

SRC

EVOLVE: Enhancing Unsupervised Continual Learning with Multiple Experts

Xiaofan Yu¹, Tajana Rosing¹, Yunhui Guo²

¹ University of California San Diego
 ² University of Texas at Dallas

https://github.com/Orienfish/EVOLVE

WACV 2024

System Energy Efficiency Lab seelab.ucsd.edu

Continual Learning

- Continual Learning
 - To continually learn over time by acquiring new knowledge as well as consolidating past experiences
 - Key assumption: continuously changing environments
 - Key challenge: catastrophic forgetting
- While great progress has been made in continual learning, there is still a gap between existing continual learning algorithms and real-world deployments, due to
 - Unpredictable streaming input
 - Lack of supervision and prior knowledge

We consider the unsupervised continual learning (UCL) problem

Related Work

- Most existing works in UCL rely on various prior knowledge to produce good results
 - Cons: these prior knowledge may not be available in real-world applications

Papers	Single-pass	Non-iid	No task labels	No class labels
VASE [2], CURL [61], L-VAEGAN [77]	×	\checkmark	 Image: A second s	\checkmark
He et al. [31], CCSL [46], CaSSLe [24], LUMP [49]		\checkmark	×	√
Tiezzi et al. [70], KIERA [57]	\checkmark	\checkmark	\checkmark	×
STAM [68]	✓	\checkmark	\checkmark	\checkmark

- Self-supervised learning methods with a replay buffer can alleviate catastrophic forgetting on non-iid data streams [ECCV'22]
 - Cons: it is unclear how to effectively learn new patterns in an unpredictable world
- In this work, EVOLVE aims at closing the gap between continual learning algorithms and real-world applications by eliminating the prior assumptions.

System Energy Efficiency Lab Purushwalkam, Senthil, et al. "The challenges of continuous self-supervised learning." *ECCV*'22 seelab.ucsd.edu

An Empirical Study of Existing Self-Supervised Learning (SSL) Baselines See

- To study whether SSL w/ replay buffer is sufficiently practical, we conduct empirical study
 - Dataset: CIFAR-10 (image), Stream-51 (video) [CVPRW'20]
 - Data streams: iid vs. temporally correlated

Methods	Loss	Loss Function \mathcal{L}_{SSL}
SimCLR [20]	InfoNCE	$-\log \frac{\exp(\mathbf{z}_i^A \cdot \mathbf{z}_j^B / \tau)}{\sum_{k \neq i} \exp(\mathbf{z}_i^A \cdot \mathbf{z}_k / \tau)}$
BYOL [35]	MSE	$\left\ \mathbf{q}_{t}^{A}-\mathbf{z}_{t}^{B} ight\ _{2}^{2}$
SimSiam [23]	MSE	$\mathcal{D}(\mathbf{q}_t^A, \mathbf{z}_t^B)$
Barlow	Cross-Correlation	$\sum_{u} (1 - C_{uu})^2 +$
Twins [92]		$\overline{\psi\sum_{u}\sum_{v eq u}\mathcal{C}_{uv}^2}$
VICReg [7]	MSE + Variance	$\psi s(\mathbf{z}_t^A, \mathbf{z}_t^B) +$
	+ Cross-Correlation	$\mu v(\mathbf{z}_t^A) + u c(\mathbf{z}_t^A)$

Table 1. Overview of state-of-the-art SSL methods and losses.

SSL baselines experience a significant accuracy drop when applied on video datasets with temporally correlated data streams

System Energy Efficiency Lab seelab.ucsd.edu

Roady, Ryne, et al. "Stream-51: Streaming classification and novelty detection from videos." CVPRW'20

Our Method: EVOLVE

• We propose EVOLVE, a hybrid UCL framework with (1) SSL training on the local client and (2) expert-guided training on the cloud, transmitting a small set of data and intermediate features to the cloud

Two Key Designs in EVOLVE

- The design of EVOLVE has two key parts
 - We use the Hilbert-Schmidt independence criterion (HSIC) for assessing a model's ability in representation learning $HSIC(X,Y) = HSIC(K,L) = \frac{1}{(n-1)^2}Tr(KHLH),$ where $H = I - \frac{1}{N}11^T$

1 Expert Aggregation Loss based on HSIC

$$\mathcal{L}_E = -\sum_{e=1}^{E} p_e^t \cdot \text{HSIC}(\mathbf{K}_e^t, \mathbf{L}^t), \quad \stackrel{\text{Expert weights}}{\overset{\text{weights}}{\overset{weights}}{\overset{weights}}{\overset{weights}}}}}}}}$$

$$2 Dynamic weight adjustment based on a confidence metric
$$q_{e}^{t} = \sum_{i} \frac{\exp(\mathbf{h}_{e,i}^{A} \cdot \mathbf{h}_{e,i}^{B}/\tau)}{\sum_{k \neq i} \exp(\mathbf{h}_{e,i}^{A} \cdot \mathbf{h}_{e,k}^{A}/\tau) + \sum_{k} \exp(\mathbf{h}_{e,i}^{A} \cdot \mathbf{h}_{e,k}^{B}/\tau)},$$

$$w_{e}^{t+1} = \alpha w_{e}^{t} + (1 - \alpha)q_{e}^{t}. \qquad \overline{p_{e}^{t}} = w_{e}^{t}/\sum_{l} w_{l}^{t}$$$$

Moving average-based update

System Energy Efficiency Lab seelab.ucsd.edu

Experimental Setup

• Datasets: CIFAR-10, TinyImageNet, CORe50 [PMLR'17], Stream-51 [CVPRW'20]

IID

• Data streams:

• Baselines:

- Synaptic Intelligence (SI) [ICML'17]
- Progressive Neural Network (PNN) [arXiv'16]
- Dark Experience Replay (DER) [NeurIPS'20]
- CaSSLe [CVPR'22]
- Lifelong Unsupervised Mixup (LUMP) [ICLR'22]
- Target model: ResNet-18
- Experts: pretrained ResNet-50, Swin Transformer downloaded from torchvision
- Metrics: kNN accuracy, linear evaluation accuracy

Sequential w/

imbalance classes

 EVOLVE outperforms the top baseline using the same SSL by 3.6-20.0% in kNN accuracy and 6.1- 53.7% in top-1 linear evaluation accuracy across diverse data streams

Conclusion

- Existing UCL algorithms cannot generalize to real-world scenarios due to
 - Unpredictable streaming input
 - Lack of supervision and prior knowledge
- We propose a general expert-guided continual learning framework, called EVOLVE, with local SSL training on clients and expert-guided training on the cloud
- EVOLVE has two key designs
 - Expert aggregation loss based on HSIC to distill guidance
 - Dynamic weight update to adjust the "power" of diverse experts based on latest data input
- EVOLVE outperforms existing UCL baselines on both image- and video-based data streams using the same SSL backbone

References

- Purushwalkam, Senthil, et al. "The challenges of continuous self-supervised learning." ECCV'22
- Roady, Ryne, et al. "Stream-51: Streaming classification and novelty detection from videos." CVPRW'20
- Lomonaco, Vincenzo, and Davide Maltoni. "Core50: a new dataset and benchmark for continuous object recognition." PMLR'17
- Zenke, Friedemann, Ben Poole, and Surya Ganguli. "Continual learning through synaptic intelligence." ICML'17
- Rusu, Andrei A., et al. "Progressive neural networks." arXiv'16
- Buzzega, Pietro, et al. "Dark experience for general continual learning: a strong, simple baseline." *NeurIPS'20*
- Fini, Enrico, et al. "Self-supervised models are continual learners." CVPR'22
- Madaan, Divyam, et al. "Representational continuity for unsupervised continual learning." ICLR'22