnostic setting, as well as
ranking with some special structures including the bounded noise model, the BTL model, and the model
that admits a low dimensional Euclidean space embedding. In most settings, active ranking requires less
comparisons than passive ranking.

There are still many open problems in ranking from pairwise comparisons, including:

• In the general setting, active ranking algorithms are query efficient in the sense that it only requires
about n log n queries to achieve a low multiplicative error, but are not computationally efficient. The
PTAS designed by [KMS07] is computationally efficient but requires the access to the comparisons of
all
(
n
2

)
pairs. Can we design an algorithm that is both computationally efficient and query efficient?

• In the general setting, active ranking algorithms require at least O
(
ε−3n log5 n

)
comparisons. Can we

design an active ranking algorithm with better dependency on ε and log n? Or are there any lower
bounds with respect to ε and log n?

• Most active ranking algorithms discussed in this report require the distribution DX to be uniform. Can
we relax this assumption?

• For the algorithms in the bounded noise model and the BTL model, how many samples are required
to achieve a low E〈u,v〉∼DI[σ(u, v) 6= 1] instead of just Pr(u,v)∼DX (σ(u, v) 6= π∗(u, v))?

• For the BTL model, can we design an active ranking method with weaker assumptions than [MG15b]?
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