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ABSTRACT
Interactive program analysis tools are often tailored to one
particular representation of programs, making adaptation to
a new language costly. One way to ease adaptability is to in-
troduce an intermediate abstraction—an adaptation layer—
between an existing language representation and the pro-
gram analysis tool. This adaptation layer translates the tool’s
queries into queries on the particular representation.

Our experiments with this approach on the StarTool program
analysis tool resulted in low-cost retargets for C, Tcl/Tk, and
Ada. Required adjustments to the approach, however, led
to insights for improving a client’s retargetability. First, re-
targeting was eased by having our tool import a tool-centric
(i.e., client-centric) interface rather than a general-purpose,
language-neutral representation interface. Second, our adap-
tation layer exports two interfaces, a representation interface
supporting queries on the represented program and a lan-
guage interface that the client queries to configure itself suit-
ably for the given language. Straightforward object-oriented
extensions enhance reuse and ease the development of multi-
language tools.

Keywords
Retargetability, reuse, software design, program analysis,
software tools.

1 INTRODUCTION
By summarizing information that is collected from a soft-
ware system as a whole, a program analysis tool can reduce
the time required by a programmer to understand a system
well enough to begin making changes. For example, RIGI
can summarize the architectural elements of a system [10];
our StarTool provides hierarchical, crosscutting views of all
the uses of a data structure or other design decision [7].

Such tools are most useful if they are able to analyze pro-
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grams written in varied source languages, since systems that
benefit the most from such analysis, especially legacy pro-
grams, are often written in multiple or proprietary program-
ming languages. However, program analysis tools are often
tailored to one particular representation of programs, mak-
ing adaptation to a new language costly (Figure 1a). An in-
expensive way of achieving adaptability is to introduce an
intermediate abstraction—an adapter component or adapta-
tion layer—between an existing language representation and
the program analysis. This additional layer translates the
tool’s queries into queries on the particular representation [4,
pp. 139–150]. Genoa [2] represents such an approach for ac-
commodating multiple analysis tools (See Section 6).

The question arises, then, as to what interface should lie be-
tween the adaptation layer and the retargeting tool. An ap-
propriate interface would impose minimal inconvenience on
adaptation layer implementations, since one must be written
for each retarget to a language representation.

In a project to make our StarTool program analysis tool eas-
ily retargetable, we hypothesized that the adaptation layer in-
terface should be a low-level, language-neutral, tree-oriented
language representation interface, because it would impose
minimal responsibilities and inconvenience on any represen-
tation (Figure 1b). Only a small number of operations should
be required because of StarTool’s limited needs.

To assess this claim, we first restructured StarTool to re-
move representation- and language-specific references in the
code and have it import such an interface in their place. We
then developed retargets to the Ponder C program represen-
tation [5], a similar representation for Tcl/Tk, and the Gnat
Ada [3] program representation.

Although these representations are indeed tree-based, the ex-
port of a low-level and language-neutral interface compli-
cated the adaptation code and hurt performance because it
made inappropriate assumptions about the language repre-
sentation. It also prevented language-specific traits from be-
ing expressed in the tool’s user interface. Our mistake was to
treat the design of the adaptation layer interface like the de-
sign of a service that is reused by many clients, when in our
case the component being reused is an incomplete client that
could import a number of possible services. Hence, the effort
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Figure 1: Evolution of StarTool’s design for retargetability. Edges denote theusesrelation, realized by function call. The shape
of the adapter box reflects the scope of its responsibilities: greater width implies supporting more functionality, greater height
implies bridging a larger semantic gap.

in supporting a flexible, low-level interface was misplaced:
the client did not need it, and so the adaptations did not need
to support it. The implication was that our focus should be on
designing an appropriaterequiresinterface for the client that
states only what the tool requires in terms of the its own fea-
tures. This change in orientation widens the semantic gap be-
tween the tool and possible representations to give adapters
increased implementation flexibility (Figure 1c). Language-
specific configuration of the tool is achieved through inter-
face operations that query the adaptation layer about how the
tool should behave for language-sensitive tool features.

This choice requires the adaptation code to explicitly under-
stand the relationship between the language representation
and the tool’s features. Yet this choice resulted in adapta-
tions that are simpler and more efficient because it provides
flexibility to the adaptation implementation. It also supports
multi-language analysis through the introduction of an adap-
tation layer that joins two other adaptation layers: the multi-
language adapter is concerned only with a join that meets the
tool’s particular needs rather than in general terms of what a
multi-language program means. In short, an adaptation layer
functions as a glue-hiding mediator that serves to combine
independently developed components [13, 14].

Section 2 describes StarTool and its representation require-
ments. Section 3 describes our initial retargetable interface,
and Section 4 describes the Ponder C, Tcl/Tk, and Gnat Ada
retargets, as well as the problems encountered. In Section 5
we discuss our insights, the resulting revised adaptation in-
terface, and techniques for improving reuse and supporting
multi-language retargets. We close with consideration of re-
lated retargeting approaches, a design process for designing
client-centric interfaces, and criteria for application to other
program analysis tools and software.

2 STARTOOL AND ITS REPRESENTATION NEEDS
The StarTool program analysis tool assists programmers
in planning restructuring projects on large software sys-
tems [7]. In particular, it helps a programmer to make encap-
sulation decisions by displaying context graphs calledstar
diagramsthat provide information about the usage patterns
of objects within a program. To build a star diagram, the
user selects objects of interest, typically variables, and the
tool expands these selections to include all references to the
selected objects, or if requested, all references to objects that
have the same type as those objects.

Figure 2 shows a star diagram for the variablerooms built
for a program consisting of four C source files. The root
of the diagram (the leftmost node in the graph) contains all
references to the variable itself. The children of the root node
are the syntactic constructs that contain the root references;
children designating identical syntactic constructs, such as
the 30 array references, are stacked into a single node in the
display. Similarly, the grandchildren of the root node are the
syntactic constructs that embed the child nodes, and so on,
out to the leaves of the diagram, which represent source files.
In order to reduce clutter in the display and convey context
information, functions and files are represented by singleton
nodes in the display, rather than being replicated.

Since the stacked nodes in a star diagram represent multiple,
identical uses of an object, they point out the most likely can-
didates for abstract operations on the object in a restructured
system. The tool supports exploration by allowing the user to
inspect the program text associated with a node. Planning a
restructuring is supported by allowing the user to trim a path
from the star diagram display into the lower left-hand panel
and attach descriptive text to it. After planning is complete,
the trims can be viewed in their own star diagram views and
used to navigate back to the program text to carry out the
restructuring change.
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Figure 2: A star diagram window for the variablerooms .

Because star diagrams can contain thousands of nodes, the
tool allows the user to remove uninteresting nodes from the
display. The panel in the upper left-hand corner of the star
diagram window presents the user with a selection of node
attributes; nodes possessing any attribute selected by the user
are elided, and connections joining the node to a parent are
redirected to the node’s children.

There are three major stages to the construction of a star dia-
gram from a hierarchical program representation such as an
abstract syntax tree (AST) [1]. The first stage is construc-
tion of a root set. The objects selected as the prototypes of
the root set are expanded into the full root set by traversing
the AST and testing each AST node to see if it should be
included according to the user’s chosen similarity criterion,
either same variable or same type. The second stage com-
putes the descendants of the star diagram root by retrieving
the parents of the AST nodes of the root set and classify-
ing them according to how they manipulate the child. Con-
cretely, this is achieved by comparing the labels that the AST
nodes generate and clustering those that have the same label.
This stage is repeated on each node in the star diagram until
only file nodes, which constitute the leaves of the star dia-
gram, remain. The third stage computes a graphical layout
of the star diagram, including the merging of the function
and file nodes.

3 RESTRUCTURING AND INITIAL INTERFACE
Given the relatively focused needs of StarTool—basic tree
traversal capabilities and some semantic comparisons—we
hypothesized that only a small number of relatively simple

operations would need to be exported by an adaptation layer
to successfully separate StarTool from underlying program
representations. Based on our experience in designing and
using ASTs [5, 8], we felt that a low-level, language-neutral
interface for the adaptation layer would be least troubling
in writing adaptations that would ultimately span many lan-
guages. In particular, we felt that providing low-level func-
tions would free adaptations of responsibilities to provide
high-level functionality, and lack of language bias would
simplify an adaptation that did not fit such a bias.

To minimize assumptions about what an adaptation could
implement, we planned to limit the interface to using a few
simple types. The interface would communicate AST in-
formation in terms of integer-sized opaque AST-node refer-
ences. Except for testing simple equality, the only legal op-
erations on these references would be provided by the adap-
tation module interface. Other data values, like positional
information or file names, would be represented with least-
common-denominator types such as integers and strings.

Isolating program representation details with an interven-
ing adaptation module required restructuring [8] higher-layer
routines into representation-dependent and representation-
independent pieces, then rewriting the representation-
dependent code using the services defined by our adaptation
module. We attempted to retain as much of the program anal-
ysis and other algorithmic components in the higher layers of
the tool as possible, moving only the aspects of AST manip-
ulation into the new module. This served our long-term goal
of easing the adaptation of the tool to a new program repre-
sentation by limiting the complexity of the functions in the
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adaptation module.

To achieve representation independence and generically ac-
commodate language constructs that could have any num-
ber of children, we chose an interface similar to that sup-
ported by Ponder [5]: the children of an AST node are ac-
cessed by a leftmost-child operation and successive right-
sibling operations starting at the leftmost child; another op-
eration provides access to a node’s immediate parent. The
traversal functions, as shown near the top of Figure 3, are
ast child , ast sibling , andast parent .

To provide the semantic queries on the representation needed
for the construction of meaningful star diagrams, a small
set of generic query functions were chosen. These compare
two nodes for variable or type equality (similar ), advise
which AST nodes should never be considered for inclusion
in a star diagram (ast skip test ), and provide a string
representation of an AST node (ast label ). The function
ast label child character conveys which charac-
ter is used to represent children in the labels; requiring every
adaptation to use one particular character might complicate
label production for some adaptation.

Since the programmer works with program text as well
as star diagrams, functions are required for mapping be-
tween AST nodes and displayed program text. The func-
tions file AstNode and find AstNode provide the
capability to map from a file name or a text selection to
an AST node, respectively. The functionsast file ,
ast begins , ast ends convey from which file an AST
node is derived and the text positions where an AST sub-tree
begins and ends, respectively. Functionfile text returns
the text associated with a file.

Finally, functionast elaborate , appearing at the top of
Figure 3, permits an adaptation to do representation-specific
initialization.

4 C, TCL/TK, AND ADA RETARGETS
C Ponder. As a first test of the new adaptation interface,
we retargeted to C program ASTs generated by the Pon-
der language toolkit. Ponder combines a yacc-like gram-
mar specification tool with data structure libraries and fa-
cilities for manipulating generic program ASTs and symbol
tables [5]. The C instantiation of Ponder existed before we
began the project [6].

The retarget resulted in 1000 lines of non-blank, non-
comment adaptation code for the 14 functions. The size of
the adaptation is larger than we expected in large part be-
cause about 250 lines of code were required to implement
accurate and efficient AST–text mappings. The Ponder C
implementation provides only file and line number mappings
for AST nodes.

Tcl/Tk. We next moved to the issue of evaluating the inter-
face for retargetability with respect to language issues, which
were not touched upon in the C Ponder retarget since the

/*
** Performs any actions necessary to ready the
** module for use. The parameters are those
** specified on invocation of the tool.
*/
int ast_elaborate(int &argc, char *argv[]);

/*
** Relatives of an AstNode in its tree.
*/
AstNode ast_child(AstNode item);
AstNode ast_parent(AstNode item);
AstNode ast_sibling(AstNode item);

/*
** Indicates whether two nodes are "similar".
*/
enum SimilarityTypes {SAME_SYMBOL, SAME_TYPE};
int similar(AstNode left, AstNode right,

SimilarityTypes similarity);

/*
** Returns a label representing the node. This
** may contain occurrences of
** ast_label_child_character followed by a number,
** which the tool replaces to show where the child
** from whence this node was reached appears.
*/
char *ast_label(AstNode item);
char ast_label_child_character();

/*
** Returns True iff the node may be ignored for
** the purposes of constructing a star diagram;
** it’s syntactic fluff we can ignore.
*/
int ast_skip_test(AstNode item);

/*
** Not quite a least-common-denominator type, but
** relatively simple, natural, and it avoids
** requiring two calls to acquire position
** information.
*/
struct FilePosition {

int line, column;
};

/*
** Functions that perform AST-text/file mapping.
*/
char *file_text(AstNode item);
char *ast_file(AstNode item);
AstNode file_AstNode(char *pathname);
FilePosition ast_begins(AstNode item);
FilePosition ast_ends(AstNode item);
AstNode find_AstNode(AstNode start_node,

FilePosition start,
FilePosition end);

Figure 3: The initial adaptation module interface, which con-
tains 15 functions.
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original StarTool implementation was for C. We chose to re-
target the tool to support programs written in the rather dif-
ferent Tcl/Tk language [11]. The representation for Tcl/Tk
programs itself was designed to minimize representation
adaptation issues, permitting a focus on language issues. The
Tcl/Tk parser, AST generator, and text–AST mappings to-
gether consist of about 550 lines of code, plus a yacc gram-
mar file of about 150 lines. We completed the retarget itself
in about a week and under 300 lines of adaptation code, but
encountered two problems in the process.

The first problem we encountered concerned the elision fa-
cilities of star diagrams. StarTool allows elision of case state-
ment, loop statement (do, while, andfor), and if statement
nodes, as well as file and function nodes. Although Tcl/Tk
includes these constructs, they appear somewhat differently
to the programmer, and the AST representation for Tcl/Tk
programs includes other types of nodes that are better can-
didates for elision (e.g., “group”). Since such syntactic cat-
egories are defined by the adaptation, their relevance to eli-
sion is not generally knowable by the generic tool code. Be-
cause StarTool used the text in star diagram nodes to deter-
mine elidability, the obvious stop-gap measure was to have
the Tcl/Tk adaptation return star diagram labels for elidable
nodes that looked like their C counterparts (an artifact from
the original implementation).

The second problem concerned the kind of star diagram to
be constructed. The original StarTool allows users to build
star diagrams based on selected variables or all variables of
a type (e.g.,int ). However, building type-based star dia-
grams makes little sense for a source language with dynamic
typing. Other criteria for constructing star diagrams, such as
all variables declared within a particular scope, prove to be
more useful when analyzing Tcl/Tk programs.

Gnat Ada. To further explore language issues and assess
whether the adaptation layer helps an adaptation program-
mer to easily leverage existing program representations, we
chose to retarget the tool to Gnat, a public-domain Ada com-
piler that provides facilities for manipulating an AST repre-
sentation of Ada95 source [3].

Retargeting to Ada exposed another language-dependent as-
pect of star diagram displays not accommodated by the adap-
tation interface. As described in Section 2, StarTool merges
function and file nodes. Unlike C and Tcl/Tk, the modules
of Ada programs are comprised of compilation units such as
package and task bodies, rather than files, and subprogram
constructs may be nested. Examination of star diagrams built
from the Gnat AST revealed that merging these nested con-
structs would provide better information to the user.

The Gnat retarget also revealed shortcomings of the adap-
tation interface’s AST traversal functions. For each
kind of AST node, Gnat provides a unique set of func-
tions to retrieve the child nodes. For example, an if-
statement node’s children are accessed via functions named

Condition , Else Statements , Elseif Parts , and
Else Statements . Although implementing generic
child and sibling accesses with these specific ones is straight-
forward, it is not efficient. The amount of tree traversal
generated by translating from AST nodes to text positions
and back slowed the tool unacceptably. This problem led us
to enhance the adaptation implementation to cache generic
child information along with the full source range for each
node, computed during an initial walk of the AST. Caching
consumes considerable space at runtime and adds over 700
lines of code to the adaptation module.

The Gnat retarget required approximately two weeks of
work, the bulk of which was devoted to gaining a sufficient
understanding of the Gnat AST. The implementation con-
sists of approximately 2000 lines of code, twice the size of
the adaptation for Ponder C. 700 lines of this excess can be
attributed to making generic node references efficient, and a
significant portion we attribute to the relative complexity of
the Ada language definition.

5 DISCUSSION
Our retargets to C, Tcl/Tk, and Ada highlight a couple of
successes and a couple of problems with our initial approach.

Adaptation effort. The size of the adaptations and the
time it took to code them are reasonable. The adaptation
to Ada is notable because it exploits an existing compiler
intermediate representation to avoid the challenges of imple-
menting an Ada AST ourselves. The interface contains 14
operations and the three adaptations required between 300
and 2000 lines of code each, none requiring more than two
weeks work. Although the varying size and complexity of
the adaptations is partially a reflection of the languages’ rel-
ative complexity, two other factors played an important role.

First is the implementation of accurate AST–text mappings.
Providing these mappings for Ponder C accounts for 250
lines of adaptation code. Although Gnat provides some posi-
tional information, producing accurate mappings from it re-
quired 350 lines of code. Accurate AST–text mapping could
be an issue for many representations. Unfortunately, there is
little chance of overcoming this problem with adapter inter-
face design, since it is simply a missing feature that must be
implemented.

Second, nearly a third of the Gnat retarget is due to an in-
terface mismatch between the adaptation interface’s require-
ment for first-child and next-sibling operations and Gnat’s
named-child functions. This mismatch is a likely problem in
future retargets that could be addressed by interface redesign.

Adaptation suitability. Because the adaptation interface
provides a label-generating function for star diagram nodes,
star diagrams have the look and feel of the programming lan-
guage. However, this success was only skin deep, especially
when it came to diagram manipulation. The C, Tcl/Tk, and
Ada programming languages vary with respect to what con-
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structs should be elidable, mergeable, and also what kinds
of star diagrams would be useful. Since the interface pro-
vides no way to express these variations, we had to force the
language’s features and some node labels into a C-like tax-
onomy.

In considering the code bloat in the Gnat adaptation caused
by the mismatch between the our adaptation interface and
the Gnat services, we realized that theast sibling and
ast child operations are present only to permit compar-
ing each AST node to a candidate node (using adaptation
interface functionsimilar ) to build the root set of the star
diagram. Much of the code bloat could be eliminated, then,
if the Gnat Ada adaptation had to provide only an AST node
iterator, which would hide the distinction between access-
ing children by name and by order, giving adaptation layers
more freedom in implementing AST traversals. This change
eliminates over 500 lines of code from the Gnat adaptation
without compromising performance. The effects are negligi-
ble on the Ponder C and Tcl/Tk adaptations, since they did
not suffer interface mismatch.

For the language-feature mismatches, consider node eli-
sion in star diagrams. To elide nodes corresponding to a
language-specific construct, the generic portion of the tool
must permit the user toselectthe syntactic category of the
construct for elision, and the tool must be able totestwhether
an AST node belongs to that category. Belonging to the class
of elidable constructs can be viewed as a new, tool-specific
AST node-type attribute,elidable, that the adaptation mod-
ule implementation must synthesize from other AST node-
type attributes.

Consequently, we added two new functions to the adaptation
module interface for supporting this new attribute. The func-
tion ast elision attributes returns a set of AST
node attributes—represented as a tab-delimited string—that
make a node subject to elision. The attribute strings were
given meaningful names, permitting the generic portion of
the tool to display them directly in the star diagram eli-
sion panel. When the tool user selects one of these at-
tributes, the generic tool code calls the other new adaptable
interface function,ast has attribute , passing the eli-
sion attribute and an AST node. Nodes passing this test
are elided from the display. Likewise, to support the tool-
specific AST node attributemergeable, we added the func-
tion ast merging attributes to the interface and ex-
tended theast has attribute function to recognize the
elements of the new set.

Implementing these functions was straightforward. For
all adaptations the functionsast elision attributes
andast merging attributes each required one line
of code, andast has attribute required upto 25.

To permit the construction of unique kinds of star di-
agrams for each programming language, we replaced

the fixed enumerationSimilarityTypes with adapter-
defined AST similarity attributes by adding the function
ast similarity attributes to the adaptation layer
interface, which returns the attributes that may relate nodes.
In turn we modified the generic portion of the tool to dis-
play these attributes directly to the user for selection, and the
interface functionsimilar was modified to accept these
language-defined attributes.

Client-centric interface design
Unlike the initial set of language representation and seman-
tics functions, which are low-level general-purpose AST-
oriented operations, the new operations for supporting eli-
sion, merging, and comparison are bothtool-oriented(they
would have no useful function in a different tool) and serve
to configure the tool to express the peculiarities of the pro-
gramming language. This tool orientation is a departure
from our initial expectations. Since star diagram node eli-
sions, for example, are centered around compound state-
ments, we might have chosen elision-helping operations
such asast isLoopStmt andast isCaseStmt . How-
ever, this would not have provided for an open-ended, flexi-
ble, set of elision categories and would have constrained the
tool to display fixed generic names for these (e.g., “Loops”),
regardless of what special constructs a language like Tcl/Tk
or Ada might contain.

This insight led us to reconsider our choice to provide a node
iterator, which has a representation-independent, rather than
a tool-centric, flavor. A basic iterator might be suboptimal
for future adaptations because it cannot exploit a representa-
tion’s precomputation of sets of similar nodes, for example
in the form of definition-use chains or reference sets in the
symbol table. Lacking a means to access such a direct rep-
resentation, StarTool is forced to examine every node in the
AST to gather the references itself.

A tool-centric approach suggests providing a function
next similar specifically for constructing star diagram
root sets, thus absorbing the iteration and comparison duties
into a single function and leaving the details of similar node
collection to the implementation. Although the resulting in-
terface restricts what StarTool can do to the representation,
it is just this restriction that simplifies the adaptation code by
permitting it to support less functionality.

Indeed, the generic StarTool component represents a single,
fixed client implementation that we attach to multiple service
implementations. This reverses the typical client–service
layering relation, in which a single service implementation is
designed to support multiple clients. By moving the adapta-
tion interface away from the changing service side, we create
a sufficient semantic gap between them to give the designers
of adaptations the flexibility needed to take advantage of op-
timization opportunities in the services.

Consequently, we reformulated the adaptation layer’s inter-
face as a tool-centric (i.e., client-centric)requiresinterface
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int al_elaborate(int &argc, char *argv[]);

char *al_elision_attributes();
char *al_merging_attributes();
char *al_similarity_attributes();

int su_has_attribute(SyntaxUnit item,
char *attribute);

/*
** Provides iteration of elements appropriately
** similar to #prototype# under/inside the
** #container#.
*/
SyntaxUnit first_similar_su(SyntaxUnit container,

SyntaxUnit prototype,
char *similarity);

SyntaxUnit next_similar_su();

/*
** Provides iteration of elements with #attribute#
** under/inside the #container#.
*/
SyntaxUnit first_su_with_attribute(

SyntaxUnit container,
char *attribute);

SyntaxUnit next_su_with_attribute();

/*
** Formerly the ast_parent operation.
*/
SyntaxUnit su_superunit(SyntaxUnit item);

/*
** Given a SyntaxUnit #item# and the #subunit#
** from which it was reached, returns a label
** indicative of #item#, possibly with an
** indication of which position #subunit#
** resides. (Label modification was formerly
** performed in the tool, but was moved down
** along with other representation traversals.)
*/
char *su_label(SyntaxUnit item,

SyntaxUnit subunit);

int su_skip_test(SyntaxUnit item);

struct FilePosition {
int line, column;

};

char *su_file(SyntaxUnit item);
FilePosition su_begins(SyntaxUnit item);
FilePosition su_ends(SyntaxUnit item);
SyntaxUnit file_to_su(char *pathname);
char *file_text(SyntaxUnit item);
char *file_filters();
SyntaxUnit file_range_to_su(

SyntaxUnit container,
FilePosition *range_begin,
FilePosition *range_end);

Figure 4: The reformulated StarTool-centric adaptation mod-
ule interface, which contains 19 functions. The identifier
sub-tagal stands foradaptation layer; the tagsu stands for
syntax unit. These were changed and generalized to reflect
the greater independence from the representation.

Program
Representation

generic

functionality
star diagram

Adapter

Figure 5: Theknows aboutrelation amongst the components
of StarTool (shown as directed edges) denotes a mediator re-
lation for the adapter, which is maintaining independence of
the generic tool and program representations.

for StarTool that states exactly what it requires in terms of
its own features (Figure 4). The interface has two parts: a
language interfacethat serves to configure StarTool to ac-
commodate the peculiarities of the programming language
(theal operations), and arepresentation interfacethat per-
forms operations on the underlying representations (e.g., the
su operations), perhaps parameterized themselves by data
retrieved earlier from the language interface.

The choice of a client-centric requires interface, although
somewhat counter-intuitive, is actually an application of
information-hiding modularity. The client, although not
free-standing, should not attempt to exploit the implemen-
tation details of the services to which it will be connected.
Should these details change (e.g., upon retargeting to an
unanticipated language representation), either the client will
have to be changed or the adaptation code will be made un-
necessarily complex by attempting to satisfy the client’s as-
sumptions. In the language of Parnas, although the client
usesthe service anddepends uponit for its correct function-
ing, it should notknow about(make assumptions about) its
design [12], in this case even its interface (Figure 5). It is the
responsibility of the adaptation layer to translate between the
independently developed service and client components by
matching the requirements of their interfaces; the client im-
ports functionality from the adaptation layer while dictating
the interface. The adaptation layer hides the design deci-
sions about how the translation is achieved. In this respect,
the adaptation layer is a proper mediator module: it knows
about both the provided interface of the service and the re-
quired interface of the client [14]. The fewer constraints that
these two interfaces put on the environment, the easier it is
to implement the mediator. In this respect, it is best for the
client to require services in terms of its own features, not in
terms of the features of a hypothetical service.

The conclusion discusses how to approach the design of
client-centric interfaces from scratch and the situations in
which it might be fruitfully applied.

Extensions for Reuse and Multi-Language Support
After completion of the tool-centric interface redesign, two
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issues arose. First, each retarget contained some code sim-
ilar to code in another retarget. This redundancy was due
to the fact that although the new tool-centric interface min-
imizes assumptions about the underlying representations, it
puts some extra, albeit small, responsibilities on the adap-
tations (e.g., aggregating similar nodes) because it is effec-
tively operating at a higher level. Some of those responsibil-
ities are handled identically by most retargets—for example
retargets whose underlying representation provides generic
child and sibling operations. Also, many adaptation inter-
face operations admit trivial implementations for an initial
retarget. For example, no retarget is required to support tool-
centric attributes for elision. Second, we desired to support a
multi-language tool, one that could handle a program written
in a combination of, say, C and Tcl/Tk, which is a typical use
of Tcl/Tk. However, the purely procedural adaptation inter-
face does not readily permit multiple implementations of the
same operation.

These issues were straightforwardly addressed with an
object-oriented version of the tool-centric adaptation inter-
face. We added aStarAdapterClass base class with
default implementations of operations, both reducing re-
dundancy and providing name space control. StarTool still
imports the procedural interface, however, making no as-
sumptions about an adaptation’s ability to support object-
orientation. The object-oriented implementation is merely
a resource that a programmer can leverage to implement the
procedural interface. Although this approach results in an
extra layer of calls, inlining by the compiler is possible un-
less the adaptation subclass is selected dynamically at run-
time.

StarAdapterClass provides default implementations
for 14 of the interface operations, amounting to 160 lines of
potentially reusable code. Most adaptations will reuse only a
portion of this code, since many of the default implementa-
tions are essentially no-ops. However, these can help get an
adaptation running quickly by permitting the adaptation pro-
grammer to focus initially on the few central representation
operations.

Prototypes of multi-language tools for C and Tcl/Tk, as well
as C, Tcl/Tk, and Ada, have proved straightforward to im-
plement, requiring 450 and 550 lines of new adaptation code
apiece, including the handling of cross-language variable
linkages. The adaptation is implemented by writing glue
code that combines existing adaptation classes into a sin-
gle adaptation interface (Figure 6). The glue code has two
primary responsibilities for any interface operation: (1) di-
viding a whole-program query from the generic tool into a
query on each target implementation and (2) combining the
results of those queries into a single return value.

A typical aspect of dividing a whole-program query is
distinguishing the target representation of a particular
SyntaxUnit that is passed as a parameter. This classi-

generic
star diagram
functionality

Ponder C Tcl/Tk
Adapter Adapter

Adapter
C-Tcl/Tk

Representation
Program

Representation
Program

Ponder C Tcl/Tk

Figure 6: Multi-language retarget of StarTool using adapter
classes. Edges are function calls.

fication is currently implemented with STLMap [15] from
SyntaxUnit ’s to target implementations. Combining the
results returned from a query across multiple targets often
amounts to a union. Attribute operations are not so simple
to handle, however, as they involve multi-language seman-
tics. For example, should the programmer be allowed to sep-
arately control elision of Cif statements and Tcl/Tkif state-
ments, or should the two be treated as one construct? Al-
though such questions are difficult to answerin general, an
answer is simpler in the context of a single tool like StarTool:
what choice better serves a user of StarTool? In defining eli-
sion categories, for example, the issues include the amount
of control the user needs, user interface clutter (e.g., a poten-
tial explosion of elision categories), and the programmer’s
conception of similar constructs. Such issues could result
in the creation of a new multi-language elision category that
must be translated into the particular elision categories of the
underlying adaptations.

6 RELATED APPROACHES
Common intermediate representation. The information
required by a program analysis tool often closely resembles
the information needed by a compiler. Retargetable compil-
ers ease the process of adapting to both different languages
and different machine architectures by defining a common
intermediate program representation. Language-specific
translators transform a source program into this common
representation, then pass the result to language-independent
components for additional translation. Although program
analysis tools often use the same program representations
as compilers, providing retargetability through the use of a
common representation works poorly with these tools. De-
veloping software to translate a new source language into
a common representation can require months of effort be-
cause of the semantic detail required and coping with mis-
matches between the source language and the common rep-
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resentation. Compilers recover this investment by reusing
the complex modules that perform optimization and trans-
lation to any number of target architectures. In contrast,
development of the source translator can consume the bulk
of the time required to write a new version of a program
analysis tool. Also, programmers must be able to closely
relate information produced by a software analysis tool to
the source text in order to understand an existing software
system. Common representations store information about
the program in a language-neutral fashion, and the loss of
language-specific detail from a common program represen-
tation limits the amount of information about the source text
that a tool can display.

Genoa. Genoa, a software framework that allows rapid de-
velopment of small, special-purpose program analysis tools,
uses a variation of the common representation approach [2].
The process of instantiating Genoa for a new language in-
volves writing a specification that allows translating queries
of its language-independent program representation into
queries of an existing compiler representation. GEN++, for
example, is a Genoa instantiation that provides a query inter-
face for C++ programs built on top of the cfront C++ trans-
lator. Although the structure of the Genoa AST is language-
independent, the framework allows language-specific infor-
mation to be embedded in the AST nodes, thus avoiding the
problems with language-neutral representations.

Devanbu reports that Genoa instantiations generally require
a 1000-2000 line specification and up to two months to de-
velop. Much of the complexity of the instantiation process
stems from the large amount of information that must be car-
ried in the Genoa program representation to support the writ-
ing of a wide variety of analysis tools. To provide this infor-
mation, the programmer responsible for adapting Genoa to a
new language must learn the supporting compiler represen-
tation in detail and then write specifications that allow the
translation of queries. Both of these steps can take consider-
able time for a complex program representation.

Our initial representation-centric approach to retargeting
StarTool is analogous to the Genoa approach, except that
we use a procedural approach, rather than a declarative
approach, to prescribe the mapping between the underly-
ing program representation and the tool’s features. The
procedural approach is likely less compact, but provides
more flexibility. As we learned by retargeting to Gnat, the
representation-centric approach is inappropriate when retar-
geting to support a single program analysis tool, as it entails
more work than desired and can hurt performance.

7 CONCLUSION
Program analysis tools are more useful if they can process
programs written in a variety of programming languages. We
have experimentally developed a method for easing the adap-
tation of program analysis tools to new source languages,
based on reusing existing program representations via an

adaptation module that acts as a mediator between the repre-
sentation and the program analysis tool.

The core of this method is the definition of a tool-centric in-
terface that the generic program analysis client requires as
a service from an adapter. A tool-centric interface has two
logical parts: a language interface that customizes the tool’s
behavior with respect to the peculiarities of the programming
language and a representation interface that queries and ma-
nipulates the actual program. This approach gives the imple-
mentor of an adaptation control over how unique language
features are handled and flexibility to leverage peculiar fea-
tures of the underlying representation to concisely and ef-
ficiently satisfy the tool’s requirements. Reuse is enhanced
by providing an adapter base class from which adaptations
are subclassed. These classes can also be used to combine
adaptations into a multi-language tool.

Two weeks of work and 300-1500 lines of adaptive code suf-
ficed to retarget our adaptable version of StarTool to dissimi-
lar representations of diverse source languages. Class-based
versions of the adaptation interface permitted defining multi-
language instantiations of StarTool that reuse existing retar-
gets, requiring a week or so of additional work and about 500
lines of code.

Requires Interface Design Process
Compared to the state of the art in designing provides in-
terfaces, the design of requires interfaces is relatively unex-
plored. Moreover, it is all too easy to fall into old ways and
apply the techniques of normal interface design to requires
interfaces. Based on our experience, the following process
helps to avoid the missteps that we made, minimizing the
requires interface’s assumptions about the underlying repre-
sentation service:

1. Identify the representation requirements of the analysis
tool (e.g., tree traversal, mappings to program text).

2. Formulate these requirements in tool-centric terms.

3. Identify those tool features (e.g. elision) that have a
behavior or presentation that varies across languages.

4. For each such feature, define a tool-centric attribute
query function for the affected language elements (e.g.,
al elision attributes ).

5. For each feature with varyingbehavior, define at-
tribute functions to realize the necessary behavior (e.g.,
su has attribute ). Different attribute categories
might share functions, such as simple boolean attribute
tests.

6. For each feature with varyingpresentation, define func-
tions that realize the appropriate presentation. If the
presentation is static, it can be achieved with values that
also represent the attributes (e.g., strings), avoiding the
inclusion of an additional function.
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7. Finally, all representations of data should either be
opaque references that are only processed through
the adaptation interface, or least-common-denominator
types like strings and integers.

Other Applications
We succeeded in applying this approach to the design of Star-
Tool, a syntax-based analysis tool. However, the approach
does not depend directly on program analysis, although the
benefits are especially strong because of the plethora of pro-
gramming languages in use today.

For example, we are currently applying this approach to the
design of a user interface component for finite element anal-
ysis. The problem in this domain is that each finite element
analysis system supports a specialized set of solvers. Over
time, a user’s changing modelling needs can require using
different finite element systems. We are applying our client-
centric design technique to this problem to reduce the cost
of implementing multiple interfaces, save users from having
to learn multiple interfaces, and ultimately integrate the tools
into an integrated finite element system.

A determining factor in the cost effectiveness of the tech-
nique for a particular application is the amount of configura-
bility that must be supported by the client to accommodate
unique properties of services. Although the StarTool user in-
terface is effectively parameterized with respect to language
specifics via tool-centric attributes, it does not support radi-
cal reconfigurations of the interface. Elbereth, a star-diagram
based tool for Java has a somewhat different organization [9],
which StarTool’s requires interface cannot currently support.
Of course, limitations are a necessary property of interfaces;
the line must be drawn on functionality somewhere.
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