
Lifelong Intelligence Beyond the Edge using Hyperdimensional
Computing

Xiaofan Yu
x1yu@ucsd.edu

University of California San Diego
La Jolla, California, USA

Anthony Thomas
ahthomas@ucsd.edu

University of California San Diego
La Jolla, California, USA

Ivannia Gomez Moreno
ivannia.gomez@cetys.edu.mx

CETYS University, Campus Tijuana
Tijuana, Mexico

Louis Gutierrez
l8gutierrez@ucsd.edu

University of California San Diego
La Jolla, California, USA

Tajana Šimunić Rosing
tajana@ucsd.edu

University of California San Diego
La Jolla, USA

ABSTRACT
On-device learning has emerged as a prevailing trend that avoids
the slow response time and costly communication of cloud-based
learning. The ability to learn continuously and indefinitely in a
changing environment, and with resource constraints, is critical
for real sensor deployments. However, existing designs are inade-
quate for practical scenarios with (i) streaming data input, (ii) lack
of supervision and (iii) limited on-board resources. In this paper,
we design and deploy the first on-device lifelong learning system
called LifeHD for general IoT applications with limited supervi-
sion. LifeHD is designed based on a novel neurally-inspired and
lightweight learning paradigm called Hyperdimensional Comput-
ing (HDC). We utilize a two-tier associative memory organization
to intelligently store and manage high-dimensional, low-precision
vectors, which represent the historical patterns as cluster centroids.
We additionally propose two variants of LifeHD to cope with scarce
labeled inputs and power constraints. We implement LifeHD on off-
the-shelf edge platforms and perform extensive evaluations across
three scenarios. Our measurements show that LifeHD improves the
unsupervised clustering accuracy by up to 74.8% compared to the
state-of-the-art NN-based unsupervised lifelong learning baselines
with as much as 34.3x better energy efficiency. Our code is available
at https://github.com/Orienfish/LifeHD.

KEYWORDS
Edge Computing, Lifelong Learning, Hyperdimensional Computing

1 INTRODUCTION
The fusion of artificial intelligence and Internet of Things (IoT) has
become a prominent trend with numerous real-world applications,
such as in smart cities [10], smart voice assistants [55], and smart
activity recognition [62]. However, the predominant current ap-
proach is cloud-centric, where sensor devices send data to the cloud
for offline training using extensive data sources. This approach
faces challenges like slow updates and costly communication, in-
volving the exchange of large sensor data and models between
the edge and the cloud [53]. Instead, recent research has shifted
towards edge learning, where machine learning is performed on
resource-constrained edge devices right next to the sensors. While
most studies focused on inference-only tasks [32, 33, 50], some
recent work has investigated the optimization of computational

and memory resources for on-device training [15, 34]. Nevertheless,
these efforts often rely on static models for inference or lack the
adaptability to accommodate new environments.

To fundamentally address these issues, sensor devices should be
capable of "lifelong learning" [42]: to learn and adapt with limited
supervision after deployment. On-device lifelong learning reduces
the need for expensive data collection (including labels) and of-
fline model training, operating in a deploy-and-run manner. This
approach enables autonomous learning solely from the incoming
samples with minimal supervision, and is thus able to provide real-
time decision-making even without a network connection. The
lifelong aspect is essential for handling dynamic real-world envi-
ronments, representing the future of IoT.

Although extensive research has investigated lifelong learning
across various scenarios [42], existing techniques face challenges
that render them unsuitable for real-world deployments. These
challenges include:
(C1) Streaming data input. Edge devices collect streaming data

from a dynamic environment. This online learning with non-
iid data contrasts with the default offline and iid setting
where multiple passes on the entire dataset are allowed [16].

(C2) Lack of supervision. Obtaining ground-truth labels and
expert guidance is often challenging and expensive. Most
lifelong learning methods rely on some form of supervision,
such as class labels [28] or class shift boundaries [46], which
are typically unavailable in real-world scenarios.

(C3) Limited device resources.Neural networks (NN) are known
for their high resource demands [60]. Furthermore, the main
techniques for lifelong learning based on NN, such as reg-
ularization [28] and memory replay [35], add extra compu-
tational and memory requirements beyond standard NNs,
making them inadequate for edge devices.

Real-World Example.To illustrate the challenges faced, we present
a real-world scenario in Fig.1. Consider a camera deployed in the
wild continuously collecting data from surrounding environment.
Our goal is to train an unsupervised object recognition algorithm
on the edge device, purely from the data stream. We construct both
iid and sequential (one class appears after the other) streams from
CIFAR-100 [6], and adopt the smallest MobileNet V3 model [20]
with the popular BYOL unsupervised learning pipeline [16]. As
seen in Fig. 1, while the model shows improved accuracy with iid
streams, it has a significant performance loss under sequentially

https://orcid.org/0000-0002-9638-6184
https://orcid.org/0000-0002-6954-997X
https://github.com/Orienfish/LifeHD

Under review, , Xiaofan Yu, Anthony Thomas, Ivannia Gomez Moreno, Louis Gutierrez, and Tajana Šimunić Rosing

Figure 1: Real-world example of on-device lifelong learning eval-
uated using the unsupervised clustering accuracy metric [63]. The
training latency is measured on two typical edge platforms.

ordered data, highlighting the NN effect of “forgetting” in a stream-
ing and unsupervised setting. In terms of efficiency, we measure
the training latency of MobileNet V3 (small) [20] on two typical
edge platforms, Raspberry Pi (RPi) 4B [2] and Jetson TX2 [1] by
running 10 gradient descent steps on a single batch of 32 samples.
Even on these very capable edge platforms, training takes up to
17.4 seconds, clearly unsuitable for real-time processing under 30
FPS. Therefore, a novel approach capable of handling non-iid data
and offering more efficient updates is necessary to accommodate
the continual changes in data.

To address challenges (C1)-(C3), we draw inspiration from biol-
ogy, where even tiny insects display remarkable lifelong learning
abilities, and do so using “hardware” that requires very little en-
ergy [4]. Hyperdimensional computing (HDC) is an emerging par-
adigm inspired by the information processing mechanisms found
in biological brains [24]. In HDC, all data is represented using
high-dimensional, low-precision (often binary) vectors known as
“hypervectors,” which can be manipulated through simple element-
wise operations to perform tasks like memorization and learning.
HDC is well-understood from a theoretical standpoint [56] and
shares intriguing connections with biological lifelong learning [52].
Furthermore, its use of basic element-wise operators aligns with
highly parallel and energy-efficient hardware, offering substantial
energy savings in IoT applications [11, 23, 27, 65]. While HDC is re-
ported as a promising avenue, the literature to date has not explored
weakly-supervised lifelong learning using HDC.

In this work, we design and deploy LifeHD, the first system for
on-device lightweight lifelong learning in an unsupervised and dy-
namic environment. LifeHD leverages HDC’s efficient computation
and advantages in lifelong learning, while effectively handling unla-
beled streaming inputs. These capabilities extend beyond the scope
of existing HDC designs, which have focused overwhelmingly on
the supervised setting [23, 27]. Specifically, LifeHD represents the
input as high-dimensional, low-precision vectors, and, drawing
inspiration from work in cognitive science [5], organizes data into
a two-tier memory hierarchy: a short-term “working memory” and
a long-term memory. The working memory processes incoming
data and summarizes it into a group of fine-grained clusters that are
represented by hypervectors called cluster HVs. Long-term memory
consolidates the frequently appeared cluster HVs in the working
memory, and will be retrieved for merging and inference occasion-
ally. We emphasize that LifeHD is designed to suit a variety of
edge devices with diverse resource levels. More efficiency gains
can be achieved by employing optimizations such as pruning and
quantization [15, 61], but this is not the focus of our work.

Our basic approach in LifeHD is fully unsupervised. However,
in reality, labels may be available (or could be acquired) for a small
number of examples. We introduce LifeHDsemi to exploit a limited
number of labeled samples as an extension to the purely unsuper-
vised LifeHD. Additionally, we propose LifeHDa, which uses an
adaptive scheme inspired by model pruning, to adjust the HD em-
bedding dimension on-the-fly. LifeHDa allows us to further reduce
resource usage (power in-particular), where necessary.

In summary, the contributions of this paper are:
(1) We design LifeHD, the first end-to-end system for on-device

unsupervised lifelong intelligence using HDC. LifeHD builds
upon HDC’s lightweight single-pass training capability and
incorporates our novel clustering-based memory design to
address challenges (C1)-(C3).

(2) We further propose LifeHDsemi as an extension to fully uti-
lize the scarce labeled samples along with the stream. We
devise LifeHDa that enables adaptive pruning in LifeHD to
reduce real-time power consumption.

(3) We implement LifeHD on off-the-shelf edge devices and con-
duct extensive experiments across three typical IoT scenarios.
LifeHD improves the unsupervised clustering accuracy up to
74.8% with 34.3x better energy efficiency compared to lead-
ing unsupervised NN lifelong learning methods [13, 14, 54].

(4) LifeHDsemi improves the unsupervised clustering accuracy
by up to 10.25% over the SemiHD [22] baseline under limited
label availability. LifeHDa limits the accuracy loss within
0.71% using only 20% of LifeHD’s full HD dimension.

The rest of the paper is organized as follows. We start by a
comprehensive review of related works in Sec. 2. We then introduce
salient background on HDC in Sec. 3 to help understanding. We
formally define the unsupervised lifelong learning problem we
target to solve in Sec 4. Afterwards, Sec. 5 describes the details of
our major design LifeHD. Sec. 6 introduces LifeHDsemi and LifeHDa.
Sec. 7 presents the implementation and results of LifeHD, while the
evaluations of LifeHDsemi and LifeHDa are reported in Sec 8. We
add the discussions and future works in Sec. 9. The entire paper is
concluded in Sec. 10.

2 RELATEDWORK
Lifelong and On-Device Learning. Lifelong learning (or contin-
ual learning) is a large and active area of research in the broader
machine learning community. Catastrophic forgetting is a major
challenge in lifelong learning, and refers to a commonly observed
empirical phenomenon in which updating certain machine learning
models with new data severely degrades their ability to perform
previously learned tasks [36]. Previous works proposed techniques
such as dynamic architecture [31, 49], regularization by penalizing
important weights [28, 66], knowledge distillation from past mod-
els [14] and experience replay using a memory buffer [35, 58]. The
lifelong learning literature has examined a wide range of problem
settings, ranging from the fully supervised case, in which tasks
and class labels are provided, and the fully unsupervised case with-
out any labels and prior knowledge [13, 57]. However, all of these
works are based on deep NNs and require backpropagation, which
is problematic for resource-constrained devices.

Neurally-inspired lightweight algorithms have recently been
proposed for lifelong learning applications. FlyModel [52] and

Lifelong Intelligence Beyond the Edge using Hyperdimensional Computing Under review, ,

SDMLP [8] use sparse coding and associative memory for life-
long learning. However, both approaches assume full supervision.
STAM [54] is an expandable memory architecture for unsupervised
lifelong learning, using layered receptive fields and a two-tier mem-
ory hierarchy. It learns via online centroid-based clustering pipeline,
novelty detection and memory updates. Nevertheless, the memory
in STAM is solely dedicated to image storage, while our LifeHD
additionally emphasizes merging past patterns into coarse groups
and shows more effective learning performance.

Recent works optimize the resource usage of on-device training
via pruning and quantization [34, 45], tuning partial weights [9, 47],
memory profiling and optimization [15, 61, 64], as well as growing
the NN on the fly [67]. All these works optimize training given
resource constraints and do not focus on lifelong learning. They
are orthogonal to the contribution of LifeHD which focuses on
adaptive and continual training. LifeHD can be further optimized
by combining with such techniques.
Hyperdimensional Computing. HDC has garnered substantial
interest from the computer hardware community as an energy-
efficient and low-latency approach to learning, and has been suc-
cessfully applied to problems such as human activity recognition [27],
voice recognition [23], image recognition [11, 65], to name a few.
The large majority of literature on HDC has focused on using the
technique to perform supervised classification tasks. Among the lim-
ited literature for weakly-supervised learning with HDC, HDClus-
ter [21] enabled unsupervised clustering in HDC with a new algo-
rithm that is similar to K-Means. SemiHD [22] is a semi-supervised
learning framework using HDC with iterative self-labeling. Hyper-
seed [41], C-FSCIL [18] and FSL-HD [65] adopted HDC or similar
vector symbolic architectures (VSA) for unsupervised or few-shot
learning. All above works did not consider the lifelong aspect and
used offline training on a static dataset. To the best of the authors’
knowledge, LifeHD is the first work that designs and deploys life-
long learning in edge IoT applications especially with zero or mini-
mal amount of labels.

3 BACKGROUND ON HDC
Hyperdimensional Computing (HDC) is an emerging paradigm for
information processing from the cognitive-neuroscience literature
[24]. In HDC, all computation is performed on low-precision and
distributed representations of data that accord naturally with highly
parallel and low-energy hardware.

The first step in HDC is encoding, which maps an input 𝑥 ∈ X
to a distributed representation 𝜙 (𝑥) living in some 𝐷-dimensional
inner-product spaceH , that we call the “HD-space.” For instance,
one might takeH ⊂ {±1}𝐷 , orH ⊂ R𝐷 . We refer to points in the
HD-space as hypervectors. Encodings of data can be manipulated
so as to build more complex composite representations using a set
of operators defined as follows:

(1) Bind: ⊗ : H × H → H . Binding takes two hypervectors
as inputs and returns a hypervector that is dissimilar to
both inputs, and is intuitively used to represent tuples. For
bipolar hypervectors (i.e.,H ⊂ {±1}𝑑), the binding operator
is typically element-wise multiplication.

(2) Bundle: ⊕ : H ×H → H . Bundling takes two hypervectors
as input and returns a hypervector similar to both operands,

Figure 2: Spatiotemporal HDC encoding for time-series data. Left:
random generation of level hypervectors. Right: the complete en-
coding process.

and is intuitively used to build sets. The bundling operation
is implemented through addition.

(3) Permute: 𝜌 : H → H . Permutation can be used to encode
sequential information and is typically implemented using a
cyclic shift.

The encoding function 𝜙 : X → H embeds data from its ambient
representation into HD-space. In general, encoding should preserve
some meaningful notion of similarity between input points in the
sense that 𝜙 (𝑥) · 𝜙 (𝑥 ′) ≈ 𝑘 (𝑥, 𝑥 ′), where 𝑘 is some similarity func-
tion of interest onX. In this paper, we use spatiotemporal encoding
for time series sensor data, and HDnn for more complex data, such
as images, which we explain in the following.

Spatiotemporal Encoding. The spatiotemporal method [38]
jointly encodes the analog information from each sensor (spatial)
and at each time stamp (temporal) to a single hypervector. Sup-
pose there are 𝑑-different sensors 𝑠1, ..., 𝑠𝑑 , each of which produce a
real-valued reading 𝑥1, ..., 𝑥𝑑 , whereupon we may model the input
at a particular moment in time by a set of tuples {(𝑠𝑖 , 𝑥𝑖)}𝑑𝑖=1. We
pre-generate a set of base hypervectors to represent the values and
sensors respectively. To represent a real valued feature 𝑥 ∈ R, we
quantize the support of 𝑥 into a set of bins with centroids 𝑎1, ..., 𝑎𝑄 ,
and assign each bin an embedding 𝜑 (𝑎𝑖), which we call level hy-
pervectors, such that 𝜑 (𝑎𝑖) · 𝜑 (𝑎 𝑗) is monotonically decreasing in
|𝑎𝑖 − 𝑎 𝑗 |. As shown in Fig. 2 (left), we initially generate a random
hypervector for the first level. To maintain similarity between ad-
jacent level hypervectors, for each subsequent level, we randomly
flip a fraction of bits from the previous level as described in [56].
The fraction of flipping is denoted as 𝑃 . This process is repeated
until all 𝑄 level hypervectors are generated. To represent different
sensor 𝑠 , we assign each sensor a random embedding𝜓 (𝑠𝑖), which
we call ID hypervectors, by sampling𝜓 (𝑠𝑖) ∼ Unif({±1}𝐷).

The complete spatiotemporal encoding is visualized in Fig. 2
(right). We encode a pair (𝑠, 𝑥) via 𝜓 (𝑠) ⊗ 𝜑 (𝑎(𝑥)), where 𝑎(𝑥) is
the centroid of the bin closest to 𝑥 . This preserves both the level and
sensor ID information. To encode the readings for all sensors we
bundle together their individual embeddings and round to bipolar
(e.g. {±1}) precision:𝜙 (𝑥) = Sign

(⊕𝑑
𝑖=1𝜓 (𝑠𝑖) ⊗ 𝜑 (𝑎(𝑥𝑖))

)
. Finally,

to represent a sequence of 𝑇 readings: 𝑋 = {𝑥1, ..., 𝑥𝑇 }, we use
permutation: 𝜙 (𝑋) =

⊗𝑇
𝜏=1 𝜌

𝜏 (𝜙 (𝑥𝜏)).
HDnn Encoding. In this work we use the recently proposed

HDnn style encoding [11, 65] that combines a pretrained and frozen
NN feature extractor with HDC’s spatiotemporal encoding to obtain
state of the art accuracy for sound and images. In HDnn the inputs
to the spatio-temporal encoding, 𝑠1, ..., 𝑠𝑑 , are intermediate feature
outputs of the pretrained and frozen NN (Fig. 3). For example,

Under review, , Xiaofan Yu, Anthony Thomas, Ivannia Gomez Moreno, Louis Gutierrez, and Tajana Šimunić Rosing

Figure 3: An overview of supervised HDC pipeline including encod-
ing, training and inference (similarity check for classification). An
additional pretrained NN is used as a feature extractor in the HDnn.

a section of MobileNet pretrained on ImageNet creates features
which are then encoded intoHDhypervectors for object recognition
tasks. This only marginally increases the computational costs as
no training is performed on NN, all the training happens in HD.

Supervised Training and Inference. A common use case of
HDC, summarized in Fig. 3, is to fit classifiers. In particular, let us
suppose that we see a set of 𝑁 labeled samples {(𝑋𝑖 , 𝑦𝑖)}𝑁𝑖=1, where
𝑥𝑖 is an input, and 𝑦𝑖 ∈ {𝑐1, ..., 𝑐 𝐽 } is a class label. In the traditional
approach to classification, one simply represents each class via the
bundle of its training data. That is: 𝜙 (𝑐 𝑗) =

⊕
𝑖:𝑦𝑖=𝑐 𝑗 𝜙 (𝑋𝑖). We

store the trained class hypervectors in an associative memory. For
example, in Fig. 3, we compute and store the class hypervectors
of cats and dogs. During inference, we first encode the testing
sample𝑋𝑞 into a query hypervector𝜙 (𝑋𝑞) using the same encoding
procedure as for training.We then predict the label corresponding to
the most similar class as measured by the cosine similarity, i.e., 𝑦 =

argmax𝑗 cos(𝜙 (𝑋𝑞), 𝜙 (𝑐 𝑗)) ∝ argmax𝑗 (𝜙 (𝑋𝑞) · 𝜙 (𝑐 𝑗))/∥𝜙 (𝑐 𝑗)∥.

4 PROBLEM DEFINITION
Before diving into our method, we first rigorously formulate the
unsupervised lifelong learning problem using streaming sources,
driven by real-world IoT applications.

Streaming Data. To represent continuously changing environ-
ment, we assume a well-known class-incremental model in lifelong
learning, in which new classes emerge in a sequential manner [46].
We also allow data distribution shift within one class. This setting
models a scenario in which a device is continuously sampling data
while the surrounding environment may change implicitly over
time, e.g., the self-driving vehicle as shown in Fig. 1. We require
that all samples appear only once (i.e., single-pass streams).

Formally, we consider a scenario involving 𝑑 sensors, each pro-
ducing a real valued reading. We group readings into sliding win-
dows of length 𝑇 , and treat one such batch 𝑋𝑖 ∈ R𝑇×𝑑 as an input
sample. Each input 𝑋𝑖 is associated with an unknown label 𝑦𝑖 . Im-
portantly, the labels are not made available during training, nor
the boundaries of class shift. Therefore the entire process is un-
supervised. We represent the data stream associated with each
class by D𝑗 = {𝑋1, 𝑋2, ...}, and the set of streams for all classes by
D = {D1, ...,D𝐽 }. Note that the class-incremental streams can have
imbalanced classes, i.e., |𝐷𝑖 | ≠ |𝐷 𝑗 |, 𝑖 ≠ 𝑗 , and gradual distribution
shift within each class.

Learning Protocol. Our goal is to build a classification algo-
rithm that mapsX → Y. For evaluation, we use the common evalu-
ation protocol in state-of-the-art lifelong learning works [13, 14, 54],
in which we construct an iid dataset E = {(𝑋𝑘 , 𝑦𝑘)} for periodic
testing, by sampling labeled examples from each class in a manner

that preserves the overall (im)balance between the classes. Note,
that even when one class has not appeared in the training data
stream, it is always included in E. Hence E is a global view of all
classes that can potentially exist in the environment.

UnsupervisedClusteringAccuracy. Since we do not give class
labels or the total number of classes during training, the predicted
label can be different from the ground-truth label. Therefore, for
evaluation metric, we cannot adopt the simple prediction accuracy
that requires exact label matching. Instead, we employ a widely
used clustering metric known as unsupervised clustering accuracy
(ACC) [63], which mirrors the conventional accuracy evaluation
but within an unsupervised context.

Suppose 𝜔𝑘 is the predicted cluster of testing sample (𝑋𝑘 , 𝑦𝑘)
in E. ACC is computed as:𝐴𝐶𝐶 = max𝑚 1

| E |
∑ | E |
𝑘=1 1 {𝑦𝑘 =𝑚(𝜔𝑘)},

where𝑚 ranges over all possible one-to-one mappings between
predicted clusters and ground-truth classes. Intuitively, this metric
computes the accuracy under the “best” mapping between clusters
and labels. The biggest advantage of ACC is that it does not require
the number of clusters and classes to be equal. For instance, a cluster
of pines and a cluster of redwood both belong to the ground truth
label of trees. We treat such clustering result as a valid learning
outcome, with a concrete visualization shown in Sec. 7.4.

5 LIFEHD
In this section, we present the design of LifeHD, the first unsuper-
vised HDC framework for lifelong learning in general edge IoT
applications. Compared to operating in the original data space,
HDC improves pattern separability through sparsity and high di-
mensionality, making it more resilient against catastrophic forget-
ting [52]. LifeHD preserves the advantages of HDC in computa-
tional efficiency and lifelong learning, while handling the input of
unlabeled streaming data, which has not been achieved in previous
work [18, 21, 22, 41, 65].

5.1 LifeHD Overview
Fig. 4 gives an overview of how LifeHDworks. The first step is HDC
encoding of data into hypervectors as described in Sec. 3. Training
samples 𝑋 are organized into batches of size 𝑏𝑆𝑖𝑧𝑒 and input into
an optional fixed NN for feature extraction (e.g. for images and
sound) and the encoding module. The encoded hypervectors 𝜙 (𝑋)
are input to LifeHD’s two-tier memory design inspired by cognitive
science studies [5], consisting of working memory and long-term
memory. This memory system intelligently and dynamically man-
ages historical patterns, stored as hypervectors and referred to as
cluster HVs. As shown in Fig. 4, the working memory is designed
with three components: novelty detection, cluster HV update and
cluster HVmerge.𝜙 (𝑋) is first input into novelty detection step (1○).
An insertion to the cluster HVs is made if a novelty flag is raised,
otherwise 𝜙 (𝑋) updates the existing cluster HVs (2○). The third
component, cluster HV merge (3○), retrieves the cluster HVs from
long-term memory, and merges similar cluster HVs into a super-
cluster via a novel spectral clustering-based merging algorithm [59].
The interaction between working and long-term memory happens
as commonly encountered cluster HVs are copied to long-term
memory, which we call consolidation (4○). Finally, when the size

Lifelong Intelligence Beyond the Edge using Hyperdimensional Computing Under review, ,

Figure 4: The end-to-end algorithm flow of LifeHD.

Table 1: List of important notations.

Symbol Meaning

𝑑 Number of sensor sources
𝑇 Time window length of one input sample 𝑋
𝐷 Dimension of the HD-space
𝑄 Number of quantized level for encoding
𝑃 Fraction of random bit flip to generate level hypervector
𝜙 HDC encoding function
𝜑,𝜓 Level and ID hypervector encoding function
𝑏𝑆𝑖𝑧𝑒 Batch size of input samples
M, L Set of cluster HVs stored in the working and long-termmemory
𝑀,𝐿 Maximum number of cluster HVs in the working and long-term

memory
`, �̂� Mean similarity and standard difference of between each cluster

HV and its assigned inputs in the working memory
ℎ𝑖𝑡 The number of times that each cluster HV is hit in the working

memory
ℎ𝑖𝑡𝑡ℎ The hit frequency threshold to consolidate cluster HV from

working to long-term memory
𝑝,𝑞 The most recent batch index when each cluster HV is accessed,

for the working and long-term memory cluster HVs
𝛾 Hyperparameter for novelty detection sensitivity
𝛼 Moving average update rate during cluster HV update
𝑔𝑢𝑏 Cluster HV merge sensitivity
𝑓𝑚𝑒𝑟𝑔𝑒 Cluster HV merge frequency
𝑟 Average labeling ratio in LifeHDsemi
𝐷𝑎 Dimension of the mask used in LifeHDa

limit of either working or long-term memory is reached, the least
recently used cluster HVs are forgotten (5○).

All modules in LifeHD work collaboratively, making it adaptive
and robust to continuously changing streams without relying on
any form of prior knowledge. For example, in scenarios of distribu-
tion drift, LifeHDmay generate new cluster HVs upon encountering
drifted samples initially, which can later be merged into coarse clus-
ters. This approach ensures that LifeHD can efficiently capture and
retain historical patterns.

In the following, we discuss more details about the major com-
ponents of LifeHD: novelty detection (Sec. 5.2), cluster HV update
(Sec. 5.3), and cluster HV merging (Sec. 5.4). We summarize the
important notations used in this paper in Table 1.

5.2 Novelty Detection
The initial novelty detection step (1○ in Fig. 4) is crucial for identify-
ing emerging patterns in the environment. SupposeM = {𝑚1, ...,𝑚𝑀 }
is the set of cluster HVs stored in the working memory. We gauge
the "radius" of each cluster by tracking two scalars for each cluster

HV 𝑖: `𝑖 and �̂�𝑖 , which represent the mean cosine difference and
standard difference between the cluster HV and its assigned inputs.
Given 𝜙 (𝑋), we first identify the most similar cluster HV, denoted
by 𝑗 . LifeHD marks 𝜙 (𝑋) as “novel" if it substantially differs from
its nearest cluster HV. Specifically, this dissimilarity is measured by
comparing cos(𝜙 (𝑋),𝑚 𝑗) with a threshold based on the historical
distance distribution of cluster HV 𝑗 :

If cos(𝜙 (𝑋),𝑚 𝑗) < ` 𝑗 − 𝛾�̂� 𝑗 , then flag novel. (1)

The hyperparameter 𝛾 fine-tunes the sensitivity to novelties.
LifeHD recognizes new 𝜙 (𝑋) as prototypes and inserts them into

the working memory. When reaching its size limit 𝑀 , the working
memory experiences forgetting (5○ in Fig. 4). The least recently used
(LRU) cluster HV, represented by 𝐿𝑅𝑈 = argmin𝑀

𝑖=1 𝑝𝑖 , is replaced.
Here 𝑝 corresponds to the latest batch index where the cluster HV
was accessed. A similar forgetting mechanism is configured for the
long-term memory, where the last batch accessed is marked with 𝑞.

5.3 Cluster HV Update
If novelty is not detected, indicating that 𝜙 (𝑋) closely matches clus-
ter HV 𝑗 , we proceed to update the cluster HV and its associated
information (2○ in Fig. 4). This update process involves bundling
𝜙 (𝑋) with cluster HV𝑚 𝑗 , akin to how class hypervectors are up-
dated as described in Sec. 3, and updaing ` 𝑗 and �̂� 𝑗 with their
moving average:

𝑚 𝑗 ←𝑚 𝑗 ⊕ 𝜙 (𝑋) (2a)
` 𝑗 ← (1 − 𝛼)` 𝑗 + 𝛼 cos(𝜙 (𝑋),𝑚 𝑗) (2b)
�̂� 𝑗 ← (1 − 𝛼)�̂� 𝑗 + 𝛼 | cos(𝜙 (𝑋),𝑚 𝑗) − ` 𝑗 | (2c)

ℎ𝑖𝑡 𝑗 ← ℎ𝑖𝑡 𝑗 + 1, 𝑝 𝑗 ← 𝑖𝑑𝑥 (2d)

The hyperparameter 𝛼 adjusts the balance between historical and
recent inputs, where a higher𝛼 gives more weight to recent samples.
Properly maintaining ` 𝑗 and �̂� 𝑗 is vital for tracking the “radius” of
each cluster HV, affecting future novelty detection.We also increase
the hit frequency ℎ𝑖𝑡 𝑗 and refresh 𝑝 𝑗 with current batch index 𝑖𝑑𝑥 .
ℎ𝑖𝑡 𝑗 is further used to compared with a predetermined threshold
ℎ𝑖𝑡𝑡ℎ to decide when a working memory cluster HV appears suffi-
ciently frequently to be consolidated to long-term memory (4○ in
Fig. 4). 𝑝 𝑗 determines forgetting as described in the previous section.
With this lightweight approach, LifeHD continually records tempo-
ral cluster HVs from the environment, while the most prominent
cluster HVs are transferred to long-term memory.

Under review, , Xiaofan Yu, Anthony Thomas, Ivannia Gomez Moreno, Louis Gutierrez, and Tajana Šimunić Rosing

Figure 5: An intuitive visualization of cluster HV merging.

5.4 Cluster HV Merging
Cluster HV merge (3○ in Fig. 4) has the dual benefit of reducing
memory use and of elucidating underlying similarity structure in
the data. Intuitively, a group of cluster HVs can be merged if they
are similar to each other and dissimilar from other cluster HVs.
For instance, one might merge the cluster HVs for Bulldog and
Chihuahua into a single “Dog” cluster HV, that remains distinct
from the cluster HV for “Tabby Cat”.

To merge the cluster HVs, we first construct a similarity graph
defined over the cluster HVs from the long-term memory. The
cluster HVs correspond to nodes, and a pair of cluster HVs are
connected by an edge if they are sufficiently similar. We then merge
the cluster HVs by computing a particular type of cut in the graph
in a manner similar to spectral clustering [40]. This graph based
formalism for clustering is able to capture complex types of cluster
geometry and often substantially outperforms simpler approaches
like K-Means [59]. We detail the steps of cluster HV merging in
LifeHD below, while Fig. 5 offers an illustrative overview.

Step 1: Preprocessing. Given the set of long-term memory clus-
ter HVsL = {𝑙1, ..., 𝑙𝐿}, we construct a graph G using the adjacency
matrix 𝐴 ∈ {0, 1}𝐿×𝐿 . Here, 𝐴𝑖 𝑗 = 𝐴 𝑗𝑖 = 1[cos(𝑙𝑖 , 𝑙 𝑗) ≥ 𝛽], with 𝛽

as an adaptive threshold. In other words, an edge connects cluster
HVs 𝑙𝑖 and 𝑙 𝑗 if their similarity in HD-space surpasses 𝛽 . A larger 𝛽
implies that cluster HVs must be more similar to be considered for
merging. In practice, we set 𝛽 = 1

𝑀

∑𝑀
𝑖=1 `𝑖 , representing the mean

of the observed cluster HVs.
Step 2: Decomposition.We compute the Laplacian𝑊 = 𝐷 −𝐴,

where 𝐷 is the diagonal matrix in which 𝐷𝑖𝑖 =
∑

𝑗 𝐴𝑖 𝑗 . We then
compute the eigenvalues _1, .., _𝐿 , sorted in increasing order, and
eigenvectors a1, ..., a𝐿 of𝑊 .

Step 3: Grouping. We infer 𝑘 = max𝑖∈[𝐿] _𝑖 ≤ 𝑔𝑢𝑏 , and merge
the cluster HVs by running K-Means on a1, ..., a𝑘 . The upperbound
𝑔𝑢𝑏 is a hyperparameter that adjusts the granularity of merging,
with a smaller 𝑔𝑢𝑏 leading to smaller 𝑘 thus encouraging merging
more aggressively.

Our merging approach is formally grounded, as discussed in
[59]. It is a well-known fact that the eigenvectors of𝑊 encode
information about the connected components of G. When G has
𝑘 connected components, the eigenvalues _1 = _2 = ... = _𝑘 = 0.
To recover these components, K-Means clustering on a1, ..., a𝑘 can
be employed, as explained in [59]. However, practical scenarios
may have a few inter-component edges that should ideally be dis-
tinct. For instance, when the similarity threshold is imprecisely
set, erroneous edges may appear in the graph, causing _1, ..., _𝑘 to
be only approximately zero. Our merging approach is designed to
handle this situation by introducing 𝑔𝑢𝑏 . The cluster HV merging
is evaluated every 𝑓𝑚𝑒𝑟𝑔𝑒 batches, where 𝑓𝑚𝑒𝑟𝑔𝑒 is a hyperparame-
ter that controls the trade-off between merging performance and

computational latency. Both 𝑔𝑢𝑏 and 𝑓𝑚𝑒𝑟𝑔𝑒 are analyzed in Sec. 7.8,
along with other key hyperparameters in LifeHD.

Time Complexity of Merging. A potentially limiting issue
with spectral clustering is its time complexity, which is, in the worst
case 𝑂 (𝐿3). However, this is not a concern in our setting. First, the
number of cluster HVs in long-term memory (𝐿) is typically small,
around 50 in practice, resulting in modest worst-case complexity.
Secondly, worst-case analysis is overly pessimistic, assuming a full
eigendecomposition of the graph Laplacian (𝑊). In practice,𝑊 is
nearly always approximately low rank, meaning that only the first
𝑘 ≪ 𝐿 eigenvectors are needed. In such cases, fast randomized
eigendecomposition algorithms can reduce the time complexity
to linear in 𝐿 [17]. Thus, while spectral clustering is sometimes
colloquially thought of as an “expensive” procedure, this is true only
in very unfavorable “worst-case” settings. In practice, its complexity
is modest and acceptable for our situation, as shown in Sec. 7.5.

6 VARIANTS OF LIFEHD
While LifeHD is designed to cater to general IoT applications with
streaming input and without supervision, real-world scenarios may
vary. Some scenarios might have a few labeled samples in addition
to the unlabeled stream, while others may require operation within
strict power constraints. LifeHD offers extensibility to address these
diverse needs. In this section, we introduce two software-based
extensions: LifeHDsemi, which adds a separate processing path to
manage labeled samples, and LifeHDa, which adaptively prunes
the HDC model using masking to handle low-power scenarios.

6.1 LifeHDsemi
While LifeHD excels in unsupervised scenarios, it does not har-
ness labeled data when available. To address this limitation, we
introduce LifeHDsemi as an extension to enhance accuracy utilizing
the limited labels. In Fig. 6, we provide an overview of LifeHDsemi.
For each input batch 𝑖𝑑𝑥 , we consider two subsets: one labeled
(𝑋𝑙,𝑖𝑑𝑥 , 𝑦𝑙,𝑖𝑑𝑥) and one unlabeled 𝑋𝑢𝑙,𝑖𝑑𝑥 . We denote the average la-
beling ratio throughout the data stream as 𝑟 =

∑
𝑖𝑑𝑥 |𝑋𝑙,𝑖𝑑𝑥 |∑

𝑖𝑑𝑥 |𝑋𝑙,𝑖𝑑𝑥 |+|𝑋𝑢𝑙,𝑖𝑑𝑥 | .
Since obtaining external supervision is often challenging in dy-
namic environments, we focus on cases where 𝑟 ≤ 0.01.

LifeHDsemi retains the two-tier memory structure of LifeHD
but introduces modifications to the working memory components.
In the LifeHDsemi pipeline, the working memory undergoes three
key steps. Firstly, labeled samples (𝑋𝑙 , 𝑦𝑙) update labeled class hy-
pervectors following the conventional HDC methods outlined in
Sec. 3. Next, we process unlabeled samples 𝑋𝑢𝑙 through novelty
detection and HV update modules, mirroring LifeHD. Importantly,
in LifeHDsemi, these operations are applied to both labeled HVs and

Figure 6: An overview of LifeHDsemi which is designed to handle
scarce labeled samples.

Lifelong Intelligence Beyond the Edge using Hyperdimensional Computing Under review, ,

Figure 7: Left: An example of the impact ofmasking onHDC. Test on
CIFAR-10 [29]. Right: The intuitions behind the design of LifeHDa.

cluster HVs. Lastly, we introduce a merging step to group labeled
HVs and cluster HVs that are closely related. To handle labeled
HVs, we modify the adjacency matrix 𝐴 by making it diagonal
for labeled entries. For example, if the first 𝐽 HVs correspond to
labeled HVs, we ensure that 𝐴1:𝐽 ,1:𝐽 = diag([1, ..., 1]), while cal-
culating the remaining values following LifeHD procedures. This
strategy prevents the merging of labeled HVs with each other. With
these adjustments, LifeHDsemi offers a solution that retains the core
elements of LifeHD while handling scarce labeled inputs.

6.2 LifeHDa
While HDC computation is typically lightweight, there may be
instances of energy scarcity (e.g., when powered by a solar panel)
that call for a balance between accuracy and power efficiency. Sim-
ilar to neural networks, one approach is to prune the HDC model
using a mask, retaining the most crucial HDC dimensions post-
encoding [25]. Dimension importance can be determined by ag-
gregating all class hypervectors into one and sorting the values
across all dimensions. Notably, direct reduction of the encoding
dimension should be avoided, as it can degrade HDC’s expressive
capability and end up with corruption. Fig. 7 (left) visually demon-
strates the impact of masking in supervised HDC tasks: retaining
the top 6000 bits incurs only a 3% accuracy loss compared to using
the full 10K-bit precision.

While the concept of masking has been employed in prior HDC
studies [25], they are not directly applicable to LifeHD due to their
offline training setting with iid data. With streaming non-iid data
in LifeHD, the set of observed cluster HVs may only represent a
subset of the potential classes, and the less significant bits could
become crucial as new classes are introduced.

We introduce LifeHDa, which enhances LifeHD through an adap-
tive masking approach applied to all cluster HVs in working and
long-term memory. Let 𝐷𝑎 represent the target dimension for re-
duction. The rationale behind LifeHDa is depicted in Fig. 7 (right).
Whenever an original LifeHD detects novelty, we temporarily revert
to the full dimension 𝐷 for 2 batches, which is sufficient for LifeHD
to consolidate new patterns in its memory. After these two batches,
we assess the long-term memory cluster HVs by aggregating them
and ranking the dimensions, and derive a mask retaining 𝐷𝑎 dimen-
sions with the largest absolute values. This mask is then applied to
the following batches of 𝜙 (𝑋) immediately after encoding, up until
the next novelty is detected. Novelty detection is executed with the
masked hypervectors. Importantly, LifeHDa can utilize the same
novelty detection sensitivity as LifeHD since the most significant
dimensions dominate the similarity check. In other words, the sim-
ilarity results in LifeHDa using 𝐷𝑎 dimension are similar as using
the full dimension. LifeHDa offers an adaptive HDC model pruning
interface with minimal accuracy loss and overhead.

7 EVALUATION OF LIFEHD
7.1 System Implementation
We implement LifeHD with Python and PyTorch [43] and deploy it
on three standard edge platforms: Raspberry Pi (RPi) Zero 2 W [3],
Raspberry Pi 4B [2], and Jetson TX2 module [1]. The selection
of edge platforms represent three tiers with small, medium and
abundant resources.

RPi Zero 2W has a 1GHz quad-core Cortex-A53 CPU and 512MB
SDRAM. RPi 4B enjoys a 1.8GHz quad-core Cortex-A72 CPU and
4GB SDRAM. The Jetson TX platform is equipped with a dual-core
NVIDIA Denver 2 CPU, a quad-core ARM Cortex-A57 MPCore, an
NVIDIA Pasca family GPU with 256 NVIDIA CUDA cores, and 8GB
RAM. We measure the training latency per batch and the energy
consumption using the Hioki 3334 powermeter [19].

We are aware that all NN-based feature extractors can be pruned
and quantized to attain more efficient deployment on edge plat-
forms [11], same for the NN-based baselines we compare to [13, 14].
However, NNmodel compression is not the primary focus of LifeHD.
Existing compression techniques [26, 39] can be applied directly to
the feature extractor in LifeHD. We leave LifeHD with acceleration
design and emerging hardware deployment for future works.

7.2 Experimental Setup
We conduct comprehensive experiments to evaluate LifeHD on
three typical edge scenarios. All three scenarios incorporate con-
tinuous data streams and expect lifelong learning over time. We
summarize the experimental setup in Table 2.

Application #1: Personal Health Monitoring. Continuous
health monitoring has emerged as a popular use case for IoT. We
utilize the MHEALTH [6] dataset which includes measurements
of acceleration, rate of turn, and magnetic field orientation on a
smartwatch. MHEALTH differentiates 12 activities in daily lives
and is collected from 10 subjects. Notably, MHEALTH employs raw
time-series signals rather than processed frequency components as
inputs. We use time windows of 2.56s (𝑇 = 128) with 75% overlap to
generate the samples. In contrast to previous datasets, we strictly
adhere to the temporal order during data collection.

Application #2: Sound Characterization. Continuous sound
detection contributes to the characterization of urban environments.
We choose the ESC-50 [44] dataset to emulate this scenario. This
dataset comprises 5-second-long recordings categorized into 50
semantically diverse classes, including animals, human sounds,
and urban noises. We construct the class-incremental streams by
arranging the data in random order within each class.

Application #3: Object Recognition. Object recognition is a
common use case for camera-mounted mobile systems, e.g., self-
driving vehicles. We set up a class-incremental stream from CIFAR-
100 [29], consisting of 32×32 RGB images of 20 coarse classes. We
further evaluate the case of data distribution drift by examining
gradual rotations occurring within each CIFAR-100 class.

On MHEALTH, LifeHD is fully dependent on the HDC spa-
tiotemporal encoder to process the raw time-series signals. For
ESC-50 and CIFAR-100, LifeHD utilizes the HDnn framework with
a pretrained feature extractor before HDC encoding, same as in the
state-of-the-art HDC works [18, 52]. Specifically, we adapt a pre-
trained ACDNet with quantified weights [37] for ESC-50. ACDNet

Under review, , Xiaofan Yu, Anthony Thomas, Ivannia Gomez Moreno, Louis Gutierrez, and Tajana Šimunić Rosing

Table 2: Experimental setup of LifeHD across all datasets.

Dataset Application Classes Total Training Data Order HDnn? Pretrained # of
Category (Balanced?) Samples Models Params

MHEALTH [6] Activity 12 (N) 9K Temporal order during collection N - -
ESC-50 [44] Sound 50 (Y) 2K Class-incremental, random within class Y ACDNet [37] 4.7M

CIFAR-100 [29] Image 20 (Y) 60K Class-incremental, random within class Y MobileNet V2 [51] or 2.2M
or gradual rotation within class MobileNet V3 small [20] 927K

Table 3: Important hyperparameters configuration of LifeHD.

Dataset HDC Encoding LifeHD Design
𝐷 𝑄 𝑃 𝑏𝑆𝑖𝑧𝑒 𝑀 𝛾 𝑔𝑢𝑏 𝑓𝑚𝑒𝑟𝑔𝑒

MHEALTH 1000 5 0.01 32 50 3.0 0.2 25
ESC-50 10000 100 0.02 32 100 1.0 0.1 5

CIFAR-100 10000 100 0.01 32 100 1.0 0.1 150

is a compact convolutional neural network architecture designed
for small embedded devices. For CIFAR-100, we use a MobileNet
V2 [51] for accuracy evaluation and MobileNet V3 small [20] for
efficiency evaluation, both pretrained on ImageNet [48]. For all
pretrained NNs, we remove the last fully connected layer used for
classification and keep the remaining weights frozen.

Table 3 summarizes the key hyperparameters in LifeHD, which
are selected based on a separate validation set. We configure 𝛼 =

0.1 for moving-average update, ℎ𝑖𝑡𝑡ℎ = 10 for long-term memory
consolidation. The long-term memory size 𝐿 is set to 50 in all cases.

7.3 State-of-the-Art Baselines
We conduct a comprehensive comparison between LifeHD and
state-of-the-art NN-based unsupervised lifelong learning baselines,
which continuously train a NN for representation learning. The loss
functions in these setups are defined in the feature space without
relying on label supervision. During testing, we freeze the neural
network and apply K-Means clustering on the testing feature em-
beddings to generate predicted labels. 𝑘 is set to 50 which is the
same number of cluster HVs as in LifeHD. Such a pipeline is widely
used for lifelong learning evaluations [46, 54].

Fig. 8 presents a comparison of the pipeline setup using both
the baselines and LifeHD on HDnn and non-HDnn frameworks
respectively. To ensure fair comparisons, in HDnn framework on
ESC-50 and CIFAR-100, we initialize the NN with the same pre-
trained weights for LifeHD and NN baselines. For the NN baselines
on MHEALTH, we randomly initialize a one-layer LSTM of 64 units
followed by a fully connected layer of 512 units. This architec-
ture has achieved competitive accuracy as the Transformers-based
designs on MHEALTH [12].

We compare LifeHD with the following baselines, which include
all main lifelong learning techniques:
• Finetune is a naïve baseline that optimizes the NN model
using the current batch of data without any lifelong learning
techniques.
• CaSSLe [14] is a distillation-based framework that utilizes
self-supervised losses. It leverages distillation between the
representations of the current model and a past model. In
the original paper, the past model is captured at the end of
the previous task and prior to the introduction of a new task.

Figure 8: A graphical explanation of the pipeline setup. Green out-
lines denote the module trained with the streaming data. Blue out-
lines denote the unsupervised classifier trained during testing. Gray
denotes when the module is frozen & not trained further.

However, since we do not assume awareness of task shifts,
we simply freeze the model from the previous batch.
• LUMP [13] employs a memory buffer for replay and mit-
igates catastrophic forgetting by interpolating the current
batch with previously stored samples in the memory.
• STAM [54] is brain-inspired expandable memory architec-
ture using online clustering and novelty detection. We ex-
clusively apply STAM to CIFAR-100 due to its demand for
intricate dataset-specific tuning (e.g., number of receptive
fields), and because the authors only released the implemen-
tation for the CIFAR datasets.
• SupHDC [18, 27] is the fully supervised HDC pipeline.

All baselines are adapted from their original open-source code.
For CaSSLe and LUMP, we employ BYOL [16] as the self-supervised
loss function because it has showed superb empirical performance
in lifelong learning tasks compared to other self-supervised learning
backbones [14]. We use the memory buffer size of 256 for LUMP
which is the same as in the original paper. We employ the Stochastic
Gradient Descent (SGD) optimizer with a learning rate of 0.03 across
all methods, training each batch for 10 steps. All experiments are
executed for 3 random trials.

7.4 LifeHD Accuracy
Results on Three Application Scenarios. Fig. 9 (a) details the
ACC curve of all methods as streaming samples are received. All
NN baselines start at higher accuracy, especially in ESC-50 (sounds)
and CIFAR-100 (images), owing to the presence of a pretrained NN
feature extractor within the HDnn framework. Meanwhile, LifeHD
begins with lower accuracy as both the working and long-term
memories are empty, needing to learn the cluster HVs and the op-
timal number of clusters. Notably, as streaming samples come in,

Lifelong Intelligence Beyond the Edge using Hyperdimensional Computing Under review, ,

(a) The ACC curve of LifeHD vs. state-of-the-art NN baselines on three scenarios. (b) The final results of LifeHD in CIFAR-100 with rotation.
Figure 9: The unsupervised clustering accuracy (ACC) results of LifeHD on various input data streams.

Table 4: The gap of ACCs at the end of the stream between LifeHD
and Supervised HDC [18, 27].

Method MHEALTH ESC-50 CIFAR-100

LifeHD 0.75 0.92 0.20
Supervised HDC [18, 27] 0.90 0.95 0.26

Gap -0.15 -0.03 -0.06

all NN baselines experience a decline in ACC, underscoring the in-
herent challenges of unsupervised lifelong learning with streaming
non-iid data and a lack of supervision. This is primarily due to the
demand for extensive iid data and multi-epoch offline training for
finetuning NNs, which is not feasible in our setting. CaSSLe [14]
leads to forgetting due to its inability to identify suitable past mod-
els from which to distill knowledge. Similarly, LUMP [13] exhibits
reduced ACC in ESC-50 and CIFAR-100, with only marginal ACC
improvement in MHEALTH (time series), suggesting that its mem-
ory interpolation strategy may not be universally suitable for all
applications. While the memory-based design of STAM [54] can
mitigate forgetting, its efficacy in distinguishing patterns and ac-
quiring new knowledge remains unsatisfactory. On the contrary,
LifeHD demonstrates incremental accuracy across all three differ-
ent scenarios, achieving up to 9.4%, 74.8% and 11.8% accuracy
increase on MHEALTH (time series), ESC-50 (sound) and CIFAR-
100 (images), compared with the NN-based unsupervised lifelong
learning baselines at the end. Such outcome can be attributed to
HDC’s lightweight but meaningful encoding and the effective mem-
orization design of LifeHD.

Results under Data Distribution Drift. We further evaluate
LifeHD’s performance under drifted data and present the final
ACC along with the number of discarded cluster HVs in Fig. 9
(b). Specifically, we introduce gradual rotation to the CIFAR-100
samples within each class, ranging from no rotation to a substantial
rotation angle of 80◦. The other parameter settings remain the
same as in Table 3. The number of discarded cluster HVs accounts
for those that are either forgotten or merged. From Fig. 9 (b), we
can observe the remarkable resilience of LifeHD to drifted data,
with an ACC loss of less than 2.3% even under a severe rotation of
80◦. This robustness stems from the general and uniform design of
LifeHD to accommodate various types of continuously changing
data streams. In cases of slight or minimal distribution drift, LifeHD
updates existing cluster HVs; in instances of severe drift, new cluster
HVs are created and subsequently merged if deemed appropriate.
However, due to the finite memory capacities, more cluster HVs are
subject to forgetting or merging under larger drifts, as shown in
Fig. 9 (b) by the number of discarded cluster HVs, leading to ACC

Figure 10: The confusion matrix of LifeHD on MHEALTH. The
green box highlights smaller cluster HVs that form a single large
ground truth class, which is a valid learning outcome. The red box
highlights "boundary" cluster HVs that span multiple true labels,
leading to lower ACCs.

loss. In our experiments, LifeHD demonstrates minimal ACC loss
even under substantial rotation shifts.

Comparison with Fully Supervised HDC. Table 4 compares
the average ACCs of supervised HDC method [18, 27] and LifeHD.
Even without any supervision, LifeHD approaches the ACC of
supervised HDC with a gap of 15%, 3% and 6% on MHEALTH,
ESC-50 and CIFAR-100. A minimal ACC gap confirms the effec-
tiveness of LifeHD in separating and memorizing key patterns. To
help explain the small ACC loss even without supervision, we vi-
sualize the confusion matrix of LifeHD on MHEALTH in Fig. 10.
MHEALTH has 12 true classes (y axis), whereas LifeHD maintains
23 cluster HVs in its long-term memory (x axis). ACC is evaluated
by mapping the unsupervised cluster HVs to true labels. Although
LifeHD cannot achieve precise label matching with true classes, it
can preserve the essential patterns by using finer-grained clusters.
For example, the green box in Fig. 10 highlights a valid learning
outcome, where LifeHD uses predicted cluster HV No. 0, 9 and 23
to represent a bigger true class of “Lying down”.

7.5 Training Latency and Energy
Fig. 11 provides comprehensive latency and energy consumption
results to train one batch of samples on all three edge platforms.
For CIFAR-100, we use the most lightweight MobileNet version,
V3 small [20], as HDnn feature extractor and NN baseline, to as-
sess LifeHD’s efficiency gain over the most competitive mobile
computing setup. On RPi Zero, we report results for the relatively
lightweight NN-based baselines, Finetune and LUMP [13], using

Under review, , Xiaofan Yu, Anthony Thomas, Ivannia Gomez Moreno, Louis Gutierrez, and Tajana Šimunić Rosing

(a) Latency on RPi Zero (b) Latency on RPi 4B (c) Latency on Jetson TX2

(d) Energy on RPi Zero (e) Energy on RPi 4B (f) Energy on Jetson TX2

Figure 11: Latency and energy consumption to train one batch of data using LifeHD and all baselines on off-the-shelf edge platforms.

Figure 12: Peak memory footprint of all methods on MHEALTH
(left) and CIFAR-100 (right) with batch size of 1. The results are
representative for time series data and image data.

the smallest dataset, MHEALTH, while running CaSSLe [14] on
MHEALTH would result in out-of-memory errors. As shown in
Fig. 11, LifeHD is up to 23.7x, 36.5x and 22.1x faster to train on
RPi Zero, RPi 4B and Jetson TX2, respectively, while being up to
22.5x, 34.3x and 20.8x more energy efficient on each, compared
to the NN-based unsupervised lifelong learning baselines. In most
settings, CaSSLe [14] is the most time-consuming because of the
expensive distillation. LUMP [13] is slightly more expensive than
Finetune due to its replay mechanism. STAM [54], implemented
only on CPU, incurs the longest training latency on Jetson TX2, as it
does not use GPU’s acceleration capabilities. LifeHD is clearly faster
and more efficient than all NN-based unsupervised lifelong learning
baselines [13, 14, 54] due to LifeHD’s lightweight nature. The over-
head of LifeHD alongside fully supervised HDC, SupHDC [18, 27],
is negligible on more powerful platforms like RPi 4B and Jetson TX2.
Notably, in LifeHD, the cluster HV merging step for processing
about 40 LTM elements takes 7.4, 0.86 and 0.66 seconds to run on
RPi Zero, RPi 4B and Jetson TX2, respectively, which only executes
once every 𝑓𝑚𝑒𝑟𝑔𝑒 batches. Further enhancements can be achieved
using the acceleration techniques mentioned in Sec. 5.4.

Fig. 11 indicates LifeHD improves latency and energy efficiency
the most on RPi 4B, as compared to RPi Zero and Jetson TX2 that
representmore limited or powerful devices. This is because the high-
dimensional nature of LifeHD requires a fair amount of memory,
thus it cannot run efficiently on the highly restricted RPi Zero.
The GPU resources on Jetson TX2 boost the NN-based baselines,
narrowing the gap between them and LifeHD. We expect much
larger efficiency improvements when LifeHD is accelerated using
emerging in-memory computing hardware [11, 65].

7.6 Memory Usage
Fig. 12 provides a comprehensive summary of peak memory foot-
print for all methods on MHEALTH and CIFAR-100. We categorize

the methods into NN training (Finetune, LUMP [13], CaSSLe [14],
STAM [54]) and HDC training (Supervised HDC [18, 27] and our
LifeHD). Following [30], we calculate the peak memory of NN train-
ing as the sum of model, optimizer and activation memories, plus
additional memory consumption for lifelong learning. Specifically,
CaSSLe [14] requires additional memory for training a predictor
and inference from a frozen model, LUMP [13] needs extra memory
for replay. For HDC-based methods, each dimension of the cluster
HV is represented as a signed integer and stored in a byte. In ad-
dition to the working and long-term memories, we also consider
the storage of bipolar level and ID hypervectors for encoding, and
the frozen MobileNet for HDnn encoding in CIFAR-100. Notice
that our focus here is on comparing full-precision memory usage,
and optimization techniques like quantization can be applied to all
methods in the future.

The results in Fig. 12 highlight LifeHD’s memory efficiency.
LifeHD conserves 80.1%-86.2% and 84.1%-96.0% of memory com-
pared to NN training baselines on MHEALTH (non-HDnn) and
CIFAR-100 (HDnn), respectively. This remarkable efficiency stems
from LifeHD’s HDC design, which dispenses with the memory-
intensive gradient descents in NNs. STAM [54], with its hierarchical
and expandable memory structure, consumes 6.3x the memory of
LifeHD, as it stores raw image patches across all hierarchies. Com-
pared to fully supervised HDC, SupHDC [18, 27], LifeHD introduces
a modest memory increase to accomplish the challenging task of
organizing label-free cluster HVs. LifeHD proves advantageous for
edge applications with only 103 KB and 2.5 MB of peak memory
required for MHEALTH and CIFAR-100.

7.7 Ablation Studies
The design of LifeHD consists of several key elements: the two-tier
memory organization, novelty detection and online update, and
cluster HV merging that manipulates past patterns. We conduct
experiments to assess the contribution of each element. Using the
configuration in Table 3, we evaluate the performance of (i) LifeHD
without long-term memory, using only a single layer memory, (ii)
LifeHD without merging, employing only novelty detection, online
update and forgetting, and (iii) complete LifeHD. We present the
ACC and the number of cluster HVs in LTM during MHEALTH
training in Fig. 13, chosen as a representative scenario. LifeHD
without LTM (green dashdot line) forces cluster HV merging to

Lifelong Intelligence Beyond the Edge using Hyperdimensional Computing Under review, ,

Figure 13: Ablation study of LifeHD on MHEALTH. The number of
cluster HVs reported for LifeHD without long-term memory (LTM)
is for the working memory, since no LTM is allowed.

take place in working memory, where the large number of tem-
porary cluster HVs creates less important nodes in the graph and
corrupts the graph-based merging process, as shown in Fig. 13 (left).
This necessitates the design of the two-tier memory architecture
and merging with LTM elements. LifeHD without merging (blue
dashed line) consumes 1x more memory in the LTM, making it
unsuitable for resource-constrained edge devices. Our design of
LifeHD (red solid line) strategically combines similar cluster HVs
with minor loss on the clustering quality, achieving ACC similar to
those without merging while conserving memory storage.

7.8 Sensitivity Analysis
Fig. 14 summarizes the sensivitity results of key parameters in
LifeHD, while the less sensitive ones such as 𝛼 andℎ𝑖𝑡𝑡ℎ are omitted
due to space limitation. The default setting is the same as in Table 3.

Working Memory Size. Fig. 14 (a) shows ACCs using working
memory sizes of 20, 50, 100 and 200. In general, a larger working
memory allows more temporary cluster HVs at the cost of higher
memory consumption. 𝑀 = 100 produces optimal results, while
further increasing the memory size reduces clustering quality. This
occurs because excessively large working memory retains outdated
prototypes, degrading lifelong learning performance.

Novelty Threshold. In Fig. 14 (b), we present the final ACCs
for different novelty detection thresholds (𝛾). A lower 𝛾 results in
more frequent novelty detections and increased loads on the work-
ing memory, while a higher 𝛾 may lead to overlooking significant
changes. Remarkably, LifeHD demonstrates resilience to variations
in 𝛾 , a phenomenon that we attribute to the combined impact of
novelty detection and merging processes.

Merging Sensitivity. Fig. 14 (c) shows ACC using various merg-
ing thresholds (𝑔𝑢𝑏). 𝑔𝑢𝑏 determines the number of clusters (𝑘) to
merge in the cluster HV merging step (Sec. 5.4). A low value for
𝑔𝑢𝑏 results in overly aggressive merging, leading to the fusion of
dissimilar cluster HVs and a degraded ACC. A larger 𝑔𝑢𝑏 adopts a
conservative merging strategy and encourages finer-grained clus-
ters, albeit at the expense of increased resource demands.

Merging Frequency. Fig. 14 (d) shows the final ACCs for dif-
ferent merging frequencies (𝑓𝑏𝑎𝑡𝑐ℎ). LifeHD shows its robustness
across various 𝑓𝑏𝑎𝑡𝑐ℎ values, partly due to the presence of 𝑔𝑢𝑏 to
prevent aggressive merging. Less frequent merging (larger 𝑓𝑏𝑎𝑡𝑐ℎ)
raises the risk of forgetting important patterns as of memory con-
straints. More frequent merging (smaller 𝑓𝑏𝑎𝑡𝑐ℎ) increases the com-
putational burden due to the spectral clustering-based algorithm.

Encoding Level and Flipping Ratio for Spatiotemporal En-
coding. Fig. 14 (e) and (f) show the ACCs for various quantization
encoding levels (𝑄) and flipping ratios (𝑃) during the spatiotem-
poral encoding. Both parameters are important for preserving the

(a) Working memory size (b) Novelty threshold (c) Merging sensitivity

(d) Merge frequency (e) Encoding level (f) Encoding flipping ratio

Figure 14: Sensitivity of various hyperparameters in LifeHD, using
MHEALTH dataset as a representative.

similarity in HD-space after encoding. Optimal 𝑄 depends on the
sensor sensitivity, with finer-grained sensors requiring more quanti-
zation levels. 𝑃 determines the similarity between adjacent levels of
hypervectors. For personal health monitoring, such as MHEALTH,
𝑄 = 10, 𝑃 = 0.01 usually gives the best results.

8 EVALUATION OF LIFEHDsemi AND LIFEHDa
In this section, we compare LifeHDsemi and LifeHDa, our proposed
extensions from LifeHD, with existing designs that are similar.

Performance of LifeHDsemi. To evaluate LifeHDsemi in a low-
label scenario, we compare it with SemiHD [22], which is the state-
of-the-art HDC method for semi-supervised learning. We adapt
SemiHD [22] for single-pass settings, introducing a pseudolabel
assignment threshold. When the cosine similarity of an unlabeled
sample to the nearest class hypervector surpasses the threshold, we
assign that class as its pseudolabel. The sample is then employed to
update the class hypervector in SemiHD.We explore various thresh-
old values and choose the optimal result for comparison. Fig. 15
(a) compares LifeHDsemi and SemiHD [22] on ESC-50 and CIFAR-
100 across various labeling ratios 𝑟 < 0.01. The advantages of
LifeHDsemi are most prominent when labels are limited, the weakly
supervised scenario is LifeHDsemi’s major focus. LifeHDsemi im-
proves ACC by up to 10.25% and 3.6% on ESC-50 and CIFAR-100
respectively. This outcome arises from the unsupervised nature
of LifeHD, allowing it to autonomously organize prominent clus-
ter HVs, especially when all samples from a class lack labels. As
the labeling ratio increases, LifeHDsemi’s advantage over SemiHD
diminishes, because more labels bolster SemiHD’s performance.

Performance of LifeHDa. LifeHDa provides an interface to
trade minimal performance loss for efficiency gains, by adaptively
pruning out the insignificant dimensions. We compare LifeHDa
with previous HDC works employing a fixed mask throughout
training [25], and the results are presented in Fig. 15 (b) for CIFAR-
100, including ACC and training latency per batch on RPi 4B. Fixed
masks negatively impact HDC learning, especially with smaller
dimensions. Such masks fail to adapt to new hypervectors in class-
incremental streams, where less significant dimensionsmay become
crucial later in training. LifeHDa addresses this issue by adjusting
the mask upon novelty detection, leading to a degradation of only
0.71% in ACC and 4.5x efficiency gain compared to the complete
LifeHD, using only 20% of the full HD dimension of LifeHD. The
overhead of adaptively adjusting the mask is negligible when nov-
elty detection occurs infrequently.

Under review, , Xiaofan Yu, Anthony Thomas, Ivannia Gomez Moreno, Louis Gutierrez, and Tajana Šimunić Rosing

(a) Gains of LifeHDsemi over SemiHD [22] in lower labeling ratios.

(b) LifeHDa vs. using fixed mask (Fixed) [25] under various 𝐷𝑎 .
Figure 15: Results of LifeHDsemi and LifeHDa compared to existing
HDC techniques for similar goals.

9 DISCUSSIONS AND FUTUREWORKS
Problem Scale. One limitation of LifeHD is the relative small prob-
lem scale (e.g., the image size of CIFAR-100 is restricted to 32x32)
due to the essential difficulty of unsupervised lifelong learning
problem, including single-pass non-iid data and no supervision. For
the same reason, there remains a disparity in accuracy between
unsupervised lifelong learning and fully supervised NNs, as sub-
stantiated by prior research [13, 54]. In order to scale LifeHD to
more challenging applications such as self-driving vehicles, one
possible direction is to leverage the pretrained foundation model as
a frozen feature extractor in the HDnn framework, which we leave
for future investigation.

Hyperparameter Tuning.While we recognize that hyperpa-
rameters can influence the performance of LifeHD, such an issue is
not exclusive to LifeHD, but has persistently been a challenge in
machine learning research [7]. In LifeHD, the impact of hyperpa-
rameters can be mitigated through pre-deployment evaluation and
component co-design. For example, encoding parameters such as
𝑄, 𝑃 can be tuned on similar health monitoring data sources prior
to deployment. Meanwhile, the component of cluster HVs merging
can increase LifeHD’s resiliency to the novelty detection threshold
𝛾 , as a higher quantity of novel clusters can be merged in later stage
of learning.

Limitations of HDC. HDC serves as the fundamental core of
LifeHD. While HDC shows promise with its notable lightweight
design, it is burdened by several limitations that remain active areas
of research. First, for complex datasets like audio and images, HDC
requires a pretrained feature extractor (the HDnn encoding) which
may not exist for certain applications. Moreover, akin to any other
architecture, HDC vectors face capacity limitations determined
by the dimension of HD space, encoding method, and potential
noise levels in the input data [56]. Due to these factors, careful
evaluation and sometimes manual feature engineering are required
to successfully deploy HDC for new applications.

Future Works. Although LifeHD focuses on single-device life-
long learning for classification tasks, the method can be extended
for other types of tasks and learning settings, such as federated
learning and reinforcement learning. We leave the investigation of
these topics for future work.

10 CONCLUSION
The ability to learn continuously and indefinitely in the presence of
change, andwithout access to supervision, on a resource-constrained
device is a crucial trait for future sensor systems. In this work, we
design and deploy the first end-to-end system named LifeHD to
learn continuously from real-world data streams without labels.
Our approach is based on Hyperdimensional Computing (HDC),
an emerging neurally-inspired paradigm for lightweight edge com-
puting. LifeHD is built on a two-tier memory hierarchy including
a working and a long-term memory, with collaborative compo-
nents of novelty detection, online cluster HV update and cluster
HV merging for optimal lifelong learning performance. We fur-
ther propose two extensions to LifeHD, LifeHDsemi and LifeHDa,
to handle scarce labeled samples and power constraints. Practi-
cal deployments on typical edge platforms and three IoT scenarios
demonstrate LifeHD’s improvement of up to 74.8% on unsupervised
clustering accuracy and up to 34.3x on energy efficiency compared
to state-of-the-art NN-based unsupervised lifelong learning base-
lines [13, 14, 54].

ACKNOWLEDGMENTS
The authors would like to thank the anonymous shepherd, review-
ers, and our colleague Xiyuan Zhang for their valuable feedback.
This work was supported in part by National Science Foundation
under Grants #2003279, #1826967, #2100237, #2112167, #1911095,
#2112665, and in part by PRISM and CoCoSys, centers in JUMP 2.0,
an SRC program sponsored by DARPA.

REFERENCES
[1] 2023. Jetson TX2 Module. https://developer.nvidia.com/embedded/jetson-tx2.

[Online].
[2] 2023. Raspberry Pi 4B. https://www.raspberrypi.com/products/raspberry-pi-4-

model-b/. [Online].
[3] 2023. Raspberry Pi Zero 2 W. https://www.raspberrypi.com/products/raspberry-

pi-zero-2-w/. [Online].
[4] Aurore Avarguès-Weber et al. 2012. Simultaneous mastering of two abstract

concepts by the miniature brain of bees. Proceedings of the National Academy of
Sciences 109, 19 (2012), 7481–7486.

[5] Alan Baddeley. 1992. Working memory. Science 255, 5044 (1992), 556–559.
[6] Garcia Rafael Banos, Oresti and Alejandro Saez. 2014. MHEALTH Dataset. UCI

Machine Learning Repository. DOI: https://doi.org/10.24432/C5TW22.
[7] Bernd Bischl et al. 2023. Hyperparameter optimization: Foundations, algorithms,

best practices, and open challenges. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery 13, 2 (2023), e1484.

[8] Trenton Bricken et al. 2023. Sparse Distributed Memory is a Continual Learner.
In International Conference on Learning Representations.

[9] Han Cai et al. 2020. Tinytl: Reduce memory, not parameters for efficient on-
device learning. Advances in Neural Information Processing Systems 33 (2020),
11285–11297.

[10] Ning Chen et al. 2016. Smart urban surveillance using fog computing. In 2016
IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 95–96.

[11] Arpan Dutta et al. 2022. Hdnn-pim: Efficient in memory design of hyperdi-
mensional computing with feature extraction. In Proceedings of the Great Lakes
Symposium on VLSI 2022. 281–286.

[12] Ehab Essa and Islam R Abdelmaksoud. 2023. Temporal-channel convolution with
self-attention network for human activity recognition using wearable sensors.
Knowledge-Based Systems 278 (2023), 110867.

[13] Divyam Madaan et al. 2022. Representational Continuity for Unsupervised
Continual Learning. In International Conference on Learning Representations.

[14] Enrico Fini et al. 2022. Self-supervised models are continual learners. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[15] In Gim and JeongGil Ko. 2022. Memory-efficient DNN training on mobile devices.
In Proceedings of the 20th Annual International Conference on Mobile Systems,
Applications and Services. 464–476.

[16] Jean-Bastien Grill et al. 2020. Bootstrap your own latent-a new approach to
self-supervised learning. Advances in neural information processing systems 33

https://developer.nvidia.com/embedded/jetson-tx2
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/
https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/

Lifelong Intelligence Beyond the Edge using Hyperdimensional Computing Under review, ,

(2020), 21271–21284.
[17] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. 2011. Finding structure

with randomness: Probabilistic algorithms for constructing approximate matrix
decompositions. SIAM review 53, 2 (2011), 217–288.

[18] Michael Hersche et al. 2022. Constrained few-shot class-incremental learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
9057–9067.

[19] Hioki. 2023. Hioki3334 Powermeter. https://www.hioki.com/en/products/detail/
?product_key=5812.

[20] Andrew Howard et al. 2019. Searching for mobilenetv3. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 1314–1324.

[21] Mohsen Imani et al. 2019. Hdcluster: An accurate clustering using brain-inspired
high-dimensional computing. In Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 1591–1594.

[22] Mohsen Imani et al. 2019. Semihd: Semi-supervised learning using hyperdi-
mensional computing. In IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, 1–8.

[23] Mohsen Imani, Deqian Kong, Abbas Rahimi, and Tajana Rosing. 2017. Voicehd:
Hyperdimensional computing for efficient speech recognition. In IEEE Interna-
tional Conference on Rebooting Computing (ICRC). IEEE, 1–8.

[24] Pentti Kanerva. 2009. Hyperdimensional computing: An introduction to com-
puting in distributed representation with high-dimensional random vectors.
Cognitive Computation 1 (2009), 139–159.

[25] Behnam Khaleghi, Mohsen Imani, and Tajana Rosing. 2020. Prive-hd: Privacy-
preserved hyperdimensional computing. In ACM/IEEE Design Automation Con-
ference (DAC). IEEE, 1–6.

[26] Hyeji Kim, Muhammad Umar Karim Khan, and Chong-Min Kyung. 2019. Effi-
cient neural network compression. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 12569–12577.

[27] Yeseong Kim, Mohsen Imani, and Tajana S Rosing. 2018. Efficient human ac-
tivity recognition using hyperdimensional computing. In Proceedings of the 8th
International Conference on the Internet of Things. 1–6.

[28] James Kirkpatrick et al. 2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the national academy of sciences (2017).

[29] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[30] Young D Kwon et al. 2023. LifeLearner: Hardware-Aware Meta Continual Learn-
ing System for Embedded Computing Platforms. In Proceedings of the 21st ACM
Conference on Embedded Networked Sensor Systems.

[31] Soochan Lee et al. 2020. A Neural Dirichlet Process Mixture Model for Task-Free
Continual Learning. In International Conference on Learning Representations.

[32] Ji Lin et al. 2020. Mcunet: Tiny deep learning on iot devices. Advances in Neural
Information Processing Systems 33 (2020), 11711–11722.

[33] Ji Lin et al. 2021. Memory-efficient patch-based inference for tiny deep learning.
Advances in Neural Information Processing Systems 34 (2021), 2346–2358.

[34] Ji Lin et al. 2022. On-device training under 256kb memory. Advances in Neural
Information Processing Systems 35 (2022), 22941–22954.

[35] David Lopez-Paz and Marc’Aurelio Ranzato. 2017. Gradient episodic memory for
continual learning. Advances in neural information processing systems 30 (2017).

[36] Michael McCloskey and Neal J Cohen. 1989. Catastrophic interference in con-
nectionist networks: The sequential learning problem. In Psychology of learning
and motivation. Vol. 24. Elsevier, 109–165.

[37] Md Mohaimenuzzaman et al. 2023. Environmental Sound Classification on the
Edge: A Pipeline for DeepAcoustic Networks on Extremely Resource-Constrained
Devices. Pattern Recognition 133 (2023), 109025.

[38] Ali Moin et al. 2021. A wearable biosensing system with in-sensor adaptive
machine learning for hand gesture recognition. Nature Electronics 4, 1 (2021),
54–63.

[39] James O’ Neill. 2020. An overview of neural network compression. arXiv preprint
arXiv:2006.03669 (2020).

[40] AndrewNg,Michael Jordan, and YairWeiss. 2001. On spectral clustering: Analysis
and an algorithm. Advances in neural information processing systems 14 (2001).

[41] Evgeny Osipov et al. 2022. Hyperseed: Unsupervised learning with vector sym-
bolic architectures. IEEE Transactions on Neural Networks and Learning Systems
(2022).

[42] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan
Wermter. 2019. Continual lifelong learning with neural networks: A review.
Neural networks 113 (2019), 54–71.

[43] Adam Paszke et al. 2019. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems 32 (2019).

[44] Karol J Piczak. 2015. ESC: Dataset for environmental sound classification. In
Proceedings of the 23rd ACM international conference on Multimedia. 1015–1018.

[45] Christos Profentzas, Magnus Almgren, and Olaf Landsiedel. 2022. MiniLearn:
On-Device Learning for Low-Power IoT Devices. In International Conference on
Embedded Wireless Systems and Networks.

[46] Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, YeeWhye Teh, and
Raia Hadsell. 2019. Continual unsupervised representation learning. Advances
in neural information processing systems 32 (2019).

[47] Haoyu Ren, Darko Anicic, and Thomas A Runkler. 2021. Tinyol: Tinyml with
online-learning on microcontrollers. In 2021 International Joint Conference on
Neural Networks (IJCNN). IEEE, 1–8.

[48] Olga Russakovsky et al. 2015. Imagenet large scale visual recognition challenge.
International journal of computer vision 115 (2015), 211–252.

[49] Andrei A Rusu et al. 2016. Progressive neural networks. arXiv preprint
arXiv:1606.04671 (2016).

[50] Swapnil Sayan Saha et al. 2023. TinyNS: Platform-Aware Neurosymbolic Auto
Tiny Machine Learning. ACM Transactions on Embedded Computing Systems
(2023).

[51] Mark Sandler et al. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[52] Yang Shen, Sanjoy Dasgupta, and Saket Navlakha. 2021. Algorithmic insights on
continual learning from fruit flies. arXiv preprint arXiv:2107.07617 (2021).

[53] Shun Shunhou and Yang Peng. 2022. AIoT on Cloud. In Digital Transformation
in Cloud Computing. CRC Press, 629–732.

[54] James Smith et al. 2021. Unsupervised Progressive Learning and the STAM
Architecture. In Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI-21. 2979–2987.

[55] Ke Sun, Chen Chen, and Xinyu Zhang. 2020. " Alexa, stop spying on me!" speech
privacy protection against voice assistants. In Proceedings of the 18th conference
on Embedded Networked Sensor Systems. 298–311.

[56] Anthony Thomas, Sanjoy Dasgupta, and Tajana Rosing. 2021. A theoretical
perspective on hyperdimensional computing. Journal of Artificial Intelligence
Research 72 (2021), 215–249.

[57] Matteo Tiezzi et al. 2022. Stochastic Coherence Over Attention Trajectory For
Continuous Learning In Video Streams. In Proceedings of the Thirty-First Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-22. 3480–3486.

[58] Rishabh Tiwari et al. 2022. Gcr: Gradient coreset based replay buffer selection
for continual learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 99–108.

[59] Ulrike Von Luxburg. 2007. A tutorial on spectral clustering. Statistics and
computing 17 (2007), 395–416.

[60] ErweiWang et al. 2019. Deep neural network approximation for custom hardware:
Where we’ve been, where we’re going. ACM Computing Surveys (CSUR) 52, 2
(2019), 1–39.

[61] QipengWang et al. 2022. Melon: Breaking the memory wall for resource-efficient
on-device machine learning. In Proceedings of the 20th Annual International
Conference on Mobile Systems, Applications and Services. 450–463.

[62] Gary M Weiss et al. 2016. Smartwatch-based activity recognition: A machine
learning approach. In 2016 IEEE-EMBS International Conference on Biomedical
and Health Informatics (BHI). IEEE, 426–429.

[63] Junyuan Xie, Ross Girshick, and Ali Farhadi. 2016. Unsupervised deep embedding
for clustering analysis. In International Conference on Machine Learning. PMLR,
478–487.

[64] Daliang Xu et al. 2022. Mandheling: Mixed-precision on-device dnn training
with dsp offloading. In Proceedings of the 28th Annual International Conference on
Mobile Computing And Networking. 214–227.

[65] Weihong Xu, Jaeyoung Kang, and Tajana Rosing. 2023. FSL-HD: Accelerating
Few-Shot Learning on ReRAM using Hyperdimensional Computing. In 2023
Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 1–6.

[66] Junting Zhang et al. 2020. Class-incremental learning via deep model consolida-
tion. In Proceedings of the IEEE/CVFWinter Conference on Applications of Computer
Vision. 1131–1140.

[67] Yu Zhang, Tao Gu, and Xi Zhang. 2020. MDLdroidLite: A release-and-inhibit
control approach to resource-efficient deep neural networks on mobile devices.
In Proceedings of the 18th Conference on Embedded Networked Sensor Systems.
463–475.

https://www.hioki.com/en/products/detail/?product_key=5812
https://www.hioki.com/en/products/detail/?product_key=5812

	Abstract
	1 Introduction
	2 Related Work
	3 Background on HDC
	4 Problem Definition
	5 LifeHD
	5.1 LifeHD Overview
	5.2 Novelty Detection
	5.3 Cluster HV Update
	5.4 Cluster HV Merging

	6 Variants of LifeHD
	6.1 LifeHDsemi
	6.2 LifeHDa

	7 Evaluation of LifeHD
	7.1 System Implementation
	7.2 Experimental Setup
	7.3 State-of-the-Art Baselines
	7.4 LifeHD Accuracy
	7.5 Training Latency and Energy
	7.6 Memory Usage
	7.7 Ablation Studies
	7.8 Sensitivity Analysis

	8 Evaluation of LifeHDsemi and LifeHDa
	9 Discussions and Future Works
	10 Conclusion
	Acknowledgments
	References

