Async-HFL: Efficient and Robust Asynchronous Federated Learning in Hierarchical IoT Networks

Xiaofan Yu¹, Ludmila Cherkasova², Harsh Vardhan¹, Quanling Zhao¹, Emily Ekaireb¹, Xiyuan Zhang¹, Arya Mazumdar¹, Tajana Šimunić Rosing¹

> ¹ University of California San Diego ² Arm Research

> > IoTDI 2023

see

UC San Diego Halicioğlu data science institute

System Energy Efficiency Lab seelab.ucsd.edu

Federated Learning (FL)

 Federated Learning is a machine learning technique that trains a model across multiple distributed edge devices without exchanging local data samples

Environmental Monitoring Sensor Networks Next-word Prediction on Mobile Phones

Personal Healthcare Monitoring

System Energy Efficiency Lab Figure source: Li, Tian, et al. "Federated learning: Challenges, methods, and future directions." *IEEE Signal Processing Magazine* 37.3 (2020): 50-60.

Federated Averaging (FedAvg) [1]

System Energy Efficiency Lab [1] McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial Intelligence and Statistics. PMLR, 2017.

4

Federated Averaging (FedAvg) [1]

Cloud Server

System Energy Efficiency Lab [1] McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." *Artificial Intelligence and Statistics*. PMLR, 2017.

o see

5

Federated Averaging (FedAvg) [1]

Sync Federated Learning (e.g., FedAvg) may end up with significant slow down in IoT networks!!

System Energy Efficiency Lab [1] McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial seelab.ucsd.edu

Motivating Example: Federated Learning in NYCMesh see

- NYCMesh [2] is a wireless mesh network in New York City, which mimics the future large-scale network backbone in smart cities
- Potential Federated Learning applications in NYCMesh:
 - Traffic monitoring
 - Noise monitoring
 - Video surveillance

Saratoga

System Energy Efficiency Lab [2] NYCMesh. https://www.nycmesh.net/. seelab.ucsd.edu

WTC

1316 60 AP

Total

65 Hub

1185

Non-hub

3

SN

Motivation: Unique Challenges of Hierarchical IoT Networks

- Heterogeneous data distribution
- Hierarchical network organization (e.g., mesh networks)
- Heterogeneous system capabilities
 Computation + Communication
- Unexpected stragglers (e.g., device or link failures)

Unique challenges of FL in Hierarchical IoT Networks!

System Energy Efficiency Lab seelab.ucsd.edu

Previous Works

- Sync FL: based on FedAvg
 - Client selection: DivFL [ICLR'21], Oort [OSDI'21], PyramidFL [MobiCom'22]
 - (-) Significant delays in largely varied networks
- Async and semi-async FL
 - TrisaFed [IoT-J'22], FedBuff [AISTATS'22]
 - (-) Convergence challenges
- Hierarchical FL
 - Sync aggregation at gateway and cloud: SHARE [ICDCS'21]
 - Sync aggregation at gateway and async aggregation at cloud: RFL-HA [INFOCOM'21]
 - (-) Suffer from stragglers

Async-HFL is the *first* end-to-end framework that addresses all challenges in a hierarchical and unreliable IoT networks!

see

Our Contributions: Async-HFL

 Async-HFL is designed around three components to balance the data, system & network perspectives along with reacting timely to stragglers:

The managing framework of Async-HFL

System Energy Efficiency Lab seelab.ucsd.edu

Theoretical Contribution: Convergence Analysis of Async-HFL

- Asynchronous aggregation at both the gateway and cloud inspired from FedAsync [3]
 - Two techniques are used to ensure convergence

- Convergence analysis:
 - <u>Assume:</u> L-smoothness, μ -weak convexity, bounded gradients, bounded delay, sufficient regularization ρ

System Energy Efficiency Lab seelab.ucsd.edu [3] Xie, Cong, Sanmi Koyejo, and Indranil Gupta. "Asynchronous federated optimization." *arXiv preprint arXiv:1903.03934* (2019).

 $\nabla g^j, j \neq$

Gradient Diversity ${\cal V}_i$

Modeling Data and System Heterogeneities

 Data Heterogeneity: we define a *learning utility* metric for each client based on the direction of compressed gradients

System Heterogeneity:

- The computational and communication latencies on edge devices
- The feasible sensor-gateway connections at time *t* to account real-time link/device failures
- Bandwidth limitation on sensor-gateway links

Gradient Diversity:

clients' gradients

Dissimilarity between

12

Framework Management:

Device Selection and Device-Gateway Association

- Gateway-level device selection and cloud-level device-gateway association <u>collaboratively</u> optimize <u>practical</u> convergence
 - Gateway-level device selection:
 - Real-time selection of devices to trigger local training
 - Balance *learning utility* and round latency
 - Cloud-level device-gateway association
 - Long-term network topology
 - Balance *learning utility* and throughput distribution under bandwidth limitation

Both problems are formulated as Integer Linear Program and solved by the Gurobi solver.

System Energy Efficiency Lab seelab.ucsd.edu

Experimental Setup

seelab.ucsd.edu

- We validate Async-HFL on a large-scale simulation and a physical deployment
 - Large-scale simulation: Simulation setup of NYCMesh in ns3-fl [4]
 - **Physical deployment:** 20 RPis and 20 CPUs
 - Implementation is based on FedML [5]

[4] Ekaireb, Emily, et al. "ns3-fl: Simulating Federated Learning with ns-3", WNS3, 2022. [5] He, Chaoyang, et al. "Fedml: A research library and benchmark for federated machine learning." arXiv preprint System Energy Efficiency Lab arXiv:2007.13518 (2020).

Experimental Setup (Cont.)

• Baselines:

- **Sync:** random, TiFL [HPDC'20], DivFL [ICLR'21], Oort [OSDI'21]
- Hybrid: RFL-HA [INFOCOM'21]
- **Async:** random, high loss-first [SPAWC'21]
- **Metric:** The wall-clock convergence time to reach close-to-optimal accuracy
- Sync Hybrid Async Sync Async Async (((Q))) (((Q))) (((Q))) 000 1111 000 Sync Sync Async ((•)) ((•)) ((•))

• Datasets and models:

Dataset	Models	Data Partition
MNIST, FashionMNIST	CNN	Synthetic
CIFAR-10	ResNet-18	Synthetic
Shakespeare, HPWREN	LSTM	Natural
HAR	MLP	Natural

Large-Scale Simulation Results

		Sync baselines	Semi-async baselines	RFL-HA	Async baselines
Convergence speedup of Async-HFL (over baselines)	MNIST	27.13x	6.2x	32.5x	1.11x
	FashionMNIST	20.5x	8.3x	36.7x	1.08x
	CIFAR-10	44.3x	2.3x	12.3x	1.09x
	Shakespeare	0.31x	0.59x	0.71x	1.19x
	HAR	10.3x	2.7x	10.3x	1.31x
	HPWREN	19.5x	2.4x	19.5x	1.11x

 Async-HFL converges 1.08-1.31x faster in wall-clock time, and saves up to 21.6% regarding total communication costs compared to state-of-the-art async FL algorithm (with client selection) on all datasets

System Energy Efficiency Lab seelab.ucsd.edu

Physical Deployment Results

Figure 8: Convergence results under wall-clock time on the physical deployment.

- Async-HFL ends up with **higher accuracies on all datasets** than the state-of-the-art asynchronous baseline at similar time
- Our physical deployment presents largely heterogeneous round latencies and potential stragglers due to unexpected failures

Conclusion

- Existing FL designs suffer from significant delays and unexpected stragglers when considering hierarchical and unreliable IoT networks
- Async-HFL involves theoretical convergence analysis and practical framework design
 - Async-HFL conducts asynchronous aggregations at both the gateway and cloud
 - Async-HFL incorporates gateway-level device selection and cloud-level device-gateway association to enhance practical convergence
- Async-HFL converges 1.08-1.31x faster in wall-clock time, and saves saves up to 21.6% regarding total communication costs compared to state-of-the-art async FL algorithm (with client selection) on all datasets
- Code is available at https://github.com/Orienfish/Async-HFL

System Energy Efficiency Lab seelab.ucsd.edu

References

- Chai, Zheng, et al. "Tifl: A tier-based federated learning system." HPDC 2020.
- Balakrishnan, Ravikumar, et al. "Diverse client selection for federated learning via submodular maximization." ICLR 2021.
- Lai, Fan, et al. "Oort: Efficient Federated Learning via Guided Participant Selection." OSDI 2021.
- Wang, Zhiyuan, et al. "Resource-efficient federated learning with hierarchical aggregation in edge computing." IEEE INFOCOM 2021
- Hu, Chung-Hsuan, Zheng Chen, and Erik G. Larsson. "Device Scheduling and Update Aggregation Policies for Asynchronous Federated Learning." IEEE SPAWC 2021.
- Deng, Yongheng, et al. "SHARE: Shaping data distribution at edge for communication-efficient hierarchical federated learning." IEEE ICDCS 2021.
- Nguyen, John, et al. "Federated learning with buffered asynchronous aggregation." AISTATS PMLR, 2022.
- You, Linlin, et al. "A triple-step asynchronous federated learning mechanism for client activation, interaction optimization, and aggregation enhancement." *IEEE Internet of Things Journal 2022.*
- Li, Chenning, et al. "PyramidFL: A fine-grained client selection framework for efficient federated learning." *MobiCom* 2022.

seelab.ucsd.edu

see

Motivating Study: Federated Learning in NYCMesh

- We simulation FL in NYCMesh [2] using ns3-fl [3]
 - We extract the latitude, longitude and rooftop height of nodes, then feed the locations to the HybridBuildingPropagationLossModel
 - We add log-normal delay to simulate long-tail latency distribution in real deployments [4]

184 edge devices, 6 gateways, 1 server

- Major takeaways from the motivating study
 - Async-HFL vs. sync, semi-async and RFL-HA baselines: the three-tier Async-HFL achieves much faster convergence

seelab.ucsd.edu

Time (Hour) [3] Ekaireb, Emily, et al. "ns3-fl: Simulating Federated Learning with ns-3", WNS3, 2022. [4] Sui, Kaixin, et al. "Characterizing and Improving Wi-Fi Latency Large-Scale Operational Networks", MobiSys, 2016 20

Framework Management (Cont.): Device Selection and Device-Gateway Association

Gateway-Level Device Selection

Input: averaged round latency per link τ_{ij} latest compressed gradients per device ∇g^i **Intermediate:** learning utility u_i **Output:** device for next gateway round d_i

(Device Selection at *j*) max
$$\sum_{\mathbf{I}_{t,ij}=1} d_i u_i (1/\tau_{ij})^{\kappa}$$
 (10a)
Bandwidth
limitation
s.t. $d_i R_{ij} \leq B_j$, $\forall i \in \{i | \mathbf{I}_{t,ij} = 1\}$ (10b)
 $d_i \in \{0, 1\}$ $\forall i \in \{i | \mathbf{I}_{t,ij} = 1\}$ (10c)

Cloud-Level Device-Gateway Association **Input:** τ_{ij} , ∇g^i , feasible connections J_t **Output:** device-gateway association I_t (Association at cloud) max $u_{slack} - \phi R_{slack}$ (11a) Uniformly $\sum \mathbf{I}_{t,ij} \ u_i \geq u_{slack}, \quad \forall j \in \mathcal{G}$ (11b) distributed learning utility $\sum_{i=1}^{\infty} \mathbf{I}_{t,ij} \ R_{ij}/B_j \le R_{slack}, \quad \forall j \in \mathcal{G}$ (11c)and bandwidth $\mathbf{I}_{t,ij} \leq \mathbf{J}_{t,ij}, \quad \forall i \in \mathcal{N}, j \in \mathcal{G}$ (11d) Feasible and $\sum_{i=1}^{n} \mathbf{I}_{t,ij} \le 1, \quad \forall i \in \mathcal{N}$ valid connection (11e) $\mathbf{I}_{t,ij} \in \{0,1\}, \quad \forall i \in \mathcal{N}$ (11f)

System Energ Both problems are formulated as Integer Linear Program and solved by the Gurobi solver. seelab.ucsd.edu

see

Large-Scale Simulation Results

Table 6: Convergence speedup on large-scale simulations and various datasets. Bolded numbers reflect the best baseline result on each dataset.

Dataset	Convergence time speedup of Async-HFL with respect to baselines							
	Async-HL	Async-Random	Semi-async	RFL-HA	Sync-Oort	Sync-TiFL	Sync-DivFL	Sync-Random
MNIST	1.11x	1.27x	6.2x	32.5x	40.0x	27.13x	63.4x	67.3x
FashionMNIST	1.08x	1.49x	8.3x	36.7x	20.5x	32.8x	73.4x	96.8x
CIFAR-10	1.09x	1.40x	2.3x	12.3x	44.3x	59.0x	62.0x	61.7x
Shakespeare	1.19x	1.79x	0.59x	0.71x	0.31x	2.39x	5.87x	5.46x
HAR	1.31x	1.22x	2.7x	7.4x	10.3x	21.6x	22.5x	24.1x
HPWREN	1.11x	1.48x	2.4x	12.8x	19.5x	26.5x	27.7x	31.4x

- Async-HFL achieves significantly faster wall-clock time convergence than the sync and hybrid FL algorithms (with client selection) on most datasets
- Async-HFL converges 1.08-1.31x faster in wall-clock time, and saves saves up to 21.6% regarding total communication costs compared to state-of-the-art async FL algorithm (with client selection) on all datasets

Ablation Studies

• *Question:* How does each of gateway-level device selection and cloud-level device-gateway association contribute to the convergence speedup separately?

- We evaluate (i) pure random selections, (ii) only device selection, (iii) only device-gatewayassociation, (iv) the full Async-HFL on all datasets
- Device selection dominates on MNIST and HAR, device-gateway association dominates on Shakespeare, while both modules contribute collaboratively on HPWREN