Component Design of Retargetable Program Analysis Tools
that Reuse Intermediate Representation’s

James Haye$ William G. Griswold * Stuart Moskovics'
“Department of Computer Science and Engineering ‘Motorola, BCS
University of California, San Diego 6450 Sequence Drive
La Jolla, CA 92093-0114 USA San Diego, CA 92121 USA
{wgg,jyuan }@cs.ucsd.edu smoskovics@gi.com
ABSTRACT grams written in varied source languages, since systems that

Interactive program analysis tools are often tailored to one benefit the most from such analysis, especially legacy pro-
particular representation of programs, making adaptation tograms, are often written in multiple or proprietary program-
a new language costly. One way to ease adaptability is to in-ming languages. However, program analysis tools are often
troduce an intermediate abstraction—an adaptation layer—tailored to one particular representation of programs, mak-
between an existing language representation and the proing adaptation to a new language costly (Figure 1a). Anin-
gram analysis tool. This adaptation layer translates the tool'sexpensive way of achieving adaptability is to introduce an
gueries into queries on the particular representation. intermediate abstraction—an adapter component or adapta-
tion layer—between an existing language representation and
the program analysis. This additional layer translates the
tool's queries into queries on the particular representation [4,
pp. 139-150]. Genoa [2] represents such an approach for ac-
commodating multiple analysis tools (See Section 6).

Our experiments with this approach on the StarTool program
analysis tool resulted in low-cost retargets for C, Tcl/Tk, and
Ada. Required adjustments to the approach, however, led
to insights for improving a client’s retargetability. First, re-
targeting was eased by having our tool import a tool-centric
(i.e., client-centric) interface rather than a general-purpose, The question arises, then, as to what interface should lie be-
language-neutral representation interface. Second, our adaptween the adaptation layer and the retargeting tool. An ap-
tation layer exports two interfaces, a representation interfacepropriate interface would impose minimal inconvenience on
supporting queries on the represented program and a lanadaptation layer implementations, since one must be written
guage interface that the client queries to configure itself suit- for each retarget to a language representation.

ably for the given language. Straightforward object-oriented
extensions enhance reuse and ease the development of mult
language tools.

| n a project to make our StarTool program analysis tool eas-
Ily retargetable, we hypothesized that the adaptation layer in-
terface should be a low-level, language-neutral, tree-oriented

Keywords language representation interface, because it would impose
Retargetability, reuse, software design, program analysis,minimal responsibilities and inconvenience on any represen-
software tools. tation (Figure 1b). Only a small number of operations should

1 INTRODUCTION be required because of StarTool’s limited needs.

By summarizing information that is collected from a soft- To assess this claim, we first restructured StarTool to re-
ware system as a whole, a program analysis tool can reducénove representation- and language-specific references in the
the time required by a programmer to understand a systemcode and have it import such an interface in their place. We
well enough to begin making changes. For example, RIGI then developed retargets to the Ponder C program represen-
can summarize the architectural elements of a system [10];tation [5], a similar representation for Tcl/Tk, and the Gnat
our StarTool provides hierarchical, crosscutting views of all Ada [3] program representation.

the uses of a data structure or other design decision [7]. Although these representations are indeed tree-based, the ex-

Such tools are most useful if they are able to analyze pro- port of a low-level and language-neutral interface compli-
cated the adaptation code and hurt performance because it
*This work supported in part by UC MICRO grants 97-061 and 98-054 made inappropriate assumptions about the language repre-
joint with Raytheon Systems Company, and NSF Grant CCR-9508745. gentation. It also prevented language-specific traits from be-
Appears in Proceedings of t2€00 International Conference on Software Engineering (ICSE 2000). Copy- Ing expressed In the tOOI,S user Interface Our mIStake was to
right 2000 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of treat the deS|gn Of the adaptatlon Iayer Interface I|ke the de_

part or all of this work for personal or classroom use is granted without fee provided that copies are not made

or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the Slgn Of a SerVIce that |S reused by many C|Iel’]tS, When |n our

first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting

with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires case the Component belng reused |S an Incomplete Cllent that

prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212)

869-0481, or permissions@acmorg. could import a number of possible services. Hence, the effort

generic generic
star diagram star diagram

functionality functionality
Star Diagram i
Functionality i i
g er
Program- Program Program
Representation Representation Representation

(a) C-only version of StarTool (b) Representation-centric design (c¢) Tool-centric design

Figure 1: Evolution of StarTool's design for retargetability. Edges denotaegbselation, realized by function call. The shape
of the adapter box reflects the scope of its responsibilities: greater width implies supporting more functionality, greater height
implies bridging a larger semantic gap.

in supporting a flexible, low-level interface was misplaced: 2 STARTOOL AND ITS REPRESENTATION NEEDS

the client did not need it, and so the adaptations did not needThe StarTool program analysis tool assists programmers
to supportit. The implication was that our focus should be on in planning restructuring projects on large software sys-
designing an appropriatequiresinterface for the clientthat tems [7]. In particular, it helps a programmer to make encap-
states only what the tool requires in terms of the its own fea- sulation decisions by displaying context graphs caflest
tures. This change in orientation widens the semantic gap be-diagramsthat provide information about the usage patterns
tween the tool and possible representations to give adaptersf objects within a program. To build a star diagram, the
increased implementation flexibility (Figure 1c). Language- user selects objects of interest, typically variables, and the
specific configuration of the tool is achieved through inter- tool expands these selections to include all references to the
face operations that query the adaptation layer about how theselected objects, or if requested, all references to objects that
tool should behave for language-sensitive tool features. have the same type as those objects.

This choice requires the adaptation code to explicitly under- Figure 2 shows a star diagram for the variatdems built
stand the relationship between the language representatioffior a program consisting of four C source files. The root
and the tool's features. Yet this choice resulted in adapta- of the diagram (the leftmost node in the graph) contains all
tions that are simpler and more efficient because it providesreferences to the variable itself. The children of the root node
flexibility to the adaptation implementation. It also supports are the syntactic constructs that contain the root references;
multi-language analysis through the introduction of an adap- children designating identical syntactic constructs, such as
tation layer that joins two other adaptation layers: the multi- the 30 array references, are stacked into a single node in the
language adapter is concerned only with a join that meets thedisplay. Similarly, the grandchildren of the root node are the
tool's particular needs rather than in general terms of what a syntactic constructs that embed the child nodes, and so on,
multi-language program means. In short, an adaptation layerout to the leaves of the diagram, which represent source files.
functions as a glue-hiding mediator that serves to combineIn order to reduce clutter in the display and convey context
independently developed components [13, 14]. information, functions and files are represented by singleton

. i i i licated.
Section 2 describes StarTool and its representation requwe-nOdes in the display, rather than being rep

ments. Section 3 describes our initial retargetable interface,Since the stacked nodes in a star diagram represent multiple,
and Section 4 describes the Ponder C, Tcl/Tk, and Gnat Adaidentical uses of an object, they point out the most likely can-
retargets, as well as the problems encountered. In Section Sdidates for abstract operations on the object in a restructured
we discuss our insights, the resulting revised adaptation in-system. The tool supports exploration by allowing the user to
terface, and techniques for improving reuse and supportinginspect the program text associated with a node. Planning a
multi-language retargets. We close with consideration of re- restructuring is supported by allowing the user to trim a path
lated retargeting approaches, a design process for designingrom the star diagram display into the lower left-hand panel
client-centric interfaces, and criteria for application to other and attach descriptive text to it. After planning is complete,
program analysis tools and software. the trims can be viewed in their own star diagram views and
used to navigate back to the program text to carry out the
restructuring change.

| Annotate Arm | Trim Arm | Hide Panel | Zoom | | Dismiss I

Types of Nodes to Exclude ‘

_| All Statements A
| I, Else _| Stacked
1 .ﬂtrDec{E i _Declarat\nn{ﬁ)
Unstacked O ey
_1 Switeh 0} OIEE
_| Function
| Case | File File: saveFilan.if1}

_| For, While, Do

W Depth = '3 +
_| String| Next String

Clear Selections | Apply to Diagram |

Field: dirfz1 |

[Frame | ;

FlefOf: DuGoAction
‘ Trimmed Star Arms and Annotations

R T e ————

ey

Trim Arm | Put Back Arm | Show Arm

=AdefOf: ReadDataFil

Edit Entry Annotation | Remove Entry

Faetdr: PrintRoom

L

-HefQf. PrintAction

call: PrintDescription(@){1H 35 defOf D ¥l

= =iz [I =

1A total of 42 node(s) and a total of 16 distinct star paths in Star Diagram #0

Figure 2: A star diagram window for the varialsoms .

Because star diagrams can contain thousands of nodes, theperations would need to be exported by an adaptation layer
tool allows the user to remove uninteresting nodes from the to successfully separate StarTool from underlying program
display. The panel in the upper left-hand corner of the star representations. Based on our experience in designing and
diagram window presents the user with a selection of node using ASTs [5, 8], we felt that a low-level, language-neutral
attributes; nodes possessing any attribute selected by the usenterface for the adaptation layer would be least troubling
are elided, and connections joining the node to a parent arein writing adaptations that would ultimately span many lan-
redirected to the node’s children. guages. In particular, we felt that providing low-level func-

. . ._tions would free adaptations of responsibilities to provide
;‘:r;ef?c:?ntgrﬁ;gﬁé%cs;?gf;gt&g:?ecgrrésstg:]gggnolScsht&;rsd'aar;high—level functionality, and lack of language bias would
abstract syntax tree (AST) [1]. The first stage is construc- simplify an adaptation that did not fit such a bias.

tion of a root set. The objects selected as the prototypes ofTo minimize assumptions about what an adaptation could
the root set are expanded into the full root set by traversing implement, we planned to limit the interface to using a few
the AST and testing each AST node to see if it should be simple types. The interface would communicate AST in-
included according to the user’s chosen similarity criterion, formation in terms of integer-sized opaque AST-node refer-
either same variable or same type. The second stage comences. Except for testing simple equality, the only legal op-
putes the descendants of the star diagram root by retrievingerations on these references would be provided by the adap-
the parents of the AST nodes of the root set and classify- tation module interface. Other data values, like positional
ing them according to how they manipulate the child. Con- information or file names, would be represented with least-
cretely, this is achieved by comparing the labels that the AST common-denominator types such as integers and strings.
nodes generate and clustering those that have the same label

This stage is repeated on each node in the star diagram unti solating program represer)tation details. with an interven-
only file nodes, which constitute the leaves of the star dia- Ing adaptation module required restructuring [8] higher-layer

gram, remain. The third stage computes a graphical Iayout.routines into representation-dependent and representation-

of the star diagram, including the merging of the function independent pieces, then re_wrltmg .the representaﬂqn-
and file nodes. dependent code using the services defined by our adaptation

module. We attempted to retain as much of the program anal-
3 RESTRUCTURING AND INITIAL INTERFACE ysis and other algorithmic components in the higher layers of
Given the relatively focused needs of StarTool—basic tree the tool as possible, moving only the aspects of AST manip-
traversal capabilities and some semantic comparisons—weulation into the new module. This served our long-term goal
hypothesized that only a small number of relatively simple of easing the adaptation of the tool to a new program repre-

sentation by limiting the complexity of the functions in the

adaptation module.

To achieve representation independence and generically ac-

commodate language constructs that could have any num-*

ber of children, we chose an interface similar to that sup- ;. Performs any actions necessary to ready the
. module for use. The parameters are those

ported by Ponder [3]: the children of an AST node are ac- « gpecified on invocation of the tool.

cessed by a leftmost-child operation and successive right-+

sibling operations starting at the leftmost child; another op- int ast_elaborate(int &argc, char *argvf]);

eration provides access to a node’s immediate parent. The/*

traversal functions, as shown near the top of Figure 3, ar€« Rejatives of an AstNode in its tree.

ast _child ,ast _sibling ,andast _parent . */
) . . . AstNode ast_child(AstNode item);
To provide the semantic queries on the representation neededstNode ast_parent(AstNode item);

for the construction of meaningful star diagrams, a small AstNode ast_sibling(AstNode item);
set of generic query functions were chosen. These compare,
two nodes for variable or type equalitgimilar), aqVise ~** Indicates whether two nodes are "similar".
which AST nodes should never be considered for inclusion *
in a star diagramast _skip _test), and provide a string ?num_Sl_:nﬂa”tyTypesl {SAME_SYMB_O# SAME_TYPE},
representation of an AST nodast _label). The function Mt Similar(AstNode left, AstNode right,
. . SimilarityTypes similarity);
ast _label _child _character conveys which charac-
ter is used to represent children in the labels; requiring every _ _
adaptation to use one particular character might complicate” Retums a label representing the node. This

. . may contain occurrences of
label prOdUCtlon for some adaptatlon. ** ast_label_child_character followed by a number,

which the tool replaces to show where the child

. . *%
Since the programmer works with program text as well ,, from whence this node was reached appears.

as star diagrams, functions are required for mapping be-+

tween AST nodes and displayed program text. The func- char *ast_label(AstNode item);

tions file _AstNode andfind _AstNode provide the ~ char ast label child_character();

capability to map from a file name or a text selection to

an AST node, respectively. The functiomast _file ** Returns True iff the node may be ignored for
ast _begins , ast _ends convey from which file an AST ** the purposes of constructing a star diagram;
node is derived and the text positions where an AST sub-tree.; 'S syntactic fluff we can ignore.

begins and ends, respectively. Functibem _text returns

.) . int ast_skip_test(AstNode item);
the text associated with a file.

Finally, functionast _elaborate , appearing at the top of

Figure 3, permits an adaptation to do representation-specific™ Not quite a least-common-denominator type, but
initialization * relatively simple, natural, and it avoids
' ** requiring two calls to acquire position
4 C, TCL/TK, AND ADA RETARGETS ™ information.
C Ponder. As a first test of the new adaptation interface, syuct FilePosition {
we retargeted to C program ASTs generated by the Pon- int line, column;
der language toolkit. Ponder combines a yacc-like gram- &
mar specification tool with data structure libraries and fa- /*
cilities for manipulating generic program ASTs and symbol = Fynctions that perform AST-text/file mapping.

tables [5]. The C instantiation of Ponder existed before we */

*

began the project [6] char *file_text(AstNode item);
char *ast_file(AstNode item);

The retarget resulted in 1000 lines of non-blank, non- /;_?“\F‘)Od_e} tf't')e_ASt(’:‘AO(t’S(thar_t*Pa;th”ame)?

. - . llePosition ast_begins(AstNode I1tem);
comment a(_:iapt.atlon code for the 14 funcuqns. The size of ;cbosition ast_ends(AstNode item);
the adaptation is larger than we expected in large part be-astNode find_AstNode(AstNode start_node,
cause about 250 lines of code were required to implement FilePosition start,
accurate and efficient AST—text mappings. The Ponder C FilePosition end);

implementation provides only file and line number mappings

for AST nodes. Figure 3: The initial adaptation module interface, which con-
Tcl/Tk. We next moved to the issue of evaluating the inter- tains 15 functions.

face for retargetability with respect to language issues, which

were not touched upon in the C Ponder retarget since the

4

original StarTool implementation was for C. We chose to re- Condition , Else _Statements |, Elseif _Parts , and
target the tool to support programs written in the rather dif- Else _Statements . Although implementing generic
ferent Tcl/Tk language [11]. The representation for Tcl/Tk child and sibling accesses with these specific ones is straight-
programs itself was designed to minimize representation forward, it is not efficient. The amount of tree traversal
adaptation issues, permitting a focus on language issues. Thgenerated by translating from AST nodes to text positions
Tcl/Tk parser, AST generator, and text-AST mappings to- and back slowed the tool unacceptably. This problem led us
gether consist of about 550 lines of code, plus a yacc gram-to enhance the adaptation implementation to cache generic
mar file of about 150 lines. We completed the retarget itself child information along with the full source range for each

in about a week and under 300 lines of adaptation code, buthode, computed during an initial walk of the AST. Caching
encountered two problems in the process. consumes considerable space at runtime and adds over 700

. - lines of code to the adaptation module.
The first problem we encountered concerned the elision fa- P

cilities of star diagrams. StarTool allows elision of case state- The Gnat retarget required approximately two weeks of
ment, loop statemend¢, while, andfor), andif statement work, the bulk of which was devoted to gaining a sufficient
nodes, as well as file and function nodes. Although Tcl/Tk understanding of the Gnat AST. The implementation con-
includes these constructs, they appear somewhat differentlysists of approximately 2000 lines of code, twice the size of
to the programmer, and the AST representation for Tcl/Tk the adaptation for Ponder C. 700 lines of this excess can be
programs includes other types of nodes that are better can-attributed to making generic node references efficient, and a
didates for elision (e.g., “group”). Since such syntactic cat- significant portion we attribute to the relative complexity of
egories are defined by the adaptation, their relevance to eli-the Ada language definition.

sion is not generally knowable by the generic tool code. Be-

cause StarTool used the text in star diagram nodes to deter-5 DISCUSSION o
mine elidability, the obvious stop-gap measure was to have OUr retargets to C, Tcl/Tk, and Ada highlight a couple of
the TcliTk adaptation return star diagram labels for elidable SUCC€SSes and a couple of problems with our initial approach.
nodes that looked like their C counterparts (an artifact from

L . Adaptation effort. The size of the adaptations and the
the original implementation).

time it took to code them are reasonable. The adaptation

The second problem concerned the kind of star diagram tot0 Ada is notable because it exploits an existing compiler
be constructed. The original StarTool allows users to build intermediate representation to avoid the challenges of imple-
star diagrams based on selected variables or all variables ofmenting an Ada AST ourselves. The interface contains 14
a type (e.g.int). However, building type-based star dia- operations and the three adaptations required between 300
grams makes little sense for a source language with dynamicand 2000 lines of code each, none requiring more than two
typing. Other criteria for constructing star diagrams, such as weeks work. Although the varying size and complexity of
all variables declared within a particular scope, prove to be the adaptations is partially a reflection of the languages’ rel-
more useful when analyzing Tcl/Tk programs. ative complexity, two other factors played an important role.

Gnat Ada. To further explore language issues and assessFirst is the implementation of accurate AST-text mappings.
whether the adaptation layer helps an adaptation program-Providing these mappings for Ponder C accounts for 250
mer to easily leverage existing program representations, welines of adaptation code. Although Gnat provides some posi-
chose to retarget the tool to Gnat, a public-domain Ada com- tional information, producing accurate mappings from it re-

piler that provides facilities for manipulating an AST repre- quired 350 lines of code. Accurate AST—text mapping could
sentation of Ada95 source [3]. be an issue for many representations. Unfortunately, there is

little chance of overcoming this problem with adapter inter-

Retargeting to Ada exposed another language-dependent agace design, since it is simply a missing feature that must be
pect of star diagram displays not accommodated by the adapimplemented.

tation interface. As described in Section 2, StarTool merges

function and file nodes. Unlike C and Tcl/Tk, the modules Second, nearly a third of the Gnat retarget is due to an in-
of Ada programs are Comprised of Comp”ation units such as terface mismatch between the adaptation interface’s require'
package and task bodies, rather than files, and subprograninent for first-child and next-sibling operations and Gnat's
constructs may be nested. Examination of star diagrams builthamed-child functions. This mismatch is a likely problem in
from the Gnat AST revealed that merging these nested con-future retargets that could be addressed by interface redesign.

structs would provide better information to the user. . L .
Adaptation suitability. Because the adaptation interface

The Gnat retarget also revealed shortcomings of the adapprovides a label-generating function for star diagram nodes,
tation interface’'s AST traversal functions. For each star diagrams have the look and feel of the programming lan-
kind of AST node, Gnat provides a unique set of func- guage. However, this success was only skin deep, especially
tions to retrieve the child nodes. For example, an if- when it came to diagram manipulation. The C, Tcl/Tk, and
statement node’s children are accessed via functions named\da programming languages vary with respect to what con-

5

structs should be elidable, mergeable, and also what kindsthe fixed enumeratio®imilarityTypes with adapter-
of star diagrams would be useful. Since the interface pro- defined AST similarity attributes by adding the function

vides no way to express these variations, we had to force theast _similarity _attributes to the adaptation layer
language’s features and some node labels into a C-like tax-interface, which returns the attributes that may relate nodes.
onomy. In turn we modified the generic portion of the tool to dis-

play these attributes directly to the user for selection, and the

L . , interface functiorsimilar ~ was modified to accept these
In considering the code bloat in the Gnat adaptation Causeqanguage-deﬁned attributes.

by the mismatch between the our adaptation interface and

the Gnat services, we realized that st _sibling and Client-centric interface design

ast _child operations are present only to permit compar- Unlike the initial set of language representation and seman-

ing each AST node to a candidate node (using adaptationtics functions, which are low-level general-purpose AST-

interface functiorsimilar) to build the root set of the star ~ oriented operations, the new operations for supporting eli-

diagram. Much of the code bloat could be eliminated, then, sion, merging, and comparison are btabl-oriented(they

if the Gnat Ada adaptation had to provide only an AST node would have no useful function in a different tool) and serve

iterator, which would hide the distinction between access- to configure the tool to express the peculiarities of the pro-

ing children by name and by order, giving adaptation layers gramming language. This tool orientation is a departure

more freedom in implementing AST traversals. This change from our initial expectations. Since star diagram node eli-

eliminates over 500 lines of code from the Gnat adaptation sions, for example, are centered around compound state-

without compromising performance. The effects are negligi- ments, we might have chosen elision-helping operations

ble on the Ponder C and Tcl/Tk adaptations, since they did such asst _isLoopStmt andast _isCaseStmt . How-

not suffer interface mismatch. ever, this would not have provided for an open-ended, flexi-
, . . ble, set of elision categories and would have constrained the

For the language-feature mismatches, consider node eli- o display fixed generic names for these (e.g., “Loops”),

sion in star diagrams. To elide nodes corresponding 0 a oo qless of what special constructs a language like Tcl/Tk
language-specific construct, the generic portion of the tool or Ada might contain.

must permit the user teelectthe syntactic category of the

construct for elision, and the tool must be ablégstwhether This insight led us to reconsider our choice to provide a node
an AST node belongs to that category. Belonging to the classiterator, which has a representation-independent, rather than
of elidable constructs can be viewed as a new, tool-specifica tool-centric, flavor. A basic iterator might be suboptimal
AST node-type attributeglidable that the adaptation mod- for future adaptations because it cannot exploit a representa-
ule implementation must synthesize from other AST node- tion’s precomputation of sets of similar nodes, for example
type attributes. in the form of definition-use chains or reference sets in the

| dded . he ad . symbol table. Lacking a means to access such a direct rep-
Consequently, we added two new functions to the adaptation gsentation, StarTool is forced to examine every node in the
module interface for supporting this new attribute. The func- AST to gather the references itself

tion ast _elision _attributes returns a set of AST
node attributes—represented as a tab-delimited string—thatA tool-centric approach suggests providing a function
make a node subject to elision. The attribute strings were next _similar specifically for constructing star diagram
given meaningful names, permitting the generic portion of root sets, thus absorbing the iteration and comparison duties
the tool to display them directly in the star diagram eli- into a single function and leaving the details of similar node
sion panel. When the tool user selects one of these at-collection to the implementation. Although the resulting in-
tributes, the generic tool code calls the other new adaptableterface restricts what StarTool can do to the representation,
interface functionast _has _attribute , passing the eli- itis just this restriction that simplifies the adaptation code by
sion attribute and an AST node. Nodes passing this testpermitting it to support less functionality.

are elided from the display. Likewise, to support the tool-
specific AST node attributmergeablewe added the func-
tion ast _-merging _attributes to the interface and ex-
tended thast _has _attribute function to recognize the
elements of the new set.

Indeed, the generic StarTool component represents a single,
fixed client implementation that we attach to multiple service
implementations. This reverses the typical client—service
layering relation, in which a single service implementation is
designed to support multiple clients. By moving the adapta-
Implementing these functions was straightforward. For tion interface away from the changing service side, we create

all adaptations the functiomst _elision _attributes a sufficient semantic gap between them to give the designers
andast _merging _attributes each required one line of adaptations the flexibility needed to take advantage of op-
of code, andast _has _attribute required upto 25. timization opportunities in the services.

To permit the construction of unique kinds of star di- Consequently, we reformulated the adaptation layer’s inter-
agrams for each programming language, we replacedface as a tool-centric (i.e., client-centrigquiresinterface

6

int al_elaborate(int &argc, char *argv[]);

char *al_elision_attributes();
char *al_merging_attributes();
char *al_similarity_attributes();

int su_has_attribute(SyntaxUnit item,
char *attribute);

/*

** Provides iteration of elements appropriately
** similar to #prototype# under/inside the

** fcontainer#.

*/

SyntaxUnit first_similar_su(SyntaxUnit container,

SyntaxUnit prototype,
char *similarity);

SyntaxUnit next_similar_su();

/*
** Provides iteration of elements with #attribute#
** under/inside the #container#.
*/
SyntaxUnit first_su_with_attribute(
SyntaxUnit container,
char *attribute);
SyntaxUnit next_su_with_attribute();

/*

** Formerly the ast_parent operation.

*

SyntaxUnit su_superunit(SyntaxUnit item);

/*
** Given a SyntaxUnit #item# and the #subunit#
** from which it was reached, returns a label
** indicative of #item#, possibly with an
** jndication of which position #subunit#
** resides. (Label modification was formerly
** performed in the tool, but was moved down
** along with other representation traversals.)
*
char *su_label(SyntaxUnit item,

SyntaxUnit subunit);

int su_skip_test(SyntaxUnit item);

struct FilePosition {
int line, column;

h

char *su_file(SyntaxUnit item);

FilePosition su_begins(SyntaxUnit item);

FilePosition su_ends(SyntaxUnit item);

SyntaxUnit file_to_su(char *pathname);

char *file_text(SyntaxUnit item);

char *file_filters();

SyntaxUnit file_range_to_su(
SyntaxUnit container,
FilePosition *range_begin,
FilePosition *range_end);

Adapter
Program generic
Representation star diagram
functionality

Figure 5: Theknows aboutelation amongst the components

of StarTool (shown as directed edges) denotes a mediator re-
lation for the adapter, which is maintaining independence of
the generic tool and program representations.

for StarTool that states exactly what it requires in terms of
its own features (Figure 4). The interface has two parts: a
language interfacehat serves to configure StarTool to ac-
commodate the peculiarities of the programming language
(theal _operations), and gepresentation interfacthat per-
forms operations on the underlying representations (e.g., the
su_ operations), perhaps parameterized themselves by data
retrieved earlier from the language interface.

The choice of a client-centric requires interface, although
somewhat counter-intuitive, is actually an application of
information-hiding modularity. The client, although not
free-standing, should not attempt to exploit the implemen-
tation details of the services to which it will be connected.
Should these details change (e.g., upon retargeting to an
unanticipated language representation), either the client will
have to be changed or the adaptation code will be made un-
necessarily complex by attempting to satisfy the client’s as-
sumptions. In the language of Parnas, although the client
usesthe service andepends upoit for its correct function-

ing, it should notknow aboufmake assumptions about) its
design [12], in this case even its interface (Figure 5). It is the
responsibility of the adaptation layer to translate between the
independently developed service and client components by
matching the requirements of their interfaces; the client im-
ports functionality from the adaptation layer while dictating
the interface. The adaptation layer hides the design deci-
sions about how the translation is achieved. In this respect,
the adaptation layer is a proper mediator module: it knows
about both the provided interface of the service and the re-
quired interface of the client [14]. The fewer constraints that
these two interfaces put on the environment, the easier it is
to implement the mediator. In this respect, it is best for the
client to require services in terms of its own features, not in
terms of the features of a hypothetical service.

The conclusion discusses how to approach the design of

Figure 4: The reformulated StarTool-centric adaptation mod- cjient-centric interfaces from scratch and the situations in
ule interface, which contains 19 functions. The identifier \hich it might be fruitfully applied.

sub-tagal stands fomdaptation layerthe tagsu stands for

syntax unit These were changed and generalized to reflect Extensions for Reuse and Multi-Language Support

the greater independence from the representation.

After completion of the tool-centric interface redesign, two

issues arose. First, each retarget contained some code sim-

ilar to code in another retarget. This redundancy was due generic

to the fact that although the new tool-centric interface min- star diagram

imizes assumptions about the underlying representations, it functionality

puts some extra, albeit small, responsibilities on the adap- v

tations (e.g., aggregating similar nodes) because it is effec- C-Tcl/Tk

tively operating at a higher level. Some of those responsibil- Adapter

ities are handled identically by most retargets—for example

retargets whose underlying representation provides generic Ponder g TeliTk
child and sibling operations. Also, many adaptation inter- Adapter Adapte
face operations admit trivial implementations for an initial

retarget. For example, no retarget is required to support tool-

centric attributes for elision. Second, we desired to supporta Ponder C Tk
multi-language tool, one that could handle a program written Program Program
in a combination of, say, C and Tcl/Tk, which is a typical use Representation Representation

of Tcl/Tk. However, the purely procedural adaptation inter-

face does not readily permit multiple implementations of the . _
same operation. Figure 6: Multi-language retarget of StarTool using adapter

classes. Edges are function calls.

These issues were straightforwardly addressed with an
object-oriented version of the tool-centric adaptation inter-
face. We added &tarAdapterClass base class with

default implementations of operations, both reducing re-
dundancy and providing name space control. StarTool still
imports the procedural interface, however, making no as-

fication is currently implemented with STMap [15] from
SyntaxUnit s to target implementations. Combining the
results returned from a query across multiple targets often
amounts to a union. Attribute operations are not so simple
sumptions about an adaptation’s ability to support object- o handle, however, as they involve multi-language seman-
tics. For example, should the programmer be allowed to sep-

orientation. The object-oriented |mplementat|9n is merely arately control elision of Gf statements and Tcl/Tik state-
a resource that a programmer can leverage to implement the

. . X ments, or should the two be treated as one construct? Al-
procedural interface. Although this approach results in an : - .
- L . though such questions are difficult to answegeneral an
extra layer of calls, inlining by the compiler is possible un-

less the adaptation subclass is selected dynamically at run2NSWer is_ simpler in the context of a single tool like St.a.rTooI:.
time what choice petter serves a user o_f StarquI? In defining eli-
) sion categories, for example, the issues include the amount
StarAdapterClass provides default implementations of control the user needs, user interface clutter (e.g., a poten-
for 14 of the interface operations, amounting to 160 lines of tial explosion of elision categories), and the programmer’s
potentially reusable code. Most adaptations will reuse only a conception of similar constructs. Such issues could result
portion of this code, since many of the default implementa- in the creation of a new multi-language elision category that
tions are essentially no-ops. However, these can help get armust be translated into the particular elision categories of the
adaptation running quickly by permitting the adaptation pro- underlying adaptations.
grammer to focus initially on the few central representation 6 RELATED APPROACHES

operations. Common intermediate representation. The information
Prototypes of multi-language tools for C and Tcl/Tk, as well required by a program analysis tool often closely resembles
as C, Tcl/Tk, and Ada, have proved straightforward to im- the information needed by a compiler. Retargetable compil-
plement, requiring 450 and 550 lines of new adaptation codeers ease the process of adapting to both different languages
apiece, including the handling of cross-language variable and different machine architectures by defining a common
linkages. The adaptation is implemented by writing glue intermediate program representation. Language-specific
code that combines existing adaptation classes into a sindranslators transform a source program into this common
gle adaptation interface (Figure 6). The glue code has two representation, then pass the result to language-independent
primary responsibilities for any interface operation: (1) di- components for additional translation. Although program
viding a whole-program query from the generic tool into a analysis tools often use the same program representations
guery on each target implementation and (2) combining the as compilers, providing retargetability through the use of a
results of those queries into a single return value. common representation works poorly with these tools. De-

. - . veloping software to translate a new source language into
A typical aspect of dividing a whole-program query is Ping guag

distinquishing the t ¢ tati f deul a common representation can require months of effort be-
stinguishing the farget representation of -a_particllar ., ;se of the semantic detail required and coping with mis-

SyntaxUnit that is passed as a parameter. This classi- matches between the source language and the common rep-

resentation. Compilers recover this investment by reusing adaptation module that acts as a mediator between the repre-
the complex modules that perform optimization and trans- sentation and the program analysis tool.

lation to any number of target architectures. In contrast, . . _— .
development of the source translator can consume the bquThe core of this method is the definition of a tool-centric in-

of the time required to write a new version of a program terfacg th?t the gencc;:rlct pro%r?m Ianalyt/s'ls. C,:'e?t rec;lwre:Nas
analysis tool. Also, programmers must be able to closely ? s_ervllce trqm ?n adap er.t foo fhent e '? er.acethast Ic')
relate information produced by a software analysis tool to ogical parts. a language interface that customizes the tool's

the source text in order to understand an existing softwareber]av'orWIth respect to the peculiarities of the programming

system. Common representations store information about'nguage and a representation interface that queries and ma-

the program in a language-neutral fashion, and the loss Ofnlpulates: the actual program. This approach gives the imple-

language-specific detail from a common program represen-mentor of an adaptation cont.roll over how unique Ianguage
tation limits the amount of information about the source text features are handleq and flexibility t_o leverage pecuhar fea-
that a tool can display. tures of the underlying representation to concisely and ef-

ficiently satisfy the tool's requirements. Reuse is enhanced
by providing an adapter base class from which adaptations
are subclassed. These classes can also be used to combine
adaptations into a multi-language tool.

Genoa. Genoa, a software framework that allows rapid de-
velopment of small, special-purpose program analysis tools,
uses a variation of the common representation approach [2].
The process of instantiating Genoa for a new language in- Two weeks of work and 300-1500 lines of adaptive code suf-
volves writing a specification that allows translating queries ficed to retarget our adaptable version of StarTool to dissimi-
of its language-independent program representation intolar representations of diverse source languages. Class-based
gueries of an existing compiler representation. GEN++, for versions of the adaptation interface permitted defining multi-
example, is a Genoa instantiation that provides a query inter-language instantiations of StarTool that reuse existing retar-
face for C++ programs built on top of the cfront C++ trans- gets, requiring a week or so of additional work and about 500
lator. Although the structure of the Genoa AST is language- lines of code.

independent, the framework allows language-specific infor-
mation to be embedded in the AST nodes, thus avoiding the
problems with language-neutral representations.

Requires Interface Design Process

Compared to the state of the art in designing provides in-
terfaces, the design of requires interfaces is relatively unex-
Devanbu reports that Genoa instantiations generally requireplored. Moreover, it is all too easy to fall into old ways and
a 1000-2000 line specification and up to two months to de- apply the techniques of normal interface design to requires
velop. Much of the complexity of the instantiation process interfaces. Based on our experience, the following process
stems from the large amount of information that must be car- helps to avoid the missteps that we made, minimizing the
ried in the Genoa program representation to support the writ- requires interface’s assumptions about the underlying repre-
ing of a wide variety of analysis tools. To provide this infor- sentation service:

mation, the programmer responsible for adapting Genoato a

new language must learn the supporting compiler represen- 1 |dentify the representation requirements of the analysis

tation |n detail al’lq then write SpeCiﬁcationS that allow the tool (e_g_, tree traversaL mappings to program text)_
translation of queries. Both of these steps can take consider-
able time for a Comp|ex program representation. 2. Formulate these requirements in tool-centric terms.

Our initial representation-centric approach to retargeting 3. Identify those tool features (e.g. elision) that have a
StarTool is analogous to the Genoa approach, except that ~ behavior or presentation that varies across languages.
we use a procedural approach, rather than a declarative
approach, to prescribe the mapping between the underly-
ing program representation and the tool's features. The
procedural approach is likely less compact, but provides
more flexibility. As we learned by retargeting to Gnat, the 5. For each feature with varyingehavior define at-
representation-centric approach is inappropriate when retar- tribute functions to realize the necessary behavior (e.g.,
geting to support a single program analysis tool, as it entails su_has _attribute). Different attribute categories
more work than desired and can hurt performance. might share functions, such as simple boolean attribute

7 CONCLUSION tests.
Program analysis tools are more useful if they can process 6. For each feature with varyimgesentationdefine func-

4. For each such feature, define a tool-centric attribute
query function for the affected language elements (e.g.,
al _elision _attributes).

programs written in a variety of programming languages. We tions that realize the appropriate presentation. If the
have experimentally developed a method for easing the adap- presentation is static, it can be achieved with values that
tation of program analysis tools to new source languages, also represent the attributes (e.qg., strings), avoiding the

based on reusing existing program representations via an inclusion of an additional function.

9

7. Finally, all representations of data should either be [4] E. Gamma, R. Helm, J. Vlissides, and R. E. John-

Other Applications
We succeeded in applying this approach to the design of Star-
Tool, a syntax-based analysis tool. However, the approach

does not depend directly on program analysis, although the

opaque references that are only processed through
the adaptation interface, or least-common-denominator
types like strings and integers.

(5]

benefits are especially strong because of the plethora of pro- [6]
gramming languages in use today.

For example, we are currently applying this approach to the
design of a user interface component for finite element anal-
ysis. The problem in this domain is that each finite element
analysis system supports a specialized set of solvers. Over
time, a user's changing modelling needs can require using
different finite element systems. We are applying our client-

centric design technique to this problem to reduce the cost

of implementing multiple interfaces, save users from having
to learn multiple interfaces, and ultimately integrate the tools
into an integrated finite element system.

A determining factor in the cost effectiveness of the tech-

nigue for a particular application is the amount of configura-

bility that must be supported by the client to accommodate
unigque properties of services. Although the StarTool user in-
terface is effectively parameterized with respect to language
specifics via tool-centric attributes, it does not support radi-

cal reconfigurations of the interface. Elbereth, a star-diagram
based tool for Java has a somewhat different organization [9],
which StarTool’s requires interface cannot currently support.

Of course, limitations are a necessary property of interfaces;
the line must be drawn on functionality somewhere.

Acknowledgments. We thank Kevin Sullivan for his in-
sights on how our approach relates to mediator design. We[ll]
also thank all the people who have contributed to the Star-
Tool implementation, including Darren Atkinson, Morison

Chen, Jenny Cabaniss, Lee Carver, Walter Korman, David[12]
Morgenthaler, and Van Nguyen.

REFERENCES

[1]

(2]

[3]

R. W. Bowdidge and W. G. Griswold. Supporting
the restructuring of data abstractions through manip-
ulation of a program visualizatiolrACM Transactions

on Software Engineering and Methodolpdy2):109—
157, April 1998.

P. Devanbu. GENOA - a customizable, language- and
front-end independent code analyzer. Aroceedings

of the 14th International Conference on Software Engi-
neering pages 307-317, May 1992.

R. B. K. Dewar. The GNAT model of compilation. In
Proceedings of Tri-Ada '94pages 58-70, November
1994,

10

[7]

(8]

(9]

(10]

(13]

(14]

(15]

son. Design Patterns: Elements of Reusable Object-
Oriented Software Addison-Wesley, Reading, MA,
1995.

W. G. Griswold and D. C. Atkinson. Managing the de-
sign trade-offs for a program understanding and trans-
formation tool.Journal of Systems and SoftwaB®(1—
2):99-116, July—August 1995.

W. G. Griswold, D. C. Atkinson, and C. McCurdy. Fast,
flexible syntactic pattern matching and processing. In
Proceeedings of the IEEE 1996 Workshop on Program
Comprehensigmages 144-153, March 1996.

W. G. Griswold, M. I. Chen, R. W. Bowdidge, J. L.
Cabaniss, V. B. Nguyen, and J. D. Morgenthaler. Tool
support for planning the restructuring of data abstrac-
tions in large systemdEEE Transactions on Software
Engineering24(7):534-558, July 1998.

W. G. Griswold and D. Notkin. Automated assis-
tance for program restructuringACM Transactions
on Software Engineering and Methodology3):228—
269, July 1993.

W. F. Korman. Elbereth: Tool support for refactoring
java programs. Masters Thesis, University of Califor-
nia, San Diego, Department of Computer Science and
Engineering, June 1998. Technical Report CS98-590.

H. A. Muller, S. R. Tilley, M. A. Orgun, B. D. Cor-
rie, and N. H. Madhaviji. A reverse engineering en-
vironment based on spatial and visual software inter-
connection models. IRProceedings of the SIGSOFT
'92 Fifth Symposium on Software Development Envi-
ronmentspages 88—-98, December 1992.

J. K. Ousterhout, editor. Tcl and the Tk Toolkit
Addison-Wesley, Reading, MA, 1994.

D. L. Parnas. Designing software for ease of extension
and contractionlEEE Transactions on Software Engi-
neering 5(2):128-138, March 1979.

K. J. Sullivan and D. Notkin. Reconciling environment
integration and component independencePioceed-
ings of the SIGSOFT '90 Fourth Symposium on Soft-
ware Development Environmentgages 22-33, De-
cember 1990.

K. J. Sullivan and D. Notkin. Reconciling environ-
ment integration and component independens€M
Transactions on Software Engineering and Methodol-
ogy, 1(3):229-268, July 1992.

M. J. Vilot. An introduction to the Standard Template
Library. C++ Report, 6(8):22—-29, 35, October 1994.

