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Abstract—As a lightweight and robust brain-inspired comput-
ing paradigm, Hyperdimensional Computing (HDC) serves as a
promising solution for the next-generation edge AI. However,
the basic form of HDC is vulnerable to privacy leaks and
cyber attacks. In this paper, we breifly review and discuss the
recent contributions to privacy and security of HDC. We first
summarize existing HDC designs to protect against privacy leaks,
such as differential privacy. Next, we review the data encryption
techniques for collaborative learning using HDC based on Multi-
Party Computation and Homomorphic Encryption. Finally, we
discuss the HDC-based designs for combating cyber attacks in
a malicious environment. More research on private and secure
HDC-based methods are needed for future large-scale edge
deployment.

Index Terms—Privacy, Security, Hyperdimensional Computing

I. INTRODUCTION

With the recent development of Machine Learning (ML),
more powerful and energy efficient hardware, Artificial In-
telligence (AI) at the edge and beyond is getting more so-
phisticated. For example, Federated Learning trains the ML
model on each local device and only exchanges the updated
model (but not the local dataset) with the cloud [1]. In contrast
to sending all the data to the cloud for training, on-device
learning enables faster decision-making, saves communication
costs, and restricts the user-specific data to the edge device.
Preserving local data makes edge AI an appealing paradigm.
However, multiple challenges remain unsolved, especially (1)
how to train efficiently under the limited resources at the
edge, (2) how to rigorously prevent privacy leaks and ensure
security under susceptible communication channels and/or
untrustworthy hosts.

Hyperdimensional Computing (HDC) is brain-inspired and
lightweight machine learning paradigm [2]. Raw data samples
are first encoded to high-dimensional (e.g., 10K) vectors, after
which training and inference can be realized by a handfull
of highly parallelizable operations in the high-dimensional
space. The fundamental operations include binding (element-
wise multiplication), bundling (element-wise addition), and
permutation (logical shift). Training is HDC is adding the
hypervectors H from the same class to form the class hy-
pervectors, while inference can be realized by checking the
similarity between the query hypervector Hq and stored class
hypervectors. HDC is a perfect match for AI at the edge

given its lightweight computation, single-pass training and
robustness [3].

In this paper, we review the latest contributions to privacy
and security at the edge using HDC. We first discuss the
recent works to address the privacy leak of HDC (Section II),
then introduce the latest techniques for data encryption be-
tween server and clients using HDC (Section III). Finally,
we introduce the HDC works to deal with cyber attacks in
an adversarial environment (Section IV). Different from Ma
et al. [4] that surveyed the robustness of HDC against cyber
attacks and hardware errors, we mainly focus on the privacy
aspect of HDC. Thriving at efficiency while guaranteeing
privacy and security, we believe the reviewed techniques open
up a promising direction for future research in AI at the edge.

II. HDC AND PRIVACY

HDC is easily exposed to privacy breaches due to the
simple operations and transparent model. Attackers can reverse
engineer the encoding function and access the raw data using
malicious inputs, which is also known as model inversion or
extraction attacks [5]–[7]. We next discuss recent approaches
that have been proposed to combat HDC’s privacy leaks.

Prive-HD [5] focuses on differential privacy. It injects
Gaussian noise to the trained hypervectors. Model pruning and
hypervector quantization are used during single-pass training
and inference to maximize the obfuscation effect of noise.
PRID [6] proposed two iterative techniques using noise injec-
tion and model quantization to protect the HDC model against
model inversion attacks. HDLock [7] incorporated regulated
combination and permutation to HDC encoding, which largely
increases the difficulty for the attackers to extract the base
encoding hypervectors.

III. HDC ON ENCRYPTED DATA

Privacy is one of the key issues when exchanging pri-
vate data with other devices in collaborative learning. Se-
cureHD [8] proposed a collaborative HDC framework that
combines multi-party computation (MPC) with new HDC
encoding/decoding algorithms. It uses MPC to generate a
global key on a trustworthy server and various private keys
on untrustworthy clients and servers. The client employs extra
encoding (permutation) according to the private keys while
the untrustworthy servers use their private keys, each for a
client, to align the permuted hypervectors. While ensuring



some security and efficiency, SecureHD is only applicable to
HDC computation using hypervectors and does not fully guard
against data leaks.

Fully Homomorphic Encryption (FHE) is a public-key en-
cryption scheme that allows fully secure and arbitrary compu-
tation on encrypted data without decryption, so only the edge
device has the access to its data. Any computation beyond
the edge device is performed in fully encrypted domain.
However, due to the complexity of conventional machine
learning models, existing FHE implementations of ML are
extremely slow, especially when it comes to training [9],
[10]. FHE-HD [11] is the first end-to-end implementation
of HDC using CKKS-based fully homomorphic encryption.
It uses novel data packing and non-linear function support.
FHE-HD is up to 5.8× faster during training while maintaining
comparable accuracy to the state-of-the-art [12], and more than
1000× faster for inference. Recent works further accelerated
FHE using processing in-memory (PIM) technologies [13],
[14], making it possible to train and learn at the edge at near
real time speeds.

IV. HDC & CYBER ATTACKS

Recent work addresses adversarial [4] and privacy at-
tacks [5], along with IP stealing [7]. Adversarial attacks create
perturbed inputs to confuse a learning model [15]. Poisoning
and evasion attacks happen during training and inference
respectively. PoisonHD [16] proposed an HDC poisoning
attack framework based on confidence-based label-flipping.
As a defense, data sanitization was used to filter suspect
samples. There are various HDC evasion attacks from different
domains: image classification [17]–[19], fault diagnosis [20],
text classification [21], speech recognition [22], and intrusion
detection [23]. Yang and Ren [17] devised a genetic algo-
rithm based adversarial attack. HDXplore [18] and TestHD
[19] utilized distance guided fuzz testing for an automated
adversarial attack. RES-HD [20] proposed black-box transfer
attacks for intelligent fault diagnosis. Moraliyage et al. [21]
used widely-used text adversarial frameworks, e.g., TextFooler,
for language recognition and text classification. Chen and
Li [22] proposed differential evolution based adversarial at-
tacks. Adversarial-HD [23] introduced a diversity-induced
adversarial attack design framework for intrusion detection
which selects the most effective attack. Adversarial retraining
has been used to defend against evasion attacks which retrains
the HDC model by including adversarial examples [4].

V. CONCLUSION

In this work, we review the HDC techniques for security and
privacy including prevention of privacy leaks, data encryption,
and mitigation against cyber attacks. Due to its simplicity
and robustness, HDC provides unique opportunities to realize
efficient and secure edge AI systems. As security and privacy
become top-priority concerns, this review sets up a reference
for researchers to understand the state-of-the-art and develop
further solutions for edge AI systems.
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