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Abstract—Recent years have witnessed a significant expansion
in Internet-of-Things (IoT) applications, especially in environ-
mental monitoring, which aims at providing full coverage over
potential targets. With energy harvesting ability, sensor devices
can be replenished by external energy sources, and thus their life-
time is prolonged. While existing literature focuses on minimiz-
ing deployment cost, the reliability management is overlooked.
Previous research has addressed that a higher temperature
exponentially accelerates hardware failure rates. The versatile
outdoor environments impose a non-negligible thermal stress on
the hardware and consequently reduce the reliability of devices.
In this paper, we are the first to propose a reliability-driven sensor
deployment approach to achieve minimum nodes, while satisfying
(i) full target coverage, (ii) complete connectivity, (iii) energy-neu-
tral operation, and (iv) reliability constraints. Given external
temperature distribution, we propose an algorithm to convert
reliability constraints to a single-value power threshold for each
location. A Mixed Integer Linear Programming (MILP) model is
formulated and solved with CPLEX. Due to the complex nature
of MILP, we propose a heuristic, named Reliability-driven Two-
Stage Heuristic (R-TSH), to approximate the optimal solution for
large-scale problems. Extensive simulations are performed on a
real-world dataset from the National Solar Radiation Database.
Our results indicate that R-TSH meets all reliability constraints
with only 20% more sensors than the optimal solution, while
executing more than 1500x faster. Compared to state-of-the-art
heuristics, R-TSH avoids 20 - 80% of reliability violations with
a comparable number of nodes and execution time.

Index Terms—IoT Networks, Sensor Deployment, Reliability.

I. INTRODUCTION

The rise of ubiquitous computing and Internet-of-Things
(I0T) network has encouraged numerous environmental moni-
toring applications, e.g., Smart City [[1]], Smart Agriculture [2].
According to Ericsson’s report, around 1.5 billion IoT devices
with cellular connections will be spread over the globe in
2022 [3]. A common goal of these applications is to fully
cover point-of-interests (Pols) or areas with sensor networks,
while achieving less cost or longer lifetime under careful
management [4], [S[]. Energy harvesting techniques can further
extend the lifetime of devices. With rechargeable batteries,
refilled by external sources such as solar radiation, sensor
devices ideally may obtain infinite lifetime if their energy
consumption is less than the harvested energy. This usage
mode is called energy-neutral operation [0].

Device placement, being the first step in establishing the IoT
network design, makes a significant impact on the IoT network
reliability and its lifespan. Common management techniques
such as resource allocation, load balancing, and flow manage-

ment can improve the Quality-of-Service and lifetime of an
established network [[7], [8]], but device placement decisions set
the upper bound on such improvements. Using optimization to
determine the node placement appears as a common method in
designing the traditional content delivery networks [9], where
the goal is to carefully place replica servers to minimize ser-
vice latency. In contrast, sensor placement for ubiquitous IoT
networks is different since versatile environmental conditions
such as temperature and solar radiation need to be considered.

Existing works in energy-harvesting sensor networks de-
ployment have studied minimizing deployment cost after en-
suring: (i) coverage (i.e., all Pols are covered), (ii) connectivity
(i.e., all devices are directly or indirectly connected to the gate-
way), and (iii) energy-neutral operation [[10], [11]. However,
the reliability factors are overlooked in the previous work.
Even with infinite energy income, both storage and computing
subsystems degrade over time and ultimately require repairing
or complete replacement. State-of-the-art electronics aging
models revealed that the failure rates of hardware systems
depend exponentially on temperature [12]. More concretely,
the mean-time-to-failure (MTTF, i.e., the expected time to
failure) of a device is exponentially shortened under high
temperatures. The capacity and power output of batteries also
degrade exponentially faster in hot environments, whose aging
status is described by the State of Health (SoH) [13]]. Starting
from SoH = 1, a battery reaches its end of life when SoH
decreases to 0.8 regardless of the remaining charge [14]. If
not managed carefully, the expenditure on maintenance can
take up to 80% of the total deployment cost. As reported by
Cisco [15], $3.2M/year will be spent in administrative labor
and technical support due to system failures for every 100K
devices. Reliability will become the major bottleneck in the
future IoT deployment, especially for outdoor environmental
monitoring under extreme temperatures.

In this paper, we study the methods to manage the reliability
of an energy-harvesting sensor network from the very first step
of deployment. The contributions are four-fold:

« We are the first to attack the problem of reliability-driven
energy-harvesting sensor deployment for environmental
monitoring. We integrate the state-of-the-art reliability
models of electronics and battery state-of-health, both of
which exponentially rely on temperature.

o We formulate an optimization problem minimizing the
number of nodes, while achieving (i) full coverage on



Pols, (ii) complete connectivity, (iii) energy-neutral opB. Reliability-Driven Network Deployment

eration, and (iv) reliability constraints. The formulated Reliability has become increasinaly important for lar
problem is a Mixed Integer Linear Program (MILP), cliabliity has become increasingly important for large-

which is solved by CPLEX. We proved that the proposef 20 £ 2y Y o o st
problem is NP-complete. ) '

We offer a greedy heuristic named Reliability-driver'fngy to improve reliability is duplicating network service on

Tio-Stage Hewrsie (R-TSH) in search of suboptimdie TV, %0 1 lleney featoments are e ever
solutions in large-scale problems. ! )

Extensive simulations are conducted based on péesent more uncertainties on device- and communication-

real-world solar irradiance and ambient temperatu} vel, previous works applied similar ideas of placing redun-
dataset from the National Solar Radiation Databa gnt nodes to enhance the fault tolerance of the network. Extra

(NSRDB) [16]. Our results show that R-TSH meets anwoqles can be placed to achiekeoverage(i.e., any point
reliability constraints with 20% more sensors than th%f interest (Pol) needs to be covered by at ldastensors),

optimal solution while executing more than 1500x fasteYVhiCh ensures reliable sensing since failures of less than
Compared with previous heuristics, R-TSH avoids 20 riodes will not hinder a successful detection|[19]. A similar

80% of reliability violations with a comparable numbeﬁ'g?;?necit'vgﬁgﬁitrg:gt (;?é\,/vzngl cS:rTSOl;alfa;\etgglrﬁaiatglgzvzjleta
of nodes and execution time. P 9 Y 9

The rest of the paper is organized as follows: Secfion ansmission when unexpected link failures occur [22]. All the

. . . bove-mentioned contributions are able to temporarily mitigate
summarizes rela_tt_ed literature. Seq Il introduces thg b.ac[ e negative in uence on network functionality upon failures.
ground of reliability models used in the paper. The optimiza- However. very few existing papers offer the models of fail-
tion problem is formulated and solved in Secfiof IV. Sedien | e %veghah;/s,mys/cxdi)t(ilor:sga?]dpaddress how to reventi\I/eI
explicitly describes the design of R-TSH. Evaluation setup ald P Y

; - - duce the failure rates. On this track, the most recent work by
results are discussed in Sectjon VI. Finally, the whole pap ; ’
concludes in Sectiof WIl. u et al. [23] studied temperature-based sensor deployment for

the minimal maintenance cost considering single-use battery
Il. RELATED WORK depletion and electronics failures. A non-convex nonlinear
A. Sensor Deployment in Wireless Sensor Networks optimization problem is formulated and approximated with
Existing literature on sensor deployment mainly Optimizégetaheunsncs. Simulation resu'lts demonstrated that their strat-
coverage|[1]7], connectivity [18], and network lifetinie [19]. Irf9Y can save up to 40% of maintenance cost compared to ex-
terms of coverage, application requirements can be categorizXf'9 greedy heuristics. Although concrete failure mechanisms
into area coverage, target coverage, and barrier coverage f§§ modeled, their methodology is not applicable to energy-
The optimization goal is designing a network with minimu arvesting sensor networks where rechargeable baFterles are
deployment cost or longest lifetime while satisfying the coldS€d- In this paper, we approach the problem differently
erage and connectivity requiremenits [4]. To nd the optimdl©M [23] by assuming the following:
solution, grid placement is transformed into integer program- We consider more commonly-applied grid deployment for
ming models and solved with conventional solvers. However, target coverage rather than continuous-space monitoring.
NP-hardness of integer programming problems results in poor We introduce electronics MTTF and battery SoH con-
scalability, and therefore encourages the development of ef- straints, the latter of which focus on rechargeable batteries

cient heuristics to approximate the optimum within nite instead of the single-use ones.
time [17], [18], [20]. All the above-mentioned works assume
single-use batteries, so the network lifetime is limited. I1l. BACKGROUND ON RELIABILITY

In recent years, renewable energy has opened up novel
possibilities in sensor deployment. With energy harvesting, aReliability of a system is a probability functidR(t) de ned
sensor node can operate perpetually if placed at a locatimm[0; 1 ] that the system will not fail until time [12]. It is
with suf cient energy input. Yanget al. [10] is the rst to highly related to the failure rate of a system, which shows a
formulate a sensor placement problem for achieving enerdyathtub curve as a function of time [24]. While failure rates
neutral operation with the goal of covering xed targets anth the initial burn-in and nal wear-out periods of a system
ensuring connectivity to the gateway. Along with bringinghange rapidly, we focus on the useful lifetime of systems
out a Mixed Integer Linear Programming (MILP) problemduring which the failure rates are constant. Failures in sensor
the authors proposed two greedy heuristics that require 208tworks can be categorized into link failures, software fail-
and 10% more sensors than MILP in the simulation. Thees, and hardware failures [25]. We recognize that both link
later work by Zhuet al. [11] considers the placement ofand software failures can be recovered or avoided if designed
directional energy-harvesting sensors for target coverage. Thgperly. For example, a software issue can be resolved by
also consider solar panel size at each site as variables whiglilating rmware remotely. In this paper, we mainly consider
determine the energy-harvesting rate. Three heuristics we@ermanent hardware failures which require signi cant mainte-
offered, along with the corresponding analyses on time comance effort including device repair or complete replacement.
plexity and performance bound. Nevertheless, neithefr df [18peci cally, we use state-of-the-art reliability models for two
or [11] considered reliability, which causes striking differencdeey components of sensor networks: electronics and battery,
in versatile outdoor environments. stressing the impact of ambient temperature.



A. Electronics Reliability Model TABLE I: List of important notations in problem formulation.

Previous research has studied common electronics failureSymbol ~ Meaning

mechanisms including time-dependent dielectric breakdown, N gg: g; ggidm'oocﬁtr']‘t)grzsts
negative bias temperature instability, electromigration, and g Feasibl% sensing radius
thermal cycling, all of which are accelerated exponentially c, Feasible communication radius
by the core temperature [12], [26]. We use the tecore K Required coverage level
. . G Quantity of data in each sample
temperatureto refer to the internal temperature of a chip. The maximum possible ow amount
The MTTF for each mechanism can be modeled as a function Uniform sampling frequency
of time, voltage, temperature, and technological parameters. C‘?W gognng]::rllcgius?gntéinggmhen 1id locatidnand
In [24], the authors showed that the MTTF of all above- ™. = gor' ot eighbor nodes of nodeand the gateway
mentioned mechanisms share a similar form depending on x; Binary variable of whether a device is placedi at
the core temperatur&. We extract this general expression & i\'/’;ﬁr‘gggagsvbgeug;t‘i'g‘?gfnﬁ ?Osjegsn‘ar s micgegt:\}vay
H H ij . liB
to estimate MTTF as the ratio to the standard case under p''5.  average transmission and reception power
Tref =25°C: Pi Average power consumption rate at ndde
E E PsoH:i Power upper bound to meet SoH lower bound at
P i Power upper bound to meet MTTF lower bound at
MTTF (Tc) = exp( r_; ):eXp(kTa )i (1) R?ITTF'I Energy r?e?rvesting rate at node
¢ ref Tamb:i Ambient temperature at node
whereE, is the activation energ is Boltzmann's constant. el ﬁ;’;‘gﬁ%’l %’ﬂ:gﬁg‘g;ﬁgﬁ:;t
According to the thermal dissipation model in [2T}, Ii_nearly Tf;'f Reference temperature of 25 °C
depends on average power consump®omnf the device and Time  Elapsed time for reliability evaluation

ambient temperaturé;mp at the deployed location:

Te = KiP + KoTamp + Ka: (2) we list the important symbols used in our formulation in
. ) . Table I. Assuming at most one device can be placed at

wherek;; ko andks are device-speci c parameters obtained, yrig point and only one gateway exists, the optimization
by tting into experimental traces. problem minimizes the number of deployed nodes subject to

B. Battery Reliability Model the following constraints:

In contrast to the state-of-charge model that predicts the K -coverage Each .P.OI is covered by at |east sensors.
available charge in a battery, we utilize the state-of-health Complete connectivityAll generated data can be success-
model denoting a battery's aging level in comparison to its fully routed to the gateway. .
brand new state. Even though a battery can be recharged Energy-neutral opera}tlonAt each deployed site, the
by harvested energy, it suffers from capacity and power fade energy consumption is '?SS ki haryested energy.
which eventually makes the battery unusable. The operational Re“ab'.“ty. constraints Using the mogjels in Section III,
lifetime of a battery is de ned as the time when SoH reduces th_e re“‘?b'“ty of (_aach deployed device afte_r a predeter-
from 1 to 0:8 [14]. It is widely recognized that battery aging mmgd time QUratloﬂ'lme Is greater than a gllven bound.
consists of calendar aging and cycle aging [28]. While calendar! he binary variables of the problem ate(Equation 4) and
aging is exponentially accelerated by time, temperature, afid(Equation 5). Whilex; suggests whether a device is placed
state-of-charge stresses, cycle aging additionally accounts §docationi, s; further indicates whether the device performs
the degradation due to the depth of discharge (DoD) f¢NSing actionsx; ands; enable the problem to distinguish
each charge-discharge cycle. We use the state-of-the-art séflgy nodes (i.e., nodes that only route data) and sensor nodes
empirical SoH model in [14] for Lithium-lon batteries. Since(i-€., nodes that carry out both sensing and transmission). The
our goal is to optimize long-term state-of-health, we mainlgontinuous variables arg; andfig while representing the
focus on calendar aging with time and temperature stresse§W quantity from nodei toj and from node to the gateway

- respectively.
f
SOH(t; Tcen) =exp  kitexp krTer 1 Tre : _ 1 if adevice is placed ait

cel 3) XiT 0 otherwise “)
Heret is the elapsed timeT.e is the internal battery cell 1 if a sensor is placed at
temperature and e is the reference temperature of 25 °C. Si= 0 otherwise (5)

ki andkr are predetermined constants. Similar to estimating - . _ _
core temperature, we employ the thermal model in [27] to To help the readers get familiar with the notations, we depict
convert ambient temperatufigm, to battery cell temperature an example deployment in Figure 1. Each grid point is viewed

Teen With different linear coef cients. as a candidate site. The red triangles represent deployed sensor
nodes X; = 1;s; = 1) whose sensing radius is shown by
IV. OPTIMAL PROBLEM FORMULATION the red circle. Both Pols (green diamonds) are successfully

In this section, we explain the formulation of the optimatovered by the deployed sensors with lekek 1. Differently,
sensor deployment problem and how to solve it. We considie blue dots denote for pure relay nodas € 1;s; = 0)
deploying sensor nodes into a grid candidate spicdo that only route data. All nodes are connected to the gateway
cover a set of Pols denoted 9. For ease of reading, (orange star).



S; denotes for the feasible sensing radid§;j ) reports the
Euclidean distance betweer2 N andj 2 O. Adopting the
K-coverageconcept [19], a full coverage in our formulation
means each t:;\(rget is supervised by as |Kastensors:

si covi;j) K 8 20 9)
i2N
Connectivity Constraint: We assume the feasible com-
munication range of each device to bg,. Then the
neighbor set ; of grid nodei is dened as | =
Fig. 1: An example deployment instance. fj 2N jdj <C,;j 6 ig, whered; denotes the Euclidean
distance between grid locatiomsandj. Similarly, g repre-
) _sents the set of neighbor nodes of the gateway. The connec-
Now we rigorously formulate the problem as MILP withjyity constraints require: (i) ow conservation, i.e., the sum
the following mathematical form: of the outgoing ow should equal to the sum of the incoming
min X ” ©6) ow and generated data (if any) at each node (Equation 7b),
: (i) complete connectivity, i.e., all data generated from end

12N devices converge into the gateway (Equation 7c).
subject to Energy-Neutral Operation Constraint: To achieve
X o ) energy-neutral operation at each deployed spot, we require the
si cofi;j) K; 8 20 (7a) average power of the device is less than or equal to the har-
i2N X X vesting rate. The power of an energy-harvesting sensor node
s G + fi = fij +fig; 8i2N (7b) can be classied into ambient power (e.g. dissipated power
i2 i2 during the sleep state), sensing power, and communication
X _ X power [29]. We assume the system is woken up once in a
. fig = ' s G (7c) sampling intervall¢yce , performs the sensing task, transmits
12 e 12N the packet, and is set to sleep again before the next cycle. We
Sj‘( Xi; 8i2N (7d)  utilize the following equation to model the average power of
fi Xi; 82N (7e) @ device at grid locatio:
12 N Pz Pot SE. + Py +p. (0
" , i— Fo iLs tx \Yij ) 5 rx
Pi=Po+sEs + Ptx(di,-)BierxBf‘—\;v ;82N 2 BW BW
12 wherePy is a constant denoting the ambient power dissipation.
(79 Es is the energy consumed per sensing task ardl =Teycle
Pi minfRi;Pson;i ;PutTri 9; 81 2N (79) is the sampling frequency. Thuss stands for the average
xj 2f0:1g;s; 2f0;1g; 8 2 N (7h) power in sensing. Witls;, sensing power is only counted when
0 f . 82N 2N:i6j (7i) a sensor is placed at The last term in the bracket is the

average transmission and reception power models from [30].

Equation 7a is thé-coverageconstraint. Equation 7b and 7cWe apply a simpli ed version here using typical parameters
impose the connectivity requirements. Speci cally, Equatiofor BPSK. The transmission power varies polynomially to the
7b requires the sum of generated data and incoming owdistance:Py (d) = po + kK d , wherepyo;k; and are
to be equal to the total quantity of outgoing ows. Equatioprede ned constants. On the other hand, the average reception
7c guarantees all sensed data are converged at the gatewawer P is congured as a xed value. The continuous
Equation 7d and 7e are feasibility constraints. The formeariablesf; andfig denote for the average amount of ow
equation states a sensor can only be placed at the site wHepsn nodei to nodej and from nodei to the gateway
a device exists, while the latter one claims no ow can paggspectivelyBW is the bandwidth of the link.
through nodei if no device is located there. = G jNj The average energy harvesting r&eat grid locationi can
is de ned as the maximum possible ow quantity in thebe determined by the average solar irradiance lev§\W/m?)
network. Equation 7f illustrates the linear power model, aft¢tl]: R = A ;, where is the end-to-end conversion
which Equation 7g ensures that energy-neutral operation afcciency of the solar systemA is the surface area of the
reliability constraints are achieved at each site. Last but reglar panel. Both andA are constants in our formulation;
least, Equation 7h and 7i give the lower and upper limits fd$ available from online databases such as NSRDB [16]. Now
all variables. We concretize and explain each constraint in thwe are able to write the energy-neutral operation constraint at
following lines. i as:

Coverage Constraint We employ the fundamental binary Pi R (11)

coverage model as follows [4]: Reliability Constraints: With the models in Section Ill, we

o1 ifd(i;j)<Sy; are able to estimate the reliability given ambient temperature
coMiil)= 5 otherwise (8) and average power. Suppose the reliability status is evaluated



on the average power of the device at locationSpecif-
ically, given ambient temperature distributioB[SoH] and
E[MTTF ] are monotones decreasingrn. Therefore we are
able to reversely determine the corresponding upper bounds on
average power to meet the reliability lower bounds. In this way,
the nonlinear reliability constraints can be expressed as linear
inequalities with previous linear power models. We employ the
binary search algorithm to ef ciently estimate the power upper
bound brought by SoH and MTTF constraints (i.Bgon:i
and Pyrrri ) within a precision of'. Taking Pson:i as an
example, the complete procedure to convert reliability bounds
to power bounds is written in Algorithm 1. Initiating the two
ends of search space@andPn.x , Algorithm 1 takes at most
Fig. 2: The cumulative distribution of ambient temperalog(d°m=—e) iterations to locate the desired power bound.
ture in one year at 10 equally-distributed locations in a Since both the energy-neutral operation and reliability con-
100 km 100 km eld in Southern California, US. The data isstraints are expressed as power upper bounds, they can be
downloaded from NSRDB [16]. Each colored curve represerg@mbined into one single inequality as in Equation 7g:
the temperature distribution over time at one of the locations. P, minfRi:Psomi :Purrei (14)

after a predetermined time duratidime. Our goal is to de- Algorithm 1 Converting State-of-Health Bound to Power
cide a sensor deployment strategy such that certain reliabilgyyng

bounds can be met aft@rime at each deployed location Input: SoHrer ; Tambii :

However, two issues are remaining unsolved. Output: PSoH'i, n
Firstly, the ambient temperaturg,n, changes over both 1P, O Pub’ Prax

time and space (Figure 2). Depending on the location, tems. | hila P;b Py, >" do

perature can spread mostly in 10 - 40 °C (purple line) or in,. Pmd (P + Pi)=2

0 - 30 °C region (red line). Consequently, at a xed location, ,. UpdateE [SoH (Pmiq )] as in Equation 12a

the SoH and MTTF can vary largely on the time horizon due;. E[SOH(Pmid )] = SOHrer then

to ambient temperature variations. We address this issue Ry return P

taking an integral over the temperature distribution on the, 5o if E [SOH(Pmig )] > SOH e then

time axis. The expectation SoH andMTTF at a specic 4. Pb Pma . continue searching in higher-power

locationi can be calculated as in Equation 12, wheyg,,. is

- : : Tamoi > zone
the probability associated with the temperature distribution af. o5
locationi. Note, that the elapsed time for reliability evaluation, ;. Psw Pma . continue searching in lower-power
is xed to Time and therefore is omitted from the variables. zone
Z, 11 end if
E[SOH(P)]=  SOH(Tceni (Tambii ;Pi))Prony; dTamoi 120 €nd while
1 . + —
, (12a) 13: return (P + Pyp)=2
1
EMTTF (Pi)] = MTTF (Tei (Tambi 3 Pi))PToms;  dTambi )
1 (12b) A. Problem Analysis

The number of decision variables in the formulated MILP

In practice, we c_an_approx_imate Eq_uation 12 by _spIittin 2iNj + jNj2, where2jNj of them are binary and the rest
the temperature distribution into suf ciently many bins an Nj2 variables are continuous. After the simpli cation, we

summing over all bin_s. Now the relia_bility constraints can bg, & o atjNj+1 equality constraints angN j + jOj inequality
written as guaranteeing the expectation O.f SoH and MTTF i@qiraints. We implement and solve the proposed problem in
be greater than or equal to the predetermined boGw s CPLEX 12.10 [31]. However, by demonstrating the following

andMTTF rer : theorem , we show that the proposed problem cannot be solved
E[SOH(TceII;i (Tamb;i ;Pi ))] SOHref (13a) In polynomlal time.
EMTTF (Tei (Tambi ;Pi))] MTTF (13b) Theorem 1. The proposed problem is NP-complete.

The second issue is the nonlinearity of reliability modelBroof. By settingG = 0;Py = 0;Es = 0;Px = Py =
(Equation 1 and 3) which puts us in the complexities d¥;K =1, the original problem transforms to covering a given
solving a nonlinear optimization problerts there a method set of targets with minimum number of grid points, which is
to transform the nonlinear reliability constraints to linearexactly the minimum set cover problem. Since the minimum
inequalities?To solve this issue, note that after the integradet cover problem has been proved to be NP-complete [32],
in Equation 12, the expectations of SoH and MTTF only relthe proposed problem is also NP-complete.



V. PROPOSEDHEURISTIC: R-TSH Algorlthm 2 Reliability-driven TWO-Stage Heuristic (R'TSH)

Given our optimization problem is NP-complete, we de- Input: N;O;K;P pq;
vise a greedy heuristic for large-scale problems. Based orPutput: X;S;F
the Two-State Heuristic (TSH) proposed in [11], we furtherl: S ?

include the reliability factors, leading to an algorithm named2: U f 1,2;:::;jOjg . Pols not fully covered
Reliability-driven Two-Stage Heuristic (R-TSH). The original 3: ¢ K; 812 N . unsatis ed coverage requirements
TSH has two stages in sequence. The rst stage greedily: While U§ ? do

selects sensor nodes to achieve full coverage with minimurh: S j2ucoMi;j); 812N . Pols covered by
cost. Afterwards, the second stage concurrently nds thes: i argmaxfj S;\ Uj Ppgi ji 2N Sg

shortest communication path from each selected sensor to thie if jS; \ Uj= ? then

gateway. While R-TSH also employs the two-stage mechas: break . NO new coverage

nism, its optimization mechanism is quite different. Contraryo: ~ end if
to TSH that attempts to minimize the deployment cost, R0:  for all k 2jS; \ Uj do

TSH makes selections based on the equivalent power boutid &k & 1
Poai = min fRi; Pson:i ;PuTTRi O at each sitei. In this 12 if g¢ Othen
way, R-TSH guarantees both the energy-neutral operation atfi U U f kg
reliability targets with greedy choices. 14: end if

Algorithm 2 shows the detailed implementation of R-TSH15:  end for
The rst sensor selection stage spans from line 1 to line 206: S S[fi g
Here we greedily select the sensor locations with the maximuti: end while
bene t: 18: if U 6 ? then
Benefitj = jSi\ Uj Ppg; (15) 19: return Null . infeasible in full coverage

. 20: end if
where S; denotes the set of Pols covered by locatioand ,,.\y N

U represents the Pols that have not been fully covered. The £ ¢ (:])ji:j 2N:i 6] 2 ig

benet function favors the locations contributing more to 3 W(iij) 11[i2 S]+! (Pu (dj )+ Pr ) G=BW 1 8(i] ) 2

coverage while loose in power bounds. The selecting loop exits’ E ' 1 "2 Pyg;  (PotEs [i2S]) ' O\

once the full K-coverage is attained, or no new coverage can be . =,

made. The latter case indicates that the problem is infeasib?e; gonstruct (tj||rect§dtr?rapﬁP§V,tE,V¥h)§ f S 1o th
In the communication-path selection stage, we construct’a otncurre.n GyP na eDs'kotr els Fl’a ith rom 0 the

directed graph by including all connectable edges and assi%n (S:](a efwe}y_ Iin2 = using Dikstras aigorithm.

the following weight to edgg(i;j ) with tuned parameters 27j return §('S'Fg

;1o

1N

. . (P (dij ) + Py ) G=BW
W (i; ! 2 8]+ ! - 16 o . . .
(i3) g ] 2Pbd;i (Po+ Es [129)]) (16) distribution to the candidate grid space. The positions of

. . . .. Pols and the gateway are randomly initialized. We set the
Here the notatiorfCond] gives 1 when the inner condition gliability boundsSoHyer = MTTF e = 0:9 and elapsed

Condis met. The rst term appends additional cost to the edi Time = 3 rs. Table Il reports the detailed parameter
if i is not added in stage 1. The second term computes the rati te}ngs €= 3 years. fable Tl reports [he detalied paramete

of increased transmission power and remaining power budgsé . )
Intuitively, the communication paths costing less transmission he pe.rformancg of the fgllowmg methods are evaluated:
power and less critical in energy bounds as well as reliability OPT: The.opumal solution to the proposed problem.

constraints are given higher priorities. All selected sensor ©OPTnorel : The optimal solution to the proposed problem

nodes and relay nodes are returnedin without reliability constraints.
R-TSH: Our proposed heuristic.
VI. EVALUATION We select two baselines from [11], TSH, and SRIGH to
A. Experimental Setup compare. Both TSH and SRIGH are devised to cover Pols

We implement our problem and heuristic in MATLABWith m_inimum deployment cost while ensuring energy-neutral
R20204, while the MILP is solved by CPLEX 12.10 [31]. OPeration.
Simulation experiments are performed on a Linux desktop TSH: The original two-stage heuristic in [11].
with Intel Core i7-8700 CPU at 3.2 GHz and 16 GB RAM.  SRIGH: Sensing- and routing- integrated greedy heuristic
We use a dataset covering 100 km 100 km region in in [11]. SRIGH greedily selects a sensing node and its
Southern California, US, downloaded from NSRDB [16]. communication route within each iteration.
The dataset contains half-hourly solar irradiance and ambieEpt
temperature measurements of 836 locations from January 1, . o
2019, to January 1, 2020. To simulate deploying sensors ontdt) Small-Scale Problem Simulatiorfirst, we evaluate the

various sizes of elds, we project the spatial temperatuferformance of all methods on a small-scale problem. We cre-
ate a grid space of 1000 m 1000 m and set the desired cover-

1The source code is available at https://github.com/Orien sh/EH-deploy.age level toK = 1. The number of candidate grid sitesli80
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