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Abstract—Recent years have witnessed a significant expansion
in Internet-of-Things (IoT) applications, especially in environ-
mental monitoring, which aims at providing full coverage over
potential targets. With energy harvesting ability, sensor devices
can be replenished by external energy sources, and thus their life-
time is prolonged. While existing literature focuses on minimiz-
ing deployment cost, the reliability management is overlooked.
Previous research has addressed that a higher temperature
exponentially accelerates hardware failure rates. The versatile
outdoor environments impose a non-negligible thermal stress on
the hardware and consequently reduce the reliability of devices.
In this paper, we are the first to propose a reliability-driven sensor
deployment approach to achieve minimum nodes, while satisfying
(i) full target coverage, (ii) complete connectivity, (iii) energy-neu-
tral operation, and (iv) reliability constraints. Given external
temperature distribution, we propose an algorithm to convert
reliability constraints to a single-value power threshold for each
location. A Mixed Integer Linear Programming (MILP) model is
formulated and solved with CPLEX. Due to the complex nature
of MILP, we propose a heuristic, named Reliability-driven Two-
Stage Heuristic (R-TSH), to approximate the optimal solution for
large-scale problems. Extensive simulations are performed on a
real-world dataset from the National Solar Radiation Database.
Our results indicate that R-TSH meets all reliability constraints
with only 20% more sensors than the optimal solution, while
executing more than 1500x faster. Compared to state-of-the-art
heuristics, R-TSH avoids 20 - 80% of reliability violations with
a comparable number of nodes and execution time.

Index Terms—IoT Networks, Sensor Deployment, Reliability.

I. INTRODUCTION

The rise of ubiquitous computing and Internet-of-Things
(IoT) network has encouraged numerous environmental moni-
toring applications, e.g., Smart City [1], Smart Agriculture [2].
According to Ericsson’s report, around 1.5 billion IoT devices
with cellular connections will be spread over the globe in
2022 [3]. A common goal of these applications is to fully
cover point-of-interests (PoIs) or areas with sensor networks,
while achieving less cost or longer lifetime under careful
management [4], [5]. Energy harvesting techniques can further
extend the lifetime of devices. With rechargeable batteries,
refilled by external sources such as solar radiation, sensor
devices ideally may obtain infinite lifetime if their energy
consumption is less than the harvested energy. This usage
mode is called energy-neutral operation [6].

Device placement, being the first step in establishing the IoT
network design, makes a significant impact on the IoT network
reliability and its lifespan. Common management techniques
such as resource allocation, load balancing, and flow manage-

ment can improve the Quality-of-Service and lifetime of an
established network [7], [8], but device placement decisions set
the upper bound on such improvements. Using optimization to
determine the node placement appears as a common method in
designing the traditional content delivery networks [9], where
the goal is to carefully place replica servers to minimize ser-
vice latency. In contrast, sensor placement for ubiquitous IoT
networks is different since versatile environmental conditions
such as temperature and solar radiation need to be considered.

Existing works in energy-harvesting sensor networks de-
ployment have studied minimizing deployment cost after en-
suring: (i) coverage (i.e., all PoIs are covered), (ii) connectivity
(i.e., all devices are directly or indirectly connected to the gate-
way), and (iii) energy-neutral operation [10], [11]. However,
the reliability factors are overlooked in the previous work.
Even with infinite energy income, both storage and computing
subsystems degrade over time and ultimately require repairing
or complete replacement. State-of-the-art electronics aging
models revealed that the failure rates of hardware systems
depend exponentially on temperature [12]. More concretely,
the mean-time-to-failure (MTTF, i.e., the expected time to
failure) of a device is exponentially shortened under high
temperatures. The capacity and power output of batteries also
degrade exponentially faster in hot environments, whose aging
status is described by the State of Health (SoH) [13]. Starting
from SoH = 1, a battery reaches its end of life when SoH
decreases to 0.8 regardless of the remaining charge [14]. If
not managed carefully, the expenditure on maintenance can
take up to 80% of the total deployment cost. As reported by
Cisco [15], $3.2M/year will be spent in administrative labor
and technical support due to system failures for every 100K
devices. Reliability will become the major bottleneck in the
future IoT deployment, especially for outdoor environmental
monitoring under extreme temperatures.

In this paper, we study the methods to manage the reliability
of an energy-harvesting sensor network from the very first step
of deployment. The contributions are four-fold:

• We are the first to attack the problem of reliability-driven
energy-harvesting sensor deployment for environmental
monitoring. We integrate the state-of-the-art reliability
models of electronics and battery state-of-health, both of
which exponentially rely on temperature.

• We formulate an optimization problem minimizing the
number of nodes, while achieving (i) full coverage on



PoIs, (ii) complete connectivity, (iii) energy-neutral op-
eration, and (iv) reliability constraints. The formulated
problem is a Mixed Integer Linear Program (MILP),
which is solved by CPLEX. We proved that the proposed
problem is NP-complete.

� We offer a greedy heuristic named Reliability-driven
Two-Stage Heuristic (R-TSH) in search of suboptimal
solutions in large-scale problems.

� Extensive simulations are conducted based on a
real-world solar irradiance and ambient temperature
dataset from the National Solar Radiation Database
(NSRDB) [16]. Our results show that R-TSH meets all
reliability constraints with 20% more sensors than the
optimal solution while executing more than 1500x faster.
Compared with previous heuristics, R-TSH avoids 20 -
80% of reliability violations with a comparable number
of nodes and execution time.

The rest of the paper is organized as follows: Section II
summarizes related literature. Section III introduces the back-
ground of reliability models used in the paper. The optimiza-
tion problem is formulated and solved in Section IV. Section V
explicitly describes the design of R-TSH. Evaluation setup and
results are discussed in Section VI. Finally, the whole paper
concludes in Section VII.

II. RELATED WORK

A. Sensor Deployment in Wireless Sensor Networks
Existing literature on sensor deployment mainly optimizes

coverage [17], connectivity [18], and network lifetime [19]. In
terms of coverage, application requirements can be categorized
into area coverage, target coverage, and barrier coverage [5].
The optimization goal is designing a network with minimum
deployment cost or longest lifetime while satisfying the cov-
erage and connectivity requirements [4]. To �nd the optimal
solution, grid placement is transformed into integer program-
ming models and solved with conventional solvers. However,
NP-hardness of integer programming problems results in poor
scalability, and therefore encourages the development of ef-
�cient heuristics to approximate the optimum within �nite
time [17], [18], [20]. All the above-mentioned works assume
single-use batteries, so the network lifetime is limited.

In recent years, renewable energy has opened up novel
possibilities in sensor deployment. With energy harvesting, a
sensor node can operate perpetually if placed at a location
with suf�cient energy input. Yanget al. [10] is the �rst to
formulate a sensor placement problem for achieving energy-
neutral operation with the goal of covering �xed targets and
ensuring connectivity to the gateway. Along with bringing
out a Mixed Integer Linear Programming (MILP) problem,
the authors proposed two greedy heuristics that require 20%
and 10% more sensors than MILP in the simulation. The
later work by Zhu et al. [11] considers the placement of
directional energy-harvesting sensors for target coverage. They
also consider solar panel size at each site as variables which
determine the energy-harvesting rate. Three heuristics were
offered, along with the corresponding analyses on time com-
plexity and performance bound. Nevertheless, neither of [10]
or [11] considered reliability, which causes striking differences
in versatile outdoor environments.

B. Reliability-Driven Network Deployment

Reliability has become increasingly important for large-
scale networks that may introduce enormous maintenance
costs. For traditional data-center networks, the common strat-
egy to improve reliability is duplicating network service on
replica servers, so that latency requirements are met even
if some servers are down [9], [21]. While sensor networks
present more uncertainties on device- and communication-
level, previous works applied similar ideas of placing redun-
dant nodes to enhance the fault tolerance of the network. Extra
nodes can be placed to achievek-coverage(i.e., any point
of interest (PoI) needs to be covered by at leastk sensors),
which ensures reliable sensing since failures of less thank
nodes will not hinder a successful detection [19]. A similar
m-connectivityconstraint (i.e., any sensor is required to have
m distinct paths to the gateway) can guarantee reliable data
transmission when unexpected link failures occur [22]. All the
above-mentioned contributions are able to temporarily mitigate
the negative in�uence on network functionality upon failures.

However, very few existing papers offer the models of fail-
ure mechanisms/conditions and address how to preventively
reduce the failure rates. On this track, the most recent work by
Yu et al. [23] studied temperature-based sensor deployment for
the minimal maintenance cost considering single-use battery
depletion and electronics failures. A non-convex nonlinear
optimization problem is formulated and approximated with
metaheuristics. Simulation results demonstrated that their strat-
egy can save up to 40% of maintenance cost compared to ex-
isting greedy heuristics. Although concrete failure mechanisms
are modeled, their methodology is not applicable to energy-
harvesting sensor networks where rechargeable batteries are
used. In this paper, we approach the problem differently
from [23] by assuming the following:

� We consider more commonly-applied grid deployment for
target coverage rather than continuous-space monitoring.

� We introduce electronics MTTF and battery SoH con-
straints, the latter of which focus on rechargeable batteries
instead of the single-use ones.

III. B ACKGROUND ON RELIABILITY

Reliability of a system is a probability functionR(t) de�ned
on [0; 1 ] that the system will not fail until timet [12]. It is
highly related to the failure rate of a system, which shows a
bathtub curve as a function of time [24]. While failure rates
in the initial burn-in and �nal wear-out periods of a system
change rapidly, we focus on the useful lifetime of systems
during which the failure rates are constant. Failures in sensor
networks can be categorized into link failures, software fail-
ures, and hardware failures [25]. We recognize that both link
and software failures can be recovered or avoided if designed
properly. For example, a software issue can be resolved by
updating �rmware remotely. In this paper, we mainly consider
permanent hardware failures which require signi�cant mainte-
nance effort including device repair or complete replacement.
Speci�cally, we use state-of-the-art reliability models for two
key components of sensor networks: electronics and battery,
stressing the impact of ambient temperature.



A. Electronics Reliability Model

Previous research has studied common electronics failure
mechanisms including time-dependent dielectric breakdown,
negative bias temperature instability, electromigration, and
thermal cycling, all of which are accelerated exponentially
by the core temperature [12], [26]. We use the termcore
temperatureto refer to the internal temperature of a chip.
The MTTF for each mechanism can be modeled as a function
of time, voltage, temperature, and technological parameters.
In [24], the authors showed that the MTTF of all above-
mentioned mechanisms share a similar form depending on
the core temperatureTc. We extract this general expression
to estimate MTTF as the ratio to the standard case under
Tref = 25°C:

MTTF (Tc) = exp(
Ea

kTc
)=exp(

Ea

kTref
); (1)

whereEa is the activation energy,k is Boltzmann's constant.
According to the thermal dissipation model in [27],Tc linearly
depends on average power consumptionP of the device and
ambient temperatureTamb at the deployed location:

Tc = k1P + k2Tamb + k3: (2)

where k1; k2 and k3 are device-speci�c parameters obtained
by �tting into experimental traces.

B. Battery Reliability Model

In contrast to the state-of-charge model that predicts the
available charge in a battery, we utilize the state-of-health
model denoting a battery's aging level in comparison to its
brand new state. Even though a battery can be recharged
by harvested energy, it suffers from capacity and power fade
which eventually makes the battery unusable. The operational
lifetime of a battery is de�ned as the time when SoH reduces
from 1 to 0:8 [14]. It is widely recognized that battery aging
consists of calendar aging and cycle aging [28]. While calendar
aging is exponentially accelerated by time, temperature, and
state-of-charge stresses, cycle aging additionally accounts for
the degradation due to the depth of discharge (DoD) in
each charge-discharge cycle. We use the state-of-the-art semi-
empirical SoH model in [14] for Lithium-Ion batteries. Since
our goal is to optimize long-term state-of-health, we mainly
focus on calendar aging with time and temperature stresses:

SoH(t; Tcell ) = exp
�

� kt t exp
�
kT Tref

�
1 �

Tref

Tcell

���
:

(3)
Here t is the elapsed time.Tcell is the internal battery cell
temperature andTref is the reference temperature of 25 °C.
kt andkT are predetermined constants. Similar to estimating
core temperature, we employ the thermal model in [27] to
convert ambient temperatureTamb to battery cell temperature
Tcell with different linear coef�cients.

IV. OPTIMAL PROBLEM FORMULATION

In this section, we explain the formulation of the optimal
sensor deployment problem and how to solve it. We consider
deploying sensor nodes into a grid candidate spaceN to
cover a set of PoIs denoted byO. For ease of reading,

TABLE I: List of important notations in problem formulation.

Symbol Meaning
N Set of grid locations
O Set of point-of-interests
Sr Feasible sensing radius
Cr Feasible communication radius
K Required coverage level
G Quantity of data in each sample
 The maximum possible �ow amount
� Uniform sampling frequency
BW Communication bandwidth
dij Euclidean distance between grid locationsi and j
� i ; � B Set of neighbor nodes of nodei and the gateway
x i Binary variable of whether a device is placed ati
si Binary variable of whether a sensor is placed ati
f ij ; f iB Average �ow quantity fromi to j and to the gateway
Ptx ; Prx Average transmission and reception power
Pi Average power consumption rate at nodei
PSoH;i Power upper bound to meet SoH lower bound ati
PMT T F;i Power upper bound to meet MTTF lower bound ati
R i Energy harvesting rate at nodei
Tamb;i Ambient temperature at nodei
Tcell;i Battery cell temperature ati
Tc;i Internal core temperature ati
Tref Reference temperature of 25 °C
T ime Elapsed time for reliability evaluation

we list the important symbols used in our formulation in
Table I. Assuming at most one device can be placed at
a grid point and only one gateway exists, the optimization
problem minimizes the number of deployed nodes subject to
the following constraints:

� K -coverage. Each PoI is covered by at leastK sensors.
� Complete connectivity. All generated data can be success-

fully routed to the gateway.
� Energy-neutral operation. At each deployed site, the

energy consumption is less than the harvested energy.
� Reliability constraints. Using the models in Section III,

the reliability of each deployed device after a predeter-
mined time durationT ime is greater than a given bound.

The binary variables of the problem arex i (Equation 4) and
si (Equation 5). Whilex i suggests whether a device is placed
at locationi , si further indicates whether the device performs
sensing actions.x i and si enable the problem to distinguish
relay nodes (i.e., nodes that only route data) and sensor nodes
(i.e., nodes that carry out both sensing and transmission). The
continuous variables aref ij and f iB while representing the
�ow quantity from nodei to j and from nodei to the gateway
respectively.

x i =
�

1 if a device is placed ati
0 otherwise: (4)

si =
�

1 if a sensor is placed ati
0 otherwise: (5)

To help the readers get familiar with the notations, we depict
an example deployment in Figure 1. Each grid point is viewed
as a candidate site. The red triangles represent deployed sensor
nodes (x i = 1 ; si = 1 ) whose sensing radius is shown by
the red circle. Both PoIs (green diamonds) are successfully
covered by the deployed sensors with levelK = 1 . Differently,
the blue dots denote for pure relay nodes (x i = 1 ; si = 0 )
that only route data. All nodes are connected to the gateway
(orange star).



Fig. 1: An example deployment instance.

Now we rigorously formulate the problem as MILP with
the following mathematical form:

min
X

i 2 N

x i (6)

subject to
X

i 2 N

si � cov(i; j ) � K; 8j 2 O (7a)

si �G +
X

j 2 � i

f ji =
X

j 2 � i

f ij + f iB ; 8i 2 N (7b)

X

i 2 � B

f iB =
X

i 2 N

si �G (7c)

si � x i ; 8i 2 N (7d)
X

j 2 � i

f ij � x i ; 8i 2 N (7e)

Pi = P0 + si Es � +
X

j 2 � i

�
Ptx (dij )

f ij

BW
+ Prx

f ji

BW

�
; 8i 2 N

(7f)
Pi � min f Ri ; PSoH;i ; PMT T F;i g; 8i 2 N (7g)
x i 2 f 0; 1g; si 2 f 0; 1g; 8i 2 N (7h)
0 � f ij � ; 8i 2 N; j 2 N; i 6= j (7i)

Equation 7a is theK-coverageconstraint. Equation 7b and 7c
impose the connectivity requirements. Speci�cally, Equation
7b requires the sum of generated data and incoming �ows
to be equal to the total quantity of outgoing �ows. Equation
7c guarantees all sensed data are converged at the gateway.
Equation 7d and 7e are feasibility constraints. The former
equation states a sensor can only be placed at the site where
a device exists, while the latter one claims no �ow can pass
through nodei if no device is located there. = �G jN j
is de�ned as the maximum possible �ow quantity in the
network. Equation 7f illustrates the linear power model, after
which Equation 7g ensures that energy-neutral operation and
reliability constraints are achieved at each site. Last but not
least, Equation 7h and 7i give the lower and upper limits for
all variables. We concretize and explain each constraint in the
following lines.

Coverage Constraint: We employ the fundamental binary
coverage model as follows [4]:

cov(i; j ) =
�

1 if d(i; j ) < S r ;
0 otherwise: (8)

Sr denotes for the feasible sensing radius.d(i; j ) reports the
Euclidean distance betweeni 2 N and j 2 O. Adopting the
K-coverageconcept [19], a full coverage in our formulation
means each target is supervised by as leastK sensors:

X

i 2 N

si � cov(i; j ) � K 8j 2 O (9)

Connectivity Constraint: We assume the feasible com-
munication range of each device to beCr . Then the
neighbor set � i of grid node i is de�ned as � i =
f j 2 N j dij < C r ; j 6= ig, where dij denotes the Euclidean
distance between grid locationsi and j . Similarly, � B repre-
sents the set of neighbor nodes of the gateway. The connec-
tivity constraints require: (i) �ow conservation, i.e., the sum
of the outgoing �ow should equal to the sum of the incoming
�ow and generated data (if any) at each node (Equation 7b),
(ii) complete connectivity, i.e., all data generated from end
devices converge into the gateway (Equation 7c).

Energy-Neutral Operation Constraint: To achieve
energy-neutral operation at each deployed spot, we require the
average power of the device is less than or equal to the har-
vesting rate. The power of an energy-harvesting sensor node
can be classi�ed into ambient power (e.g. dissipated power
during the sleep state), sensing power, and communication
power [29]. We assume the system is woken up once in a
sampling intervalTcycle , performs the sensing task, transmits
the packet, and is set to sleep again before the next cycle. We
utilize the following equation to model the average power of
a device at grid locationi :

Pi = P0 + si Es � +
X

j 2 � i

�
Ptx (dij )

f ij

BW
+ Prx

f ji

BW

�
(10)

whereP0 is a constant denoting the ambient power dissipation.
Es is the energy consumed per sensing task and� = 1=Tcycle
is the sampling frequency. ThusEs � stands for the average
power in sensing. Withsi , sensing power is only counted when
a sensor is placed ati . The last term in the bracket is the
average transmission and reception power models from [30].
We apply a simpli�ed version here using typical parameters
for BPSK. The transmission power varies polynomially to the
distance:Ptx (d) = pto + k � d� , where pto ; k; and � are
prede�ned constants. On the other hand, the average reception
power Prx is con�gured as a �xed value. The continuous
variablesf ij and f iB denote for the average amount of �ow
from node i to node j and from nodei to the gateway
respectively.BW is the bandwidth of the link.

The average energy harvesting rateRi at grid locationi can
be determined by the average solar irradiance level� i (W/m2)
[11]: Ri = �A� i , where � is the end-to-end conversion
ef�ciency of the solar system,A is the surface area of the
solar panel. Both� andA are constants in our formulation.� i
is available from online databases such as NSRDB [16]. Now
we are able to write the energy-neutral operation constraint at
i as:

Pi � Ri (11)

Reliability Constraints : With the models in Section III, we
are able to estimate the reliability given ambient temperature
and average power. Suppose the reliability status is evaluated



Fig. 2: The cumulative distribution of ambient tempera-
ture in one year at 10 equally-distributed locations in a
100 km� 100 km �eld in Southern California, US. The data is
downloaded from NSRDB [16]. Each colored curve represents
the temperature distribution over time at one of the locations.

after a predetermined time durationT ime. Our goal is to de-
cide a sensor deployment strategy such that certain reliability
bounds can be met afterT ime at each deployed locationi .
However, two issues are remaining unsolved.

Firstly, the ambient temperatureTamb changes over both
time and space (Figure 2). Depending on the location, tem-
perature can spread mostly in 10 - 40 °C (purple line) or in
0 - 30 °C region (red line). Consequently, at a �xed location,
the SoH and MTTF can vary largely on the time horizon due
to ambient temperature variations. We address this issue by
taking an integral over the temperature distribution on the
time axis. The expectation ofSoH andMTTF at a speci�c
locationi can be calculated as in Equation 12, wherepTamb;i is
the probability associated with the temperature distribution at
locationi . Note, that the elapsed time for reliability evaluation
is �xed to T ime and therefore is omitted from the variables.

E [SoH(Pi )] =
Z 1

�1
SoH(Tcell;i (Tamb;i ; Pi )) pTamb;i dTamb;i

(12a)

E [MT T F (Pi )] =
Z 1

�1
MT T F (Tc;i (Tamb;i ; Pi )) pTamb;i dTamb;i

(12b)

In practice, we can approximate Equation 12 by splitting
the temperature distribution into suf�ciently many bins and
summing over all bins. Now the reliability constraints can be
written as guaranteeing the expectation of SoH and MTTF to
be greater than or equal to the predetermined boundsSoHref
andMTTF ref :

E [SoH(Tcell;i (Tamb;i ; Pi ))] � SoHref (13a)
E [MTTF (Tc;i (Tamb;i ; Pi ))] � MTTF ref (13b)

The second issue is the nonlinearity of reliability models
(Equation 1 and 3) which puts us in the complexities of
solving a nonlinear optimization problem.Is there a method
to transform the nonlinear reliability constraints to linear
inequalities?To solve this issue, note that after the integral
in Equation 12, the expectations of SoH and MTTF only rely

on the average power of the device at locationi . Specif-
ically, given ambient temperature distribution,E [SoH] and
E [MTTF ] are monotones decreasing inPi . Therefore we are
able to reversely determine the corresponding upper bounds on
average power to meet the reliability lower bounds. In this way,
the nonlinear reliability constraints can be expressed as linear
inequalities with previous linear power models. We employ the
binary search algorithm to ef�ciently estimate the power upper
bound brought by SoH and MTTF constraints (i.e.,PSoH;i
and PMT T F;i ) within a precision of" . Taking PSoH;i as an
example, the complete procedure to convert reliability bounds
to power bounds is written in Algorithm 1. Initiating the two
ends of search space to0 andPmax , Algorithm 1 takes at most
log2(dPmax

" e) iterations to locate the desired power bound.
Since both the energy-neutral operation and reliability con-

straints are expressed as power upper bounds, they can be
combined into one single inequality as in Equation 7g:

Pi � min f Ri ; PSoH;i ; PMT T F;i g (14)

Algorithm 1 Converting State-of-Health Bound to Power
Bound

Input: SoHref ; Tamb;i ; "
Output: PSoH;i

1: Plb  0, Pub  Pmax
2: while Pub � Plb > " do
3: Pmid  (Pub + Plb )=2
4: UpdateE [SoH(Pmid )] as in Equation 12a
5: if E [SoH(Pmid )] = SoHref then
6: return Pmid
7: else if E [SoH(Pmid )] > SoH ref then
8: Plb  Pmid . continue searching in higher-power

zone
9: else

10: Pub  Pmid . continue searching in lower-power
zone

11: end if
12: end while
13: return (Plb + Pub)=2

A. Problem Analysis

The number of decision variables in the formulated MILP
is 2jN j + jN j2, where2jN j of them are binary and the rest
jN j2 variables are continuous. After the simpli�cation, we
arrive atjN j +1 equality constraints and3jN j + jOj inequality
constraints. We implement and solve the proposed problem in
CPLEX 12.10 [31]. However, by demonstrating the following
theorem , we show that the proposed problem cannot be solved
in polynomial time.

Theorem 1. The proposed problem is NP-complete.

Proof. By setting G = 0 ; P0 = 0 ; Es = 0 ; Ptx = Prx =
0; K = 1 , the original problem transforms to covering a given
set of targets with minimum number of grid points, which is
exactly the minimum set cover problem. Since the minimum
set cover problem has been proved to be NP-complete [32],
the proposed problem is also NP-complete.



V. PROPOSEDHEURISTIC: R-TSH

Given our optimization problem is NP-complete, we de-
vise a greedy heuristic for large-scale problems. Based on
the Two-State Heuristic (TSH) proposed in [11], we further
include the reliability factors, leading to an algorithm named
Reliability-driven Two-Stage Heuristic (R-TSH). The original
TSH has two stages in sequence. The �rst stage greedily
selects sensor nodes to achieve full coverage with minimum
cost. Afterwards, the second stage concurrently �nds the
shortest communication path from each selected sensor to the
gateway. While R-TSH also employs the two-stage mecha-
nism, its optimization mechanism is quite different. Contrary
to TSH that attempts to minimize the deployment cost, R-
TSH makes selections based on the equivalent power bound
Pbd;i = min f Ri ; PSoH;i ; PMT T F;i g at each sitei . In this
way, R-TSH guarantees both the energy-neutral operation and
reliability targets with greedy choices.

Algorithm 2 shows the detailed implementation of R-TSH.
The �rst sensor selection stage spans from line 1 to line 20.
Here we greedily select the sensor locations with the maximum
bene�t:

Benef it i = jSi \ Uj � Pbd;i (15)

where Si denotes the set of PoIs covered by locationi and
U represents the PoIs that have not been fully covered. The
bene�t function favors the locations contributing more to
coverage while loose in power bounds. The selecting loop exits
once the full K-coverage is attained, or no new coverage can be
made. The latter case indicates that the problem is infeasible.

In the communication-path selection stage, we construct a
directed graph by including all connectable edges and assign
the following weight to edge(i; j ) with tuned parameters
! 1; ! 2:

W (i; j )  ! 1 [i 2 S] + ! 2
(Ptx (dij ) + Prx )�G=BW
Pbd;i � (P0 + Es � [i 2 S])

(16)

Here the notation[Cond] gives 1 when the inner condition
Condis met. The �rst term appends additional cost to the edge
if i is not added in stage 1. The second term computes the ratio
of increased transmission power and remaining power budget.
Intuitively, the communication paths costing less transmission
power and less critical in energy bounds as well as reliability
constraints are given higher priorities. All selected sensor
nodes and relay nodes are returned inX .

VI. EVALUATION

A. Experimental Setup

We implement our problem and heuristic in MATLAB
R2020a1, while the MILP is solved by CPLEX 12.10 [31].
Simulation experiments are performed on a Linux desktop
with Intel Core i7-8700 CPU at 3.2 GHz and 16 GB RAM.
We use a dataset covering 100 km� 100 km region in
Southern California, US, downloaded from NSRDB [16].
The dataset contains half-hourly solar irradiance and ambient
temperature measurements of 836 locations from January 1,
2019, to January 1, 2020. To simulate deploying sensors onto
various sizes of �elds, we project the spatial temperature

1The source code is available at https://github.com/Orien�sh/EH-deploy.

Algorithm 2 Reliability-driven Two-Stage Heuristic (R-TSH)

Input: N; O; K; P bd;i
Output: X; S; F

1: S  ?
2: U  f 1; 2; :::; jOjg . PoIs not fully covered
3: qi  K; 8i 2 N . unsatis�ed coverage requirements
4: while U 6= ? do
5: Si  

P
j 2 U cov(i; j ); 8i 2 N . PoIs covered byi

6: i �  arg maxfj Si \ Uj � Pbd;i j i 2 N � Sg
7: if jSi � \ Uj = ? then
8: break . no new coverage
9: end if

10: for all k 2 j Si � \ Uj do
11: qk  qk � 1
12: if qk � 0 then
13: U  U � f kg
14: end if
15: end for
16: S  S [ f i � g
17: end while
18: if U 6= ? then
19: return Null . infeasible in full coverage
20: end if
21: V  N
22: E  f (i; j ) j i; j 2 N; i 6= j; j 2 � i g
23: W (i; j )  ! 1 [i 2 S]+ ! 2

(P tx (dij )+ Prx ) �G=BW
Pbd;i � (P0 + E s � [i 2 S]) ; 8(i; j ) 2

E
24: Construct directed graphGP(V; E; W)
25: Concurrently �nd the shortest pathsF from S to the

gateway inGP using Dijkstra's algorithm.
26: X  f i j i 2 F g
27: return X; S; F

distribution to the candidate grid space. The positions of
PoIs and the gateway are randomly initialized. We set the
reliability boundsSoHref = MTTF ref = 0 :9 and elapsed
time T ime = 3 years. Table II reports the detailed parameter
settings.

The performance of the following methods are evaluated:
� OPT: The optimal solution to the proposed problem.
� OPTnoRel : The optimal solution to the proposed problem

without reliability constraints.
� R-TSH: Our proposed heuristic.
We select two baselines from [11], TSH, and SRIGH to

compare. Both TSH and SRIGH are devised to cover PoIs
with minimum deployment cost while ensuring energy-neutral
operation.

� TSH: The original two-stage heuristic in [11].
� SRIGH: Sensing- and routing- integrated greedy heuristic

in [11]. SRIGH greedily selects a sensing node and its
communication route within each iteration.

B. Results
1) Small-Scale Problem Simulation:First, we evaluate the

performance of all methods on a small-scale problem. We cre-
ate a grid space of 1000 m� 1000 m and set the desired cover-
age level toK = 1 . The number of candidate grid sites is100
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