Intelligence Beyond the Edge in IoT

Xiaofan Yu
University of California, San Diego
Supervisor: Tajana Šimunić Rosing

PhD Forum
IPSN 2023
Edge Computing is Growing Exponentially!

- The global edge computing market size is expected to expand at a compound annual growth rate (CAGR) of 37.9% from 2023 to 2030\(^1\)

Motivating Problem: Deploying Intelligence for Environmental Monitoring

- Enabling ML training pervasively in IoT applications is an active research area, which calls for sophisticated designs on single device level, sensor network level, and large-scale deployment level.
Enabling ML training pervasively in IoT applications is an active research area, which calls for sophisticated designs on single device level, sensor network level, and large-scale deployment level.
Roadmap to Intelligence in IoT

- Enabling ML training pervasively in IoT applications is an active research area, which calls for sophisticated designs on single device level, sensor network level, and large-scale deployment level.

Heterogeneous, unstable networks
Enabling ML training pervasively in IoT applications is an active research area, which calls for sophisticated designs on single device level, sensor network level, and large-scale deployment level.
My PhD research targets at contributing a **full stack** of technologies in all three levels, for enabling pervasive intelligence deployments in IoT.
Online Unsupervised Lifelong Learning

Catastrophic Forgetting [McCloskey 1989]

- **Goal:** After deployment, train an ML model on the device

Day 1
- **Prediction:** apple

Day 2-99
- **Prediction:** banana

Day 100
- **Prediction:** ?
Catastrophic Forgetting and Lifelong Learning

- Lifelong learning (or continual learning)
 - To continually learn over time by acquiring new knowledge as well as consolidating past experiences
 - Key assumption: continuously changing environments
 - Key challenge:
 - Knowledge interference in NNs
 - Limited memory storage
 - Previous works rely on prior knowledge (e.g., task boundary) to produce good results

Prediction: ?
SCALE: Self-Supervised Contrastive Learning

- We focus on the online, unsupervised lifelong learning problem without prior knowledge.
- We propose SCALE to extract and memorize knowledge in an online and unsupervised manner.

Inspired by contrastive learning, SCALE enhances the similarity of samples in a pseudo-positive set.

SCALE uses a self-supervised forgetting loss to retain pairwise similarity (as knowledge).

SCALE employs a uniform online memory update strategy.
Experimental Results

- **Datasets:** CIFAR-10, CIFAR-100, TinyImageNet
- **Data streams:** Four different sequential streams
- **Metric:** kNN accuracy on the learned representations
- **Key baselines:** STAM [IJCAI 2021], CaSSLe [CVPR 2022], LUMP [ICLR 2021]
- **SCALE** outperforms the best state-of-the-art algorithm on all settings with improvements of up to 6.43%, 5.23%, 5.86% kNN accuracy on CIFAR-10, CIFAR-100 and TinyImageNet
Efficient Federated Learning in Heterogeneous IoT Networks

1. X. Yu et al, “Async-HFL: Efficient and Robust Asynchronous Federated Learning in Hierarchical IoT Networks”, IoTDI’23
2. Q. Zhao, X. Yu, T. Rosing, “Attentive Multimodal Learning on Sensor Data using Hyperdimensional Computing”, Poster@IPSN’23
Motivation: Uniqueness of Hierarchical IoT Networks

- Heterogeneous data distribution
- Hierarchical network organization (e.g., mesh networks)
- Heterogeneous system capabilities
 - Computation + Communication
 - Unexpected stragglers (e.g., device or link failures)

Sync Federated Learning (e.g., FedAvg [1]) ends up with significant slow down!!

Our Contributions: Async-HFL

- Async-HFL is designed around three components to balance the data, system & network perspectives along with reacting timely to stragglers:

1. Async + hierarchical FL algorithm
2. Gateway-level device selection
3. Cloud-level device-gateway association

The managing framework of Async-HFL
Experimental Results

- We evaluate Async-HFL on a physical deployment and large-scale simulations
 - **Physical deployment**: 20 Raspberry Pi (RPi) 4 and 20 CPUs
 - **Large-scale simulations**: NYCMesh topology and ns-3 as network simulator
 - **Datasets**: MNIST, FashionMNIST, CIFAR-10, Shakespeare, HAR, HPWREN
- In physical deployment, Async-HFL achieves faster and more robust convergence
- In simulations, Async-HFL converges at least \(1.08-1.31\times\) faster in wall-clock time than state-of-the-art asynchronous FL algorithms
Works Planned Ahead

Real-world sensor network deployment in the wilderness
Large-Scale Deployment

- High Performance Wireless Research and Education Network (HPWREN) is an environmental monitoring cyberinfrastructure for research, education and public safety realms
 - Wireless connectivity covers 20K sq. mile area in San Diego, Riverside and Imperial counties
 - Numerous sensors with live feeds

- We plan to deploy a sub-sensor network in HPWREN, which provides
 - A real in-place deployment in noisy wild areas
 - An evaluation platform for on-device lifelong, federated and multimodal learning methods
Works Planned Ahead

How to train under resource constraints w/o performance loss?
Revisit: General Intelligence in Complex and Dynamic Environments

How do you navigate in an unfamiliar place?

Computer:
- Segment Everything, ChatGPT, etc
- Tons of resources and million of dollars!!

Human:
- 1X
- 1X
- OR
- 1X
- ~20W brain or 100W whole body
Brain-Inspired HD Computing

Dense sensory input is mapped to high-dimensional sparse representation on which brain operates [Babadi and Sompolinsky 2014]

Benefits of HD computing:
- Easy-to-parallelize and hardware-friendly operations
- Fast single-pass training
- Energy-efficient & robust to noise

Question: Can we utilize these benefits to design lightweight on-device lifelong learning algorithm?
Conclusion

- Enabling ML training pervasively in IoT applications is an active research area, which calls for sophisticated designs on single device level, sensor network level, and large-scale deployments level.

- My PhD research targets at contributing a full stack of technologies in all three levels.
Acknowledgements

- I am fortunate to work with multiple faculties and industrial collaborators
 - Prof. Tajana Šimunić Rosing (UCSD)
 - Dr. Ludmila Cherkasova (Arm Research)
 - Prof. Sicun Gao (UCSD)
 - Prof. Arya Mazumdar (UCSD)
 - Prof. Yunhui Guo (UT Dallas)

- I would like to acknowledge the contributions from the undergrad/MS students
 - Emily Ekaireb
 - Quanling Zhao
 - Shengfan Hu