
KalmanHD: Robust On-Device Time Series
Forecasting with Hyperdimensional Computing

Ivannia Gomez Moreno
CETYS University, Campus Tijuana

ivannia.gomez@cetys.edu.mx

Xiaofan Yu
University of California, San Diego

x1yu@ucsd.edu

Tajana Rosing
University of California, San Diego

tajana@ucsd.edu

Abstract—Time series forecasting is shifting towards Edge
AI, where models are trained and executed on edge devices
instead of in the cloud. However, training forecasting models
at the edge faces two challenges concurrently: (1) dealing with
streaming data containing abundant noise, which can lead to
degradation in model predictions, and (2) coping with limited
on-device resources. Traditional approaches focus on simple
statistical methods like ARIMA or neural networks, which are
either not robust to sensor noise or not efficient for edge
deployment, or both. In this paper, we propose a novel, robust,
and lightweight method named KalmanHD for on-device time
series forecasting using Hyperdimensional Computing (HDC).
KalmanHD integrates Kalman Filter (KF) with HDC, resulting
in a new regression method that combines the robustness of KF
towards sensor noise and the efficiency of HDC. KalmanHD
first encodes the past values into a high-dimensional vector
representation, then applies the Expectation-Maximization (EM)
approach as in KF to iteratively update the model based
on the incoming samples. KalmanHD inherently considers the
variability of each sample and thereby enhances robustness.
We further accelerate KalmanHD by substituting the expensive
matrix multiplication with efficient binary operations between
the covariance and the encoded values. Our results show that
KalmanHD achieves MAE comparable to the state-of-the-art
noise-optimized NN-based methods while running 3.6-8.6x faster
on typical edge platforms. The source code is available at
https://github.com/DarthIV02/KalmanHD

Index Terms—Time-Series Forecasting, Hyperdimensional
Computing, Kalman Filter

I. INTRODUCTION

The widespread applications of the Internet of Things
(IoT) in healthcare [26], transportation [36], and smart cities
[2] highlight its importance in modern society. Sensor time
series data, where observations are recorded sequentially over
time, play a significant role in IoT [34], [6]. Time series
forecasting has gained increased attention in IoT research [32].
It involves predicting future values based on historical data
[34], offering valuable insights for various domains [34] and
enabling resource conservation [12]. Consequently, the need
for timely decision-making next to the source of IoT data
becomes imperative [8], [22]. In contrast to cloud computing,
edge computing brings data processing and analysis closer to
the data source. It allows real-time training and inference to be
performed on edge devices [9]. Forecasting models have in-
creasingly adopted edge computing to enable timely decision-
making, save communication costs, and support operations in
remote areas, thereby facilitating scalability [9], [30].

However, edge devices possess limited computational, stor-
age, and energy resources, making accurate forecasting a
challenge. Additionally, the time series data streams are often
plagued by noise, such as Gaussian noise [28] simulating
sensor disruptions, missing samples [19] due to power issues
or Poisson noise [28] due to electrical disturbances. These
noise factors pose another significant challenge, potentially
reducing forecasting accuracy by up to 30% [35] and impact-
ing performance. Forecasting models must effectively leverage
time series information from multiple edge sensors, as well as
efficiently use on-board resources.

Early research has suggested that statistical models (e.g.,
BHT-ARIMA [27]) and linear approaches (e.g., support vector
regression [3] and random forest [10]) perform well with
limited data. Recently, Neural Networks (NN) and deep
learning models, such as recurring neural networks (RNN)
and long-short-term memory (LSTM) [32], have emerged
as popular approaches for forecasting problems due to their
strong adaptability and robustness to noise. However, all the
above approaches often require multiple iterations (epochs) of
the complete data stream to capture the relationships between
previous values, which is not adequate for edge settings
with streaming data input. Addtionally, NN-based methods
require a large volume of data samples and exhibit a resource-
intensive, slow training process [12], [37].

Hyperdimensional Computing (HDC) [18] is an emerging
computing paradigm that mimics the functioning of human
brain. It involves mapping input values to high-dimensional
sparse vectors, named hypervectors. Training is performed on
hypervectors with well-defined and highly parallelizable oper-
ations. This makes HDC lightweight to train, robust against
hardware errors [11] and conducive to single-pass training
under limited observations. All of these benefits align with
the challenges that come with edge forecasting applications.
While the vast majority of HDC research has focused on
classification problems [11], RegHD [14] is the only regression
algorithm in HDC domain. RegHD encodes time series data
into a binary hypervector which is used to forecast the next
value. The encoding and forecasting operations are simple thus
save computational costs. However, RegHD requires multiple
epochs to converge and is susceptible to sensor noise, making
it inappropriate for edge scenarios. A new method that is both
lightweight and robust to sensor noise is needed.

In this paper, we propose a novel, lightweight and ro-

https://github.com/DarthIV02/KalmanHD


bust forecasting method, named KalmanHD, for time series
forecasting at the edge. We consider multi-sensor time series
data and three common types of sensor noise, i.e., Gaussian
noise, missing values and Poisson noise. KalmanHD integrates
Kalman Filter (KF) with HDC to increase resilience to sensor
noise, while preserving the lightweight and single-pass prop-
erties of HDC training. KF is a commonly used technique to
estimate unknown state variables based on observations [17]
under the assumption that the incoming samples are subject
to Gaussian noise.

The design of KalmanHD faces two primary challenges.
First, we need to decide which parts of the process should
operate in the hyperdimensional space and which should
remain in the original dimensions. Second, we have to adapt
operations to the hyperdimensional space while maintain-
ing the original intent of KF. To tackle these challenges,
we begin with KF as a base and incrementally incorporate
HDC elements, ensuring the learning process remains intact.
Specifically, KalmanHD uses the Expectation-Maximization
algorithm to train a forecasting weight hypervector, which
multiplied by the hypervectors encoded from raw time series
data, produces a single value forecast for the next time step.

The main contributions of this paper are as follow:
• We propose KalmanHD as a novel on-device forecasting

method specifically designed for time series data at the
edge. KalmanHD integrates the power of HDC with
Kalman Filter to enable sensor noise-resilient prediction
while achieving efficient and single-pass training.

• We further enhance the computational efficiency of
KalmanHD by approximating the matrix multiplications
in Kalman Filter with binary operations. This refinement
leads to a notable decrease in computational complexity.

• We perform comprehensive evaluations using five multi-
sensor datasets representing practical IoT applications
like traffic and electrical monitoring. Our model outper-
forms the HDC baselines by up to 72% in the presence
of sensor noise, highlighting its robustness. Furthermore,
our model exhibits 3.6-8.6x faster execution compared to
neural-network approaches.

II. RELATED WORKS

A. Time Series Forecasting

Time series forecasting is essential for monitoring edge
scenarios and making local decisions, such as energy usage
and conservation [32]. Initial approaches, like Autoregressive
Integrated Moving Average (ARIMA) [4], were widely used
for their statistical properties and versatility. ARIMA combines
autoregression (AR) and moving average (MA) to model past
and future values’ relationships. However, ARIMA incurs high
computational costs and may not capture relationships among
correlated time series. Adaptations like SARIMA [4] and
ARIMAX [33] have risen to capture the non-linearities in time
series, but long-term predictions remain challenging [29].

An alternative forecasting approach for large panels of
related time series involves neural networks (NN) [3], [7],
[29]. These networks can simultaneously forecast multiple

time series, capturing longer-term relationships within the data.
Different architectures like MLPs, CNNs, LSTMs, and other
NN approaches have been used in this scope [29]. However,
neural networks still face challenges in terms of training
complexity and practical applicability [20].

Despite their potential, most of these works focus on cloud-
based computing without memory or energy constraints. Only
a few studies have specifically addressed forecasting on the
edge [9], [30]. However, noise in edge devices is often
disregarded or handled using deep networks [21].

B. Robust Forecasting

Recent works have focused on robust NN models to handle
Gaussian noise and missing values in time series data. E-
Sense [28] uses a Mixture of Experts technique, combining
multiple layers of a Convolutional Neural Network (CNN)
and a parallel LSTM model to address various types of noise,
including Gaussian noise. Another relevant work is PFVAE
[16], which employs LSTM as an auto-encoder and variational
auto-encoder (VAE) for time series prediction to mitigate the
effects of Gaussian noise. However, achieving a high level of
robustness necessitates a substantial quantity of training data
and utilization of computational resources.

C. Hyperdimensional Computing

Compared to NNs, HDC exhibits superior energy efficiency
and faster learning rate, as proven by multiple classification
algorithms such as TempHD [24], drive style classification [25]
and SemiHD [15], to name a few. We refer the readers to
Chang et al. [5] for a comprehensive review. It is noteworthy
that HDC is not inherently robust against noise in the original
data space, which may impact its performance in IoT cases.

RegHD [14] is the only work that combines regression al-
gorithms with HDC to transform the model into a hypervector
representation, suitable for handling IoT data with hardware
noise. However, it requires multiple iterations through the
training data, making it more suitable for offline rather than
online training.

III. BACKGROUND OF HDC AND KALMAN FILTERS

A. HDC Primitives

Hyperdimensional Computing (HDC) is inspired from the
neuroscience community, seeking to emulate human brain
functioning [18]. HDC maps raw signal values into high-
dimensional vectors, known as hypervectors, which often
consist of tens of thousands of dimensions. The fundamental
idea behind HDC is that intricate patterns within the original
space can potentially be linearly separable when projected into
a sparse, high-dimensional space [23]. We next describe the
three main steps in HDC.

Encoding: Encoding is the first and foremost step to map
raw data into hypervectors. In KalmanHD, we adopt Random
Projection [31] followed by non-linear operations for encod-
ing, which has achieved state-of-the-art results in time series
analysis [14]. Let the raw values to be encoded be represented
as X ∈ Rp. Random Projection is then applied to the input



Fig. 1. The pipeline of Kalman Filter [17].

data, where each value is element-wise multiplied by a random
hypervector h ∈ Rd. Each hi is chosen from N (0, 1), followed
by an L2 normalization. The result of this process is a set
of d-dimensional hypervectors, which are added together to
create a single hypervector hv. We then use the non-linear
encoding cos(hv+b)·sin(hv), where the bias b is chosen from
U(0, 2π). Finally, we project the hypervector into the bipolar
form (each element is from {−1, 1}) using the sign function.
Mathematically, the encoding process can be expressed as:

hv =

p∑
i

Xi · hi, hv =
hv

max(∥hv∥2 , ϵ)
(1)

hv = cos(hv + b) · sin(hv) (2)
ϕ(X) = sign(hv) (3)

Training: During the training phase, representative hyper-
vectors are created for each class. By adding the samples
that belong to the same class together, a hypervector closely
related to all the samples in that class is formed. Given the
hypervectors Xj represent the samples from class j, the class
hypervectors are computed as ϕ(cj) =

⊕
i ϕ(X

j
i ).

Inference: During inference, similarities between the query
input Xq and all the class hypervectors are calculated. The
sample is then assigned to the class with the highest similarity
score ŷ, i.e., ŷ = argmaxj cos(ϕ(Xq), ϕ(cj)).

B. Kalman Filters
An effective single-pass approach, designed for limited

number of samples and noise, is Kalman Filter (KF) [8].
The objective of KF is to ascertain a hidden state through
observations governed by the underlying system. For IoT time
series forecasting, the past samples Ht are known, while the
coefficients (hidden state αt) required to predict the future
values based on these samples, remain unknown. The accuracy
of these coefficients can only be verified once the real next step
is obtained, which serves as the observed state. KF utilizes the
EM (Expectation-Maximization) algorithm, which iteratively
refines the model to approximate the true hidden state until
convergence, guided by the observed state [8].

As illustrated in Fig. 1, KF begins with randomly initialized
weights denoted as α0 ∈ Rp, forming the vector of coefficients
necessary for forecasting. Additionally, a covariance matrix P0

is created to represent the relationships between these weights.
At each time stamp t, the algorithm performs the E step,

computing a prediction using the current weights ỹt = Htαt.
This prediction estimates the next value in the time series, as
observed by the dotted line in the bottom left corner of Fig. 1.

The innovation term (At) signifies the difference between the
predicted value and the actual future value (yt − ỹt).

Next, the Kalman Gain Gt is computed using the formula
f(Ht, Pt, σ

2) =
PtH

T
t

HtPtHT
t +σ2 . This calculation involves the

previous samples Ht, the covariance matrix Pt, and the
variance of the data σ2. The covariance matrix, captures the
uncertainty or variance in the estimates of the hidden state
variables and represents the correlations between each pair
of values in the sample. By considering the variance, the
importance of each sample in the training process is weighted
accordingly. During the M step, both the weights αt and the
covariance matrix Pt are updated based on Ht, Pt and Gt

to maximize the alignment between the predicted and actual
future values [8]. The EM process iterates when new samples
come in to refine the forecsting model.

IV. KALMANHD OVERVIEW

In this section, we provide a rigorous problem formulation
for online IoT forecasting, including the typical noise types
as well as model inputs and outputs. We then introduce
KalmanHD, our proposed approach that integrates HDC tech-
niques to Kalman Filter for enhanced robustness against sen-
sor noise while addressing energy constraints through binary
operations.
A. Problem Definition

IoT scenarios often involve a considerable number of inex-
pensive sensors that often operate at low sampling frequencies.
Consequently, datasets are characterized by multiple time se-
ries, each containing a subset of relatively noisy samples [22],
[32]. This results in highly noisy data. Building on this
observation, we address three major types of noise:

• Normal Gaussian noise, represents the standard errors
that may arise from sensor disturbances. To simulate this,
random values are added from a Gaussian curve with a
mean of 0 and standard deviations of 0.1, 0.2, 0.5, 1.

• Missing values, occur when the sensors’ power supply
fails or there’s a low sampling rate. To model this, the
time series is partitioned into segments of s samples, each
has a certain probability of being missing. If a segment
is missing, all of its values are replaced with 0.

• Poisson Noise, representative of shot noise or distur-
bances arising from electrical charges in IoT sensor data,
which results in irregular fluctuations in the data. To
simulate this, random values are added according to the
Poisson distribution with λ of 0.1, 0.2, 0.4, 0.5.

In our forecasting problem, we consider the input Xt:t+p ∈
Rp which comprises p consecutive samples from time stamp t.
The output is a single-step forecasting ỹ = X̃t+p+1 ∈ R, that
minimizes the discrepancy with the actual future value y =
Xt+p+1 ∈ R. Training is done in single pass and the model is
updated with each new incoming sample. This online setting
aligns well with the real-time nature of IoT and the resource
constraints imposed by edge computing environments.
B. KalmanHD

KalmanHD is a novel, lightweight and robust approach to
train single-step forecasting on sensor devices. This method is



Fig. 2. Step-by-step diagram of KalmanHD.

structured into three phases: encoding, inference, and training,
as illustrated in Fig. 2. KalmanHD encodes the past p values
Xt:t+p from all sensors into a single hypervector ϕ(Xt:t+p).
Then KalmanHD adopts the steps of the Kalman Filter to
estimate the weights, denoted as αt ∈ Rd, by which the
encoded past values are multiplied. This process allows the
hypervector to be transformed back to the original space,
thereby generating the final prediction ỹt = X̃t+p+1 during
inference. Estimating αt from noisy observations, the method
iteratively updates Kalman Gain Gt and covariance matrix Pt

using incoming samples and prediction errors, thereby merging
KF’s noise resilience with HDC’s computational efficiency.

In contrast to RegHD [14], KalmanHD enhances the fore-
casting model’s robustness by considering the variance in its
computations. Compared to the traditional Kalman Filter [8],
KalmanHD leverages the expressive power and robustness of
HDC, thereby further enhancing its noise resilience.

We explain the details of each phase in the following lines:
(a) Encoding. Given the time series readings from multiple

sensors, the encoding step in KalmanHD maps the time
series from one sensor, Xt:t+p, into a single hypervector,
ϕ(Xt:t+p), using the nonlinear encoding method introduced in
Section III. KalmanHD encodes the time series from different
sensors separately, while training a global model (the weight
hypervector αt) for forecasting.

(b) Inference. The inference phase predicts the next-step
reading ỹt based on the p past values of a specific sensor n.
In KalmanHD, this is achieved via multiplying the encoded
hypervector ϕ(Xt:t+p) by the global model αt using the dot
product, i.e., ỹt = ϕ(Xt:t+p) · αt.

(c) Training. The training iteratively updates the weight
vector αt ∈ Rd and the covariance matrix Pt. Pt captures the
uncertainty or variance in the estimates of the weights and
represents the correlations between each pair of values in the
sample Xt:t+p. When starting the model, α0 is initialized as
zeros while P0 is filled with ones.

For each incoming sample, the Kalman Gain Gt is com-
puted similar to f(Ht, Pt, σ

2) in Section III-B, with the
difference being that Ht is replaced by the encoded input
samples ϕ(Xt:t+p). As a result, the numerator results in a
d-vector, similar to the process in KF. However, the major
distinction lies in the calculation of HtPtH

T
t , which is substi-

tuted by
∑

Ptϕ(Xt:t+p). We further optimize the efficiency of

KalmanHD by quantizing the matrix multiplication, referred
as HQ. This will be elaborated upon in greater detail in
Section IV-C. When computing Gt, we scale the variance
σ2
p by d to ensure it holds significance. σ2

p manages the
importance and impact of individual samples in the training
process and contributing to the overall robustness of the
method.

Then, we update both αt and Pt. The model weights αt

are updated similar to KF (αt = αt + GtAt), but with
the inclusion of a learning rate η to accommodate the high
dimensionality of the samples. The covariance matrix Pt is
updated by multiplying M with the transposed input sample,
resulting in a matrix that represents the relationship between
each pair of dimensions.

The complete process can be summarized as follows:

M = HQ
(
P · ϕ(Xt:t+p)

T
)

(4)

Gt =
M∑

M + σ2
p · d

(5)

αt = αt +GtAtη (6)

Pt = Pt +HQ (Gt)⊗MT (7)

Given that the variance is not known beforehand, we infer
the variance σ2

p of the time series based on the previous and
current samples. To tackle this issue, the variance is stored
and updated with each new sample according to the formula:
σ2
p = (γ · σ2

p) + (1 − γ) · σ2(x). Here, γ is a coefficient that
determines the balance between the importance of the past
variance and the new variance from the incoming samples.

C. Optimizing the Efficiency of KalmanHD

In the initial stages of KalmanHD, the training process
closely followed the Kalman Filter methodology. However,
this approach involved three significant matrix multiplications:
two for Gt (in both the numerator and denominator) and
another for updating Pt in Fig. 1, which posed computational
challenges due to the large size of the matrix (d× d).

To address this issue, we utilize the binary representation of
M in Equation (4). Binarizing matrix multiplication simplifies
runtime operations at the cost of some accuracy (due to
the loss of precision in numbers), especially with a constant
dimensionality d. Additionally, we’ve streamlined Pt updates
with binary operations, significantly reducing computational
complexity. Specifically, the multiplication is now reduced to
XOR operations (⊗). The updated Pt now stores integers, as its
updated values are in the range of {−1, 1}. This optimization
drastically improves the efficiency of the KalmanHD training
process. To further enhance the efficiency of KalmanHD, we
make sure to only train the model when the error At is bigger
than a threshold (in this scenario At > 0.1).

V. EVALUATION

A. Experimental Setup

Datasets. The datasets, presented in [32], represent typical
IoT data with multiple time series from various sensors
and limited samples. These datasets encompass two primary



TABLE I
DATASET SETUP.

Dataset Type Frequence Time Series Time Serie Samples
ECF Energy Daily 314 365
SFT Traffic Weekly 862 104

MITV Traffic Hourly 1 33728
GT Traffic Hourly 206 1464

ELD Energy Daily 320 1096

TABLE II
HYPERPARAMETER CONFIGURATIONS IN KALMANHD.

Dataset η d γ p
Energy Consumption Fraunhoufer (ECF) 0.001

500 0.03 20
San Francisco Traffic (SFT) 0.001

Metro Interstate Traffic Volume (MITV) 0.00001
Guangzhao Traffic (GT) 0.001

Electricity Load Diagrams (ELD) 0.0001

categories: energy consumption and traffic forecasting, each
featuring different time resolutions. They are chosen due to
the resource constraints of the data-collecting devices, empha-
sizing the importance of timely forecasting. For more detailed
dataset information, please refer to Table I. We partition the
samples in a linear fashion, assigning 70% for training, 20%
for testing, and 10% for cross-validation for each time series.
The input samples are chosen using a sliding window approach
with a step size of 1, employing a time window length of p
= 20. This sliding window technique, involves utilizing the
initial p values of the time series for initial training input and
subsequently shifting the training window forward by one step
to obtain successive training inputs.

Implementation details. We implement KalmanHD in
Python 3.9 using the PyTorch and the TorchHD libraries [13].
All hyperparameters described in the design were carefully
selected through validation tests to optimize the model’s
accuracy while ensuring efficiency including the non-linear
encoder. The key hyperparameters are listed in Table II.

• E-Sense [28] combines multiple layers of CNN and a
parallel LSTM model to address various types of noise,
mainly for Gaussian noise. We adapt the open-source
implementation of this model.

• PFVAE [16] employs LSTM as an auto-encoder and
variational auto-encoder (VAE) for time series prediction
to mitigate the effects of Gaussian noise. As the code
for PFVAE is not publicly available, we manually im-
plemented PFVAE without incorporating the planar flow
section for our experiments.

• RegHD [14]. The first HDC-based regression method
suitable for handling IoT data with hardware noise. We
adapt the open-source implementation of RegHD with a
default learning rate of 1e− 6.

The evaluation of each test sample uses the mean absolute
difference (MAE) between the predicted and actual values.
For efficiency experiments, we use two representative edge
devices including a Raspberry Pi 4B [1] with 4GB RAM, an
edge desktop with Intel Core i7-8700 CPU at 3.2 GHz and 16
GB RAM. We measure the execution time on these devices,
which linearly reflects the amount of energy consumed while

Fig. 3. Average MAE with missing samples on all datasets.

Fig. 4. Average MAE with Gaussian noise on all datasets.

performing various methods.

B. MAE / Robustness Results
Fig. 3, Fig. 4 and Fig. 5 present the average MAE of all

methods across various missing sample ratios, standard devi-
ation (SD) of Gaussian noise and Poisson noise distributions.
Each figure features two plots: the left plot summarizes the
average MAE across all traffic datasets, while the right plot
focuses on the energy datasets. A lower MAE means a more
accurate forecast of actual values. Across all datasets and
noise levels, KalmanHD achieves accuracy on par with robust
NN benchmarks, specifically E-Sense [28] and PFVAE [16].
RegHD [14] experiences considerable performance deteriora-
tion when confronted with sensor noise of any kind. This
outcome is anticipated, given that RegHD is not designed
to withstand sensor noises, despite HDC’s inherent resilience
to hardware errors due to its high dimensionality. The raw
KF [8] exhibits strong performance with Gaussian Noise and
missing samples which aligns with its Gaussian noise assump-
tion. However, when applied to other types of noise (like
Poisson noise), KF underperforms significantly.Our approach
KalmanHD demonstrates the potential to attain robustness in
forecasting models utilizing HDC and KF, for Gaussian noise,
Poisson noise and missing values. In the cases of extreme
noise, KalmanHD surpasses RegHD’s MAE performance by
up to 72%.

C. Efficiency Results

Fig. 6 illustrates the average execution times of each base-
line and our model to finish one pass on the traffic and
energy datasets. Benefiting from HDC’s efficiency, KalmanHD
is 5.0x and 3.6x faster than E-Sense and PFVAE on Raspberry
Pi. On the edge desktop, KalmanHD presents 8.6x and 7.1x
faster execution speed than E-Sense and PFVAE. RegHD
exhibits faster computations, but its forecasting errors quickly
accumulate when faced with noise. While KalmanHD adds
more sophisticated computation inspired from Kalman Filter,



Fig. 5. Average MAE with Poisson noise on all datasets.

Fig. 6. Execution time results on Raspberry Pi (RPi) and edge desktop.

KalmanHD only takes up to 48% more time than RegHD on
the edge desktop. For all datasets, KalmanHD consumes less
than 35 and 4 minutes to complete one pass of the whole
dataset on Raspberry Pi and edge desktop, respectively.

VI. CONCLUSION

In IoT forecasting, two primary challenges arise: limited
energy resources necessitating efficient models, and noise
introduced by sensors due to resource constraints. HDC is a
promising area that focuses on efficient computing, offering
hardware noise resistance but lacking robustness to sensor
noise. We propose a novel single-step forecasting approach
called KalmanHD, which integrates HDC with the Kalman
Filter. Through extensive experiments on real IoT datasets with
varying levels of Gaussian noise, missing samples and Poisson
noise KalmanHD achieves comparable accuracy results to
robust deep networks in online settings while demonstrating
3.6-8.6x speedups on typical edge platforms.

ACKNOWLEDGMENT

This work was supported in part by National Science
Foundation under Grants #2003279, #1826967, #2100237,
#2112167, #1911095, #2112665, and in part by SRC under
task #3021.001. This work was also supported in part by
PRISM and CoCoSys, centers in JUMP 2.0, an SRC program
sponsored by DARPA.

REFERENCES

[1] Raspberry Pi 4B. https://www.raspberrypi.com/products/
raspberry-pi-4-model-b/, 2023. [Online].

[2] Hamidreza Arasteh and et al. Iot-based smart cities: A survey. In EEEIC
’23, pages 1–6. IEEE, 2016.

[3] Yukun Bao and et al. Multi-step-ahead time series prediction using
multiple-output support vector regression. Neurocomputing, 129:482–
493, 2014.

[4] George EP Box and et al. Time series analysis: forecasting and control.
John Wiley & Sons, 2015.

[5] Cheng-Yang Chang and et al. Recent progress and development of
hyperdimensional computing (hdc) for edge intelligence. IEEE J. Emerg.
Sel., 2023.

[6] Chris Chatfield. Time-series forecasting. Chapman and Hall/CRC, 2000.

[7] Ling Chen and Xu Lai. Comparison between arima and ann models used
in short-term wind speed forecasting. In APPEEC ’11. IEEE, 2011.

[8] Xi andet al. Chen. Autoregressive-model-based methods for online time
series prediction with missing values: an experimental evaluation. arXiv
preprint arXiv:1908.06729, 2019.

[9] Gaia Codeluppi and et al. Forecasting air temperature on edge devices
with embedded ai. Sensors, 21(12):3973, 2021.

[10] Grzegorz Dudek. Short-term load forecasting using random forests. In
IS ’2014, pages 821–828. Springer, 2015.

[11] Lulu Ge and et al. Classification using hyperdimensional computing: A
review. IEEE CAS Magazine, 20(2):30–47, 2020.

[12] Nastaran Gholizadeh and et al. Federated learning with hyperparameter-
based clustering for electrical load forecasting. Internet of Things,
17:100470, 2022.

[13] Mike Heddes and et al. Torchhd: An open-source python library
to support hyperdimensional computing research. arXiv preprint
arXiv:2205.09208, 2022.

[14] Alejandro Hernández-Cano and et al. Reghd: Robust and efficient
regression in hyper-dimensional learning system. In DAC ’21. IEEE,
2021.

[15] Mohsen Imani and et al. Semihd: Semi-supervised learning using
hyperdimensional computing. In ICCAD ’19, pages 1–8. IEEE, 2019.

[16] Xue-Bo Jin and et al. Pfvae: a planar flow-based variational auto-encoder
prediction model for time series data. Mathematics, 10(4):610, 2022.

[17] Rudolph Emil Kalman. A new approach to linear filtering and prediction
problems. 1960.

[18] Pentti Kanerva. Hyperdimensional computing: An introduction to
computing in distributed representation with high-dimensional random
vectors. Cognitive computation, 1:139–159, 2009.

[19] Raghavendra Kumar and et. al. Time series data prediction using iot and
machine learning technique. Procedia computer science, 167:373–381,
2020.

[20] Bryan Lim and et al. Time-series forecasting with deep learning: a
survey. Philos. Trans. Royal Soc. A, 379(2194):20200209, 2021.

[21] Lingling Lv and et al. An edge-ai based forecasting approach for
improving smart microgrid efficiency. IEEE Trans Industr Inform,
18(11):7946–7954, 2022.

[22] Amer Malki and et al. Machine learning approach of detecting anomalies
and forecasting time-series of iot devices. AEJ, 61(11):8973–8986, 2022.

[23] Ali Moin and et al. A wearable biosensing system with in-sensor adap-
tive machine learning for hand gesture recognition. Nature Electronics,
4(1):54–63, 2021.

[24] Yang Ni and et al. Neurally-inspired hyperdimensional classification for
efficient and robust biosignal processing. In ICCAD ’22, 2022.

[25] Kenny Schlegel and et al. Multivariate time series analysis for driving
style classification using neural networks and hyperdimensional com-
puting. In IV ’21, pages 602–609. IEEE, 2021.

[26] Sureshkumar Selvaraj and et al. Challenges and opportunities in iot
healthcare systems: a systematic review. SN Applied Sciences, 2(1):139,
2020.

[27] Qiquan Shi and et al. Block hankel tensor arima for multiple short time
series forecasting. In AAAI, volume 34, pages 5758–5766, 2020.

[28] Sudipta Saha Shubha and et al. A diverse noise-resilient dnn ensemble
model on edge devices for time-series data. In SECON ’21, pages 1–9.
IEEE, 2021.

[29] Sima Siami-Namini and et al. The performance of lstm and bilstm in
forecasting time series. In Big Data ’19, pages 3285–3292. IEEE, 2019.

[30] Afaf Taı̈k and et al. Electrical load forecasting using edge computing
and federated learning. In ICC ’20, pages 1–6. IEEE, 2020.

[31] Anthony Thomas and et al. A theoretical perspective on hyperdimen-
sional computing. JAIR, 72:215–249, 2021.

[32] Christos Tzagkarakis and et al. Evaluating short-term forecasting of
multiple time series in iot environments. In EUSIPCO ’22. IEEE, 2022.

[33] Billy M Williams. Multivariate vehicular traffic flow prediction: evalu-
ation of arimax modeling. Transp. Res. Rec., 1776(1):194–200, 2001.

[34] Samir Yerpude and et al. Impact of internet of things (iot) data on
demand forecasting. INDJST, 10(15):1–5, 2017.

[35] Lean Yu and et al. A compressed sensing based ai learning paradigm
for crude oil price forecasting. Energy Economics, 46:236–245, 2014.

[36] Fotios Zantalis and et al. A review of machine learning and iot in smart
transportation. Future Internet, 11(4):94, 2019.

[37] Sizhe Zhang and et al. Scalehd: Robust brain-inspired hyperdimensional
computing via adapative scaling. In ICCAD ’22, pages 1–9, 2022.

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

	Introduction
	Related Works
	Time Series Forecasting
	Robust Forecasting
	Hyperdimensional Computing

	Background of HDC and Kalman Filters
	HDC Primitives
	Kalman Filters

	KalmanHD Overview
	Problem Definition
	KalmanHD
	Optimizing the Efficiency of KalmanHD

	Evaluation
	Experimental Setup
	MAE / Robustness Results
	Efficiency Results

	Conclusion
	References

