

EVOLVE: Enhancing Unsupervised Continual Learning with Multiple Experts

Xiaofan Yu¹, Tajana Rosing¹, Yunhui Guo² ¹ University of California San Diego² University of Texas at Dallas

Our code is available at: <u>https://github.com/Orienfish/EVOLVE</u>

transmission

Introduction

- > While great progress has been made in continual learning, it is still challenging to deploy the existing algorithms in the wild to learn over time in a real-world application
- \succ The barrier primarily stems from two factors:
 - > The unpredictable streaming input
 - \succ The lack of supervision and prior knowledge

> Most existing works in unsupervised continual learning rely on various prior knowledge to produce good results

Papers	Single-pass	Non-iid	No task labels	No class labels
VASE [2], CURL [61], L-VAEGAN [77]	×	\checkmark	\checkmark	\checkmark
He et al. [31], CCSL [46], CaSSLe [24], LUMP [49]	\checkmark	\checkmark	×	\checkmark

Problem Definition: Unsupervised Continual Learning (UCL)

- > Online unsupervised continual learning without prior knowledge
 - Non-iid and single-pass data streams
 - No task or class labels
 - No prior knowledge, e.g., task/class shift boundaries
- > We consider three different types of *class-incremental* streams inspired from real-world applications

Tiezzi et al. [70], KIERA [57]	\checkmark	\checkmark	\checkmark	×
STAM [68]	\checkmark	\checkmark	\checkmark	\checkmark

 \succ We aim at closing the gap towards real-world continual learning

An Empirical Study of Existing Self-Supervised Learning (SSL) Baselines

- > Recent studies have indicated that combining SSL with memory replay holds great promise for continual representation learning in the wild [1] Table 1. Overview of state-of-the-art SSL methods and losses.
- \succ We conduct empirical study of existing SSL methods with memory replay
 - Datasets: CIFAR-10 (image), Stream-51 (video) [2];
 - > Data streams: iid vs. Seq-imb
- > Our results show that SSL baselines experience a significant accuracy drop when applied on video datasets (with temporal
- **Cross-Correlation** Barlow Twins [92] MSE + Variance VICReg^[7] + Cross-Correlation

correlation) with Seq-imb data streams, thus impeding their practical utility for real-world applications

Our Method: EVOLVE

 \succ Our essential idea is to enhance UCL in a wild environment with diverse pretrained models treated as experts

> We propose EVOLVE, a hybrid UCL framework with (1) SSL training on the local client and (2) expert-guided training on the cloud, transmitting a small set of data and intermediate features to the cloud

Key advantages of EVOLVE:

mmmm p_E^{ι} (H)→⊗ Training Steps (10³) (b) Expert Expert models Features **Aggregation Loss** Cloud Centered Kernel Matrix Streaming data Jθ A, (a) Self-Supervised Local \mathbf{X}_{t}^{B} Learning Loss SSL data Target Augmentation Features $\mathscr{L} = \mathscr{L}_{SSL} + \lambda \cdot \mathscr{L}_{E}$ Loss Memory buffer Client

Expert-guided learning helps adapt in natural and unpredictable environments

The hybrid scheme avoids the high computational costs induced by running experts on clients

Experimental Setup

Results

- > Datasets: CIFAR-10, TinyImageNet, CORe50 [3], Stream-51 [2]
- > UCL baselines:
 - Synaptic Intelligence (SI) [ICML'17]

> Comparison with existing UCL baselines: EVOLVE outperforms the top baseline using the same SSL by 3.6-20.0% in kNN accuracy and 6.1-53.7% in top-1 linear evaluation accuracy across diverse data streams.

The final kNN accuracy and linear evaluation accuracy on Stream-51

Progressive Neural Network (PNN) [arXiv'16] Dark Experience Replay (DER) [NeurIPS'20] CaSSLe [CVPR'22]

Lifelong Unsupervised Mixup (LUMP) [ICLR'22] > **Experts:** pretrained ResNet-50, Swin Transformer

> Metrics: kNN accuracy, linear evaluation accuracy

References

- [1] Purushwalkam, Senthil, et al. "The challenges of continuous self-supervised learning." ECCV'22.
- [2] Roady, Ryne, et al. "Stream-51: Streaming classification and novelty detection from videos." CVPRW'20
- [3] Lomonaco, Vincenzo, and Davide Maltoni. "Core50: a new dataset and benchmark for continuous object recognition." PMLR'17
- [4] Littlestone, Nick, and Manfred K. Warmuth. "The weighted majority algorithm." Information and computation 108.2 (1994): 212-261.

Method	k NN Accuracy(\uparrow)				Linear Evaluation Accuracy([†])					
	SimCLR	BYOL	SimSiam	BarlowTwins	VICReg	SimCLR	BYOL	SimSiam	BarlowTwins	VICReg
SSL	14.0 ± 0.4	17.1 ± 0.1	13.1 ± 1.0	18.1 ± 0.4	14.8 ± 0.3	33.1±1.5	27.7 ± 2.6	11.9 ± 3.5	51.4 ± 1.1	$40.8 {\pm} 0.2$
SI	12.9 ± 0.5	17.0 ± 1.0	12.3 ± 0.6	12.2 ± 0.8	11.1 ± 0.4	21.3 ± 1.9	27.0 ± 8.3	13.2 ± 5.9	26.2 ± 0.2	$23.5 {\pm} 2.0$
PNN	12.0 ± 0.2	17.1 ± 1.1	12.5 ± 0.5	12.7 ± 1.2	11.6 ± 0.8	13.5 ± 0.6	29.9 ± 0.1	$9.8 {\pm} 0.9$	26.9 ± 4.6	$25.4{\pm}0.1$
DER	13.6 ± 0.6	$16.0 {\pm} 0.4$	14.4 ± 1.3	13.0 ± 1.2	10.7 ± 0.4	31.5 ± 1.5	37.5 ± 2.4	28.0 ± 5.0	28.9 ± 0.1	24.0 ± 1.7
CaSSLe	14.7±0.9	26.5 ± 1.6	21.9 ± 0.8	16.7 ± 0.3	12.6 ± 2.0	7.5 ± 3.2	$\overline{27.3\pm5.0}$	20.6 ± 6.1	10.0 ± 1.2	38.5 ± 2.4
LUMP	20.5 ± 0.7	14.5 ± 0.5	12.7 ± 0.1	13.9 ± 0.5	20.7 ± 1.3	48.2 ± 0.1	27.2 ± 0.8	$8.4{\pm}0.1$	16.9 ± 3.4	55.1 ± 1.5
Evolve	30.1±1.6	31.6±1.3	31.5±1.7	30.1±1.7	$\overline{24.8 \pm 0.4}$	$\overline{82.2\pm0.9}$	84.4±1.0	81.7±1.0	75.7±2.4	61.2±1.7

> Comparison with other weight update policies for using the experts: the commonly used Multiplicative Weight Update (MW) [4] in online optimization can converge to extremes, while EVOLVE yields a dynamic pattern

