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Abstract

We study the problem of topic modeling in
corpora whose documents are organized in
a multi-level hierarchy. We explore a para-
metric approach to this problem, assuming
that the number of topics is known or can
be estimated by cross-validation. The mod-
els we consider can be viewed as special
(finite-dimensional) instances of hierarchical
Dirichlet processes (HDPs). For these mod-
els we show that there exists a simple varia-
tional approximation for probabilistic infer-
ence. The approximation relies on a pre-
viously unexploited inequality that handles
the conditional dependence between Dirich-
let latent variables in adjacent levels of the
model’s hierarchy. We compare our approach
to existing implementations of nonparamet-
ric HDPs. On several benchmarks we find
that our approach is faster than Gibbs sam-
pling and able to learn more predictive mod-
els than existing variational methods. Fi-
nally, we demonstrate the large-scale viability
of our approach on two newly available cor-
pora from researchers in computer security—
one with 350,000 documents and over 6,000
internal subcategories, the other with a five-
level deep hierarchy.

1. Introduction

In the last decade, probabilistic topic models have
emerged as a leading framework for analyzing and
organizing large collections of text (Blei & Lafferty,
2009). These models represent documents as “bags of

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

words” and explain frequent co-occurrences of words as
evidence of topics that run throughout the corpus. The
first properly Bayesian topic model was latent Dirich-
let allocation (LDA) (Blei et al., 2003). A great deal
of subsequent work has investigated hierarchical ex-
tensions of LDA, much of it stemming from interest in
nonparametric Bayesian methods (Teh et al., 2006).
In these models, topics are shared across different but
related corpora (or across different parts of a single,
larger corpus). One challenge of topic models is that
exact inference is intractable. Thus, it remains an ac-
tive area of research to devise practical approximations
for computing the statistics of their latent variables.

In this paper we are interested in the topic modeling
of corpora whose documents are organized in a multi-
level hierarchy. Often such structure arises from prior
knowledge of a corpus’s subject matter and readership.
For example, news articles appear in different sections
of the paper (e.g., business, politics), and these sec-
tions are sometimes further divided into subcategories
(e.g., domestic, international). Our goal is to explore
the idea that prior knowledge of this form, though nec-
essarily imperfect and incomplete, should inform the
discovery of topics.

We explore a parametric model of such corpora, as-
suming for simplicity that the number of topics is
known or can be estimated by (say) cross-validation.
The models that we consider assign topic proportions
to each node in a corpus’s hierarchy—not only the leaf
nodes that represent documents, but also the ancestor
nodes that reflect higher-level categories. Conditional
dependence ensures that nearby nodes in the hierarchy
have similar topic proportions. In particular, the topic
proportions of lower-level categories are on average the
same as their parent categories. However, useful vari-
ations naturally arise as one descends the hierarchy.
As we discuss later, these models can also be viewed
as special (finite-dimensional) instances of hierarchical
Dirichlet processes (HDPs) (Teh et al., 2006).
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Our main contributions are two. First, we devise a
new variational approximation for inference in these
models. Based on a previously unexploited inequality,
the approximation enables us to compute a rigorous
lower bound on the likelihood in Bayesian networks
where Dirichlet random variables appear as the chil-
dren of other Dirichlet random variables. We believe
that this simple inequality will be of broad interest.

Our second contribution is to demonstrate the large-
scale viability of our approach. Our interest in this
subject arose from the need to analyze two sprawling,
real-world corpora from the field of computer secu-
rity. The first is a seven-year collection of over 350,000
job postings from Freelancer.com, a popular Web site
for crowdsourcing. We view this corpus as a three-
layer tree in which leaf nodes represent the site’s job
postings and interior nodes represent the active buy-
ers (over 6,000 of them) on the site; see Fig. 1. The
second corpus is derived from the BlackHatWorld In-
ternet forum, in which users create and extend threads
in a deep, content-rich hierarchy of pre-defined subcat-
egories; see Fig. 2. Our results break new ground for
hierarchical topic models in terms of both the breadth
(i.e., number of interior nodes) and depth (i.e., number
of levels) of the corpora that we consider. Moreover, it
is our experience that sampling-based approaches for
HDPs (Teh et al., 2006) do not easily scale to corpora
of this size, while other variational approaches (Teh
et al., 2008; Wang et al., 2011; Wang & Blei, 2012;
Bryant & Sudderth, 2012) have not been demonstrated
(or even fully developed) for hierarchies of this depth.

The organization of this paper is as follows. In sec-
tion 2, we describe our probabilistic models for hi-
erarchical corpora and review related work. In sec-
tion 3, we develop the variational approximation for
inference and parameter estimation in these models.
In section 4, we evaluate our approach on several cor-
pora and compare the results to existing implemen-
tations of HDPs. Finally, in section 5, we conclude
and discuss possible extensions of interest. The sup-
plementary material for our paper contains a full proof
of the key inequality for variational inference, a brief
description of our large-scale (parallelized) implemen-
tation, and additional background and results on the
Freelancer and BlackHatWorld corpora.

2. Model and Related Work

Figs. 1 and 2 illustrate the types of structure we seek to
model in hierarchical corpora. This structure is most
easily visualized as a tree in which the root node rep-
resents the corpus as a whole, the children of the root
node represent top-level categories, the interior nodes

Root

Buyer ‘janeDoe’ (78) “I need facebook phone verified accounts”

“Need this website redesigned”

...

Buyer ‘johnSmith’ (279)

...

on Feb 22, 2010

on Mar 2, 2010
“Need 10K Fans in my Facebook Page”
on Mar 3, 2010

“SEO: Articles Required about Embroidery”

“SEO: Directory Submission”

...

on Jul 4, 2007

on Jul 6, 2007
“PHP Developer Required”
on Aug 3, 2007

Figure 1. The hierarchy of buyers and job advertisements
on Freelancer.com. The number of ads per buyer is indi-
cated in parentheses. For brevity, only titles and dates of
ads are shown.

Root Black Hat Forum Blogging (232)

Cloaking and Content Generators (266)

Email Marketing and Opt-In Lists (162)

Black Hat Tools (351)
Member Downloads (1053)

Download Requests (486)

Junior VIP (88)
Stupid Fricking Ebooks (88)

Black Hat SEO (1230)
White Hat SEO (201)
Social Networking Sites (92)

Money, and Mo Money Making Money (546)

Google Adsense (127)

Affiliate Programs (190)

Buy sell or Trade (167)

BlackHatWorld.com Introductions (960)
BlackHat Lounge (639)
Suggestions & Feedback (94)

Figure 2. The hierarchy of subforums in the BlackHat-
World Internet forum. The number of threads in each
subforum is indicated in parentheses.

represent subcategories of their parents, and the leaf
nodes represent individual documents. In this section
we describe a probabilistic generative model for cor-
pora of this form and discuss its relation to previous
work in topic modeling.

2.1. Model

Our model is essentially an extension of LDA to ac-
count for the tree structure in Figs. 1 and 2. In LDA,
each document d is modeled by topic proportions θd,
which are mixture weights over a finite set of K topics.
In our approach, we model not only the documents in
this way—the leaves of the tree—but also the cate-
gories and subcategories that appear at higher levels
in the tree. Thus for each (sub)category t, we model
its topic proportions by a latent Dirichlet random vari-
able θt, and we associate one of these variables to each
non-leaf node in the tree. We use θ0 to denote the
topic proportions of the root node in the tree (i.e. the
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corpus-wide topic proportions), and we sample these
from a symmetric Dirichlet prior γ.

The topic proportions of the corpus, its categories,
subcategories, and documents are the latent Dirich-
let variables in our model. It remains to specify how
these variables are related—in particular, how topic
proportions are inherited from parent to child as one
traverses the trees in Figs. 1 and 2. We parameterize
this conditional dependence by associating a (scalar)
concentration parameter αt to each category t. The
parameter αt governs how closely the topic propor-
tions of category t are inherited by its subcategories
and documents; in particular, small values of αt al-
low for more variance, and large values for less. More
formally, let π(t) denote the parent category of the
category t. Then we stipulate:

θt ∼ Dirichlet
(
απ(t)θπ(t)

)
. (1)

Likewise, documents inherit their topic proportions
from parent categories in the same way:

θd ∼ Dirichlet
(
απ(d)θπ(d)

)
, (2)

where π(d) in the above equation denotes the parent
category of document d.

The final assumption of our model is one of conditional
independence: namely, that the topic proportions of
subcategories are conditionally independent of their
“ancestral” categories given the topic proportions of
their parent categories. With this assumption, we ob-
tain the simple generative model of hierarchical cor-
pora shown in Fig. 3. To generate an individual docu-
ment, we begin by recursively sampling the topic pro-
portions of its (sub)categories conditioned on those of
their parent categories. Finally, we sample the words
of the document, conditioned on its topic proportions,
in the same manner as LDA. In what follows we refer
to this model as tree-informed LDA, or simply tiLDA.

In general, it is a bit unwieldy to depict the Bayesian
network for topic models of this form. However, a
special case occurs when the corpus hierarchy has uni-
form depth—that is, when all documents are attached
to subcategories at the same level. Fig. 4 shows the
graphical model when all documents in the corpus are
attached (for example) to third-level nodes.

2.2. Related Work

Our model can be viewed as a generalization of certain
previous approaches and a special instance of others.
Consider, for example, the special case of tiLDA for
a “flat” corpus, where all the documents are attached
directly to its “root.” This case of tiLDA corresponds

Procedure Main()

1. Draw topics βk∼Dirichlet(η) for k∈{1, ...,K}
2. Draw topic proportions θ0∼Dirichlet(γ)
3. Call GenerateCategory(0)

Procedure GenerateCategory(t)

1. For each subcategory c of t:

(a) Draw topic proportions θc∼Dirichlet(αtθt)
(b) Call GenerateCategory(c)

2. For each document d of t:

(a) Draw topic proportions θd∼Dirichlet(αtθt)
(b) Call GenerateDocument(d)

Procedure GenerateDocument(d)

1. For each word wdn ∈ {1, 2, . . . , V } of d,

(a) Draw a topic zdn ∼ Multinomial(θd)
(b) Draw a word wdn ∼ Multinomial(βzdn)

Figure 3. The generative process of our topic model for hi-
erarchical corpora. The process begins in the Main pro-
cedure, sampling topic-word profiles and topic proportions
from symmetric Dirichlet distributions. Then it recursively
executes the GenerateCategory procedure for each internal
node of the corpus and the GenerateDocument procedure
for each leaf node.

to LDA with an asymmetric Dirichlet prior over topic
proportions. Wallach et al. (2009a) showed how to
perform Gibbs sampling in such models and demon-
strated their advantages over LDA with a symmetric
Dirichlet prior.

Our approach also draws on inspiration from hierar-
chical Dirichlet processes (HDPs) (Teh et al., 2006).
In tiLDA, as in HDPs, the sample from one Dirich-
let distribution serves as the base measure for another
Dirichlet distribution. HDPs are a nonparametric gen-
eralization of LDA in which the number of topics is
potentially unbounded and can be learned from data.
We can view the generative model of tiLDA as a spe-
cial case of multi-level HDPs whose base measure is
finite (thus only allowing for a finite number of top-
ics). Though tiLDA does not possess the full richness
of HDPs, our results will show that for some applica-
tions it is a compelling alternative.

Gibbs sampling is perhaps the most popular strategy
for inference and learning in hierarchical topic models.
The seminal work by Teh et al. (2006) developed a
Gibbs sampler for HDPs of arbitrary depth and used it
to learn a three-level hierarchical model of 160 papers
from two distinct tracks of the NIPS conference. We
note also that Du et al. (2010) developed a collapsed
Gibbs sampling algorithm for a three-level hierarchical
model similar in spirit to ours. The drawback to Gibbs
sampling is its slowness; it is not currently a viable
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approach for large corpora.

Many researchers have pursued variational inference in
HDPs as a faster, cheaper alternative to Gibbs sam-
pling. Teh et al. (2008) developed a framework for
collapsed variational inference in two-level (but not
arbitrarily deep) HDPs, and later Sato et al. (2012)
proposed a related but simplified approach. Yet an-
other framework for variational inference was devel-
oped by Wang et al. (2011), who achieved speedups
with online updates. While the first variational meth-
ods for HDPs truncated the number of possible topics,
two recent papers have investigated online approaches
with dynamically varying levels of truncation (Wang
& Blei, 2012; Bryant & Sudderth, 2012). There have
been many successful applications of variational HDPs
to large corpora; however, we are unaware of any ac-
tual applications to hierarchical corpora (i.e., involving
HDPs that are three or more levels deep). It seems
fair to say that variational inference in nonparamet-
ric Bayesian models involves many complexities (e.g.,
auxiliary variables, stick-breaking constructions, trun-
cation schemes) beyond those in parametric models.
We note that even for two-level HDPs, the variational
approximations already require a good degree of clev-
erness (sometimes just to identify the latent variables).

The above considerations suggest regimes where an
approach such as tiLDA may compete favorably with
nonparametric HDPs. In this paper, we are interested
in topic models of large corpora with known hierar-
chical structure, sometimes many levels deep. In ad-
dition, the corpora are static, not streaming; thus we
are not attempting to model the introduction of new
(or a potentially unbounded number of) topics over
time. We seek a model richer than LDA, one that can
easily corporate prior knowledge in the form of Figs. 1
and 2, but with a minimum of additional complexity.
(Here it bears reminding that LDA—in its most ba-
sic form—still remains a wildly popular and successful
model.) We shall see that tiLDA fits the bill perfectly
in this regime.

3. Algorithms

In this section we develop the algorithms for inference
and learning in tiLDA. Our large-scale implementation
is described in the paper’s supplementary material.

3.1. Variational Inference

The problem of inference in tiLDA is to compute the
posterior distribution over the model’s latent variables
given the observed words in the corpus. In tiLDA, the
latent variables are the topic proportions θt of each

zdn
Nd

βk

wdnθdθt2

αt2

d ∈ Ct2

θt1

αt1

θ0

α0

t2 ∈ Ct1

t1 ∈ C0

γ

K

η

Figure 4. Graphical model for tiLDA in which all docu-
ments of a hierarchical corpus are attached to third-level
nodes. Here Ct denotes the set of indexes for the subcat-
egories and documents of category t, and Nd denotes the
length of the document d.

category (or subcategory) t, the topic proportions θd
of each document d, the topic zdn associated with each
word wdn, and the multinomial parameters βk for each
topic. Exact inference is not possible; approximations
are required. Here we pursue a variational method for
approximate inference (Jordan et al., 1999) that gen-
eralizes earlier approaches to LDA (Blei et al., 2003).

The variational method is based on a parameterized
approximation to the posterior distribution over the
model’s latent variables. The approximation takes the
fully factorized form:

q(θ, z, β|ν, ρ, λ) =
[∏
k

q(βk|λk)
][∏

t

q(θt|νt)
]

[∏
d

q(θd|νd)
∏
n

q(zdn|ρdn)
]
, (3)

where the parameters νt, νd, ρdn, and λk are varied to
make the approximation as accurate as possible. The
component distributions in this variational approxima-
tion are the exponential family distributions:

θt ∼ Dirichlet(νt), θd ∼ Dirichlet(νd),
zdn ∼ Multinomial(ρdn), βk ∼ Dirichlet(λk).

Figs. 4 and 5 contrast the graphical models for the true
posterior and its variational approximation.

The variational parameters νt, νd, ρdn, and λk are
found by attempting to minimize the Kullback-Leibler
divergence between the approximation in eq. (3) and
the true posterior distribution of the model. It can
be shown that this is equivalent to maximizing a
lower bound L ≤ log p(w|γ, α, η) on the marginal log-
likelihood of the corpus. This lower bound is given by:

L = Eq [log p(θ, z, w, β|γ, α, η)] +H(q), (4)

where Eq denotes the expectation with respect to the
variational distribution and H(q) denotes its entropy.
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zdn
Ndθd

θt2

νt2

d ∈ Ct2

t2 ∈ Ct1

t1 ∈ C0

ρdnνd

θt1

νt1

θ0

ν0

βk

λk

K

Figure 5. Variational approximation to the posterior dis-
tribution for the graphical model in Fig. 4.

So far we have developed the variational approxima-
tion for our model by following exactly the same ap-
proach used in LDA. The lower bound in eq. (4),
however, cannot be computed analytically, even for
the simple factorized distribution in eq. (3). In
particular, new terms arise from the expectation
Eq [log p(θ, z, w, β|γ, α, η)] that are not present in the
variational approximation for LDA.

Let us see where these terms arise. Consider the
model’s prior distribution over latent topic proportions
for each subcategory t and document d in the corpus:

p(θ|α, γ) ∝
∏
t>0

p(θt|απ(t)θπ(t))
∏
d

p(θd|απ(d)θπ(d)).

(5)
In eq. (5), we have again used π(t) and π(d) to denote
the parent categories of t and d, respectively, in the
tree. Note that both terms in this prior distribution
express conditional dependencies between Dirichlet
variables at adjacent levels in the tree. In eq. (4), they
give rise to averages such as Eq[log p(θt|απ(t)θπ(t))]
that cannot be analytically computed.

In this paper, we do not have space for a complete
derivation of the log-likelihood bound in our model.
However, the extra steps beyond LDA are essentially
applications of the following theorem.

Theorem 3.1. Let θ ∼ Dirichlet(ν), and let α > 0.
As shorthand, let ν0 =

∑
i νi. Then:

E [log Γ(αθi)] ≤ log Γ(αE[θi]) + α(1−E[θi])/ν0

+ (1−αE[θi]) [log E[θi]+Ψ(ν0)−Ψ(νi)] ,

where E[θi] = νi/ν0 and Γ(·) and Ψ(·) are respectively
the gamma and digamma functions.

A proof of this theorem is given in the paper’s sup-
plement. Note especially the direction of the bound.
The function log Γ(·) is convex, and hence a naive ap-
plication of Jensen’s inequality to the left hand side
of the equation yields the lower bound E[log Γ(αθi)] ≥
log Γ(αE[θi]). It is the additional terms on the right
hand side of the equation that establish the theorem’s

upper bound. The direction of inequality is crucial in
the context of variational inference, where the upper
bound is needed to maintain an overall lower bound
on the log-likelihood. Thus it can be used to compute
a looser (but still rigorous) lower bound L ′ ≤ L on
the log-likelihood in terms of the model’s variational
parameters. We shall see that this surrogate bound
remains highly effective for inference and learning.

We obtain the best approximation in the form of
eq. (3) by maximizing L ′ with respect to the vari-
ational parameters ν, ρ and λ. In practice, we per-
form the optimization by coordinate ascent in repeated
bottom-up sweeps through the corpus hierarchy. Each
sweep begins by updating the parameters νd and ρd
attached to individual documents; these updates take
essentially the same form as in LDA. Then, once these
parameters have converged, we turn to updating the
variational parameters νt attached to different-level
categories; these maximizations are performed using
variants of Newton’s method. The bottom-up sweep
continues through the different levels of the corpus un-
til we reach the root of the corpus. Finally, the whole
procedure repeats until L ′ converges.

3.2. Variational Learning

We can either fix the model parameters γ, α and η or
learn them from data. For the latter, we use the lower
bound from section 3.1 as a surrogate for maximum
likelihood estimation. The variational EM algorithm
alternates between computing the best factorized ap-
proximation in eq. (3) and updating the model param-
eters to maximize the lower bound L ′. The first of
these steps is the variational E-step; the second is the
variational M-step. In the M-step we update the model
parameters by block coordinate ascent. In particular,
we use Newton’s method to update the concentration
parameter αt associated to each category t as well as
γ and η at the root of the corpus.

It is useful to view the variational EM algorithm as
a double-optimization over both the variational pa-
rameters (E-step) and the model parameters (M-step).
This view naturally suggests an interweaving of the
two steps, and, in fact, this is how we implement the
algorithm in practice; see Algorithm 1.

4. Experiments

In this section we evaluate tiLDA on several corpora
and compare its results where possible to existing im-
plementations of HDPs. We followed more or less stan-
dard procedures in training. The variational EM algo-
rithms for tiLDA and HDPs were iterated until conver-
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Figure 6. Predictive log-likelihood from two-level models of tiLDA and HDPs. See text for details.

Algorithm 1 The variational EM algorithm for
tiLDA. The algorithm begins in main, then invokes
OPT SUBTREE recursively for each category. At
the deepest level of recursion, OPT DOCUMENT
infers the hidden variables of documents given their
words and prior on topic proportions (just as in LDA).

1: main ()
2: initialize γ, η and λ
3: OPT SUBTREE(0)

4: function OPT SUBTREE(t)
5: initialize αt and νt
6: while L ′ increases do
7: for all subcategory c of t do
8: OPT SUBTREE(c)
9: for all document d of t do

10: OPT DOCUMENT(d)
11: Update νt and αt

12: if t = 0 then
13: Update λ, η and γ

gence in their log-likelihood bounds. HDPs estimated
by Gibbs sampling were trained for 5,000 iterations.

Since the log-likelihood of held-out data cannot be
computed exactly in topic models, we use a method
known as document completion (Wallach et al., 2009b)
to evaluate each model’s predictive power. First, for
each trained model, we estimate a set of topics β and
category topic proportions θt on this set of topics.
Then we split each document in the held-out set into
two parts; on the first part, we estimate document
topic proportions θd, and on the second part, we use
these proportions to compute a per-word likelihood.
This approach permits a fair comparison of different
(or differently trained) models.

The topic proportions of held-out documents were
computed as follows. For variational inference, we sim-
ply estimated θd by Eq[θd]. In the HDPs trained by
Gibbs sampling, we sampled topic assignments zdn for
each word in the first part of the document and com-

puted θsdk =
απ(d)θπ(d)k+N

s
dk

απ(d)+Nd
, where Ns

dk is the number

of tokens assigned to kth topic in sth sample. Finally,
we averaged θsdk over 2,000 samples after 500 iterations
of burn-in.

4.1. Comparison to HDPs

HDPs have been evaluated on several “flat” corpora,
which in the manner of Figs. 1–2 we can visual-
ize as two-level trees in which all documents are di-
rectly attached to a single root node. In this sec-
tion we compare the results from tiLDA and HDPs
on three such corpora from the UCI Machine Learn-
ing Repository (Frank & Asuncion, 2010). These cor-
pora are: (1) KOS—a collection of 3,430 blog arti-
cles with 467,714 tokens and a 6,906-term vocabulary;
(2) Enron—a collection of 39,861 email messages with
roughly 6 million tokens and a 28,102-term vocabu-
lary; (3) NYTimes—a collection of 300K news articles
with a 102,660-term vocabulary. The full NYTimes
corpus was too large for our experiments on (batch)
HDPs so we extracted a subset of 80K articles with 26
million tokens.

On the KOS, Enron, and NYTimes corpora we com-
pared tiLDA to two publicly available batch imple-
mentations1,2 of HDPs, one based on Gibbs sam-
pling (Teh et al., 2006), the other based on variational
methods (Wang et al., 2011). We denote the former
by HDP-Gibbs and the latter by HDP-Variational.
For all algorithms we used the same hyperparame-
ters (γ = α0 = 1) and the same symmetric Dirichlet
prior on topics. We initialized HDP-Gibbs with 100
topics, and we experimented with three settings of
the truncation parameters (K,T ) in HDP-Variational,
where K is the number of topics per corpus and T
is the number of topics per document. These set-
tings were (K = 150, T = 15) as reported in previous

1http://www.stats.ox.ac.uk/~teh/software.html
2http://www.cs.cmu.edu/~chongw/resource.html

http://www.stats.ox.ac.uk/~teh/software.html
http://www.cs.cmu.edu/~chongw/resource.html
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work (Wang et al., 2011) as well as (K= 300, T = 50)
and (K=300, T =100). For each corpus we only report
the results from HDP-Variational for the best of these
settings. In our experience, however, HDP-Variational
was sensitive to these settings, exhibiting the same or
more variance than tiLDA over widely different choices
for its fixed number of topics.

Figure 6 summarizes our experimental results. The
error bars for tiLDA show the standard deviation in
per-word log-likelihood over five different folds of each
corpus. (In each experiment, one fold was held out
for testing while the other four were used for train-
ing.) Also shown are the range of results on these
folds for HDP-Gibbs and HDP-Variational. On the
smaller KOS and Enron corpora, we obtain our best
results3 with HDP-Gibbs; however, we emphasize that
HDP-Gibbs was too slow to train even on our subset
of the NYTimes corpus. Comparing tiLDA and HDP-
Variational, we find that the former does significantly
better on the KOS and NYTimes corpora. On En-
ron, the corpus which appears to contain the most
topics, the order is reversed (but only provided that
one explores the space of truncation parameters for
HDP-Variational). Though one cannot conclude too
much from three corpora, these results certainly es-
tablish the viability and scalability of tiLDA. We now
turn to the sorts of applications for which tiLDA was
explicitly conceived.

4.2. Hierarchical Corpora

In this section we demonstrate the benefits of tiLDA
when it can exploit known hierarchical structure in
corpora. We experimented on three corpora with such
structure. These corpora are: (1) NIPS—a collec-
tion4 of 1567 NIPS papers from 9 subject categories,
with over 2 million tokens and a 13,649-term vocabu-
lary; (2) Freelancer—a collection of 355,386 job post-
ings by 6,920 advertisers, with over 16M tokens and a
27,600-term vocabulary, scraped from a large crowd-
sourcing site; (3) BlackHatWorld—a collection of 7,143
threads from a previously underground Internet forum,
with roughly 1.4M tokens and a 7,056-term vocabu-
lary. More details and results on the Freelancer and
BlackHatWorld corpora can be found in the supple-
mentary material. We previously analyzed the Free-
lancer corpus using LDA (Kim et al., 2011), but this
earlier work did not attempt to model the authorship
of job postings as we do here. The BlackHatWorld

3It has been suggested that the careful selection of hy-
perparameters may reduce the gap between Gibbs sam-
pling and variational methods in topic models (Asuncion
et al., 2009); we did not explore that here.

4http://www.stats.ox.ac.uk/~teh/data.html

corpora was collected as part of a larger effort (Mo-
toyama et al., 2011) to examine the social networks
among distrustful parties in underground forums.

We evaluated three-level tiLDA models on the NIPS
and Freelancer corpora (Fig. 1) and five-level tiLDA
models on the BlackHatWorld corpus (Fig. 2). For
comparison we also evaluated two-level models of
tiLDA that ignored the internal structure of these cor-
pora. We adopted the same settings as in the previous
section except that we also learned the models’ con-
centration parameters α. Note that we do not have
comparative results for multi-level HDPs on these cor-
pora. We know of no Gibbs samplers for HDPs that
would scale to corpora of this size and depth. Like-
wise we know of no variational HDPs that have been
implemented for general (multi-level) hierarchies.

Figure 7 shows the results of these evaluations. The
plot for the Freelancer corpus (middle) shows the av-
erage and standard deviation of the per-word log-
likelihood over five folds. The plots for the NIPS
and BlackHatWorld corpora (left and right) show the
average and standard deviation over five runs, where
each run averaged the test results over folds. (We did
this because the NIPS and BlackHatWorld corpora are
much smaller, and the folds themselves exhibit large
variance regardless of the settings.)

The results in Figure 7 paint a consistent picture over
a wide range of choices for the number of topics, K.
In every set of experiments, the deep tiLDA models of
hierarchical corpora outperform the flat ones. Over-
all the results support the notion that deep tiLDA
generalizes better for two reasons: first, because it
can model different categories with different topic pro-
portions, and second, because it shares information
across different categories. These abilities guard, re-
spectively, against the challenges of underfitting and
overfitting the data.

We also examined the topics learned by the deep
tiLDA models with the highest held-out likelihoods.
On the Freelancer corpus, which consists of job post-
ings, these topics can be interpreted as different job
types (Kim et al., 2011). Table 1 shows four of the
more pernicious job types on Freelancer.com identified
by discovered topics. The “OSN (Online Social Net-
work) Linking” topic describes jobs to generate friends
and fans on sites such as Facebook and Twitter. The
“Ad Posting” topic describes jobs to post classified ads
on sites such as Craigslist. Many other jobs are re-
lated to search engine optimization (SEO). The “SEO
Content Generation” topic describes jobs to generate
keyword-rich articles that drive traffic from search en-
gines. Likewise, the “SEO Link Building” topic de-

http://www.stats.ox.ac.uk/~teh/data.html
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Figure 7. Predictive likelihood on the NIPS, Freelancer, and BlackHatWorld corpora from deep (multi-level) and flat
(two-level) models of tiLDA, with varying numbers of topics.

Table 1. Four examples of the K = 60 topics discovered
by tiLDA on the Freelancer corpus; training time was 60
hours. Shown are the six most probable words for each
topic. Capitalized terms indicate project keywords.

“OSN “Ad “SEO Content “SEO Link
Linking” Posting” Generation” Building”

facebook ad articl post
fan post keyword blog
friend craigslist word forum
page day topic comment
twitter poster write link
Facebook section written site

scribes jobs to increase a Web site’s PageRank (Brin
& Page, 1998) by adding links from blogs and forums.

On the BlackHatWorld corpus, the topics discovered
by tiLDA relate to different types of Internet market-
ing. Table 2 shows four particularly interpretable top-
ics. The “Email Marketing” topic describes strategies
for bulk emailing (spam). The “Google Adsense” topic
describes ways for online publishers (e.g., bloggers) to
earn money by displaying ads suggested by Google on
their Web sites. The “Affiliate Program” topic de-
scribes ways to earn commissions by marketing on be-
half of other merchants. Finally, the “Blogging” topic
describes the use of blogs for Internet marketing.

5. Conclusion

In this paper we have explored a generalization of LDA
for hierarchical corpora. The parametric model that
we introduce can also be viewed as a finite-dimensional
HDP. Our main technical contribution is theorem 3.1,
which has many potential uses in graphical models
with latent Dirichlet variables. Our main empirical
contribution is a parallel implementation that scales
to very large corpora and deep hierarchies. Our re-
sults on the Freelancer and BlackHatWorld corpora
illustrate two real-world applications of our approach.

Table 2. Four examples of the K = 9 topics discovered by
tiLDA on the BlackHatWorld corpus; training time was 30
minutes. Shown are the six most probable words for each
topic. We replaced dollar amounts by the token DOLLAR.

“Email” “Google “Affiliate “Blogging”
Marketing” Adsense” Program”

email site DOLLAR blog
list traffic make forum
proxy googl money learn
ip adsens affili post
send domain market black
server ad product hat

Unlike tiLDA, nonparametric topic models can infer
the number of topics from data and grow this number
as more data becomes available. But this advantage
of HDPs does not come without various complexities.
Variational inference in tiLDA does not require stick-
breaking constructions or truncation schemes, and it
generalizes easily to hierarchies of arbitrary depth. For
many applications, we believe that tiLDA provides a
compelling alternative to the full generality of HDPs.
The approximations we have developed for tiLDA may
also be useful for truncated versions of nonparametric
models (Kurihara et al., 2007).

We note one potential direction for future work. In
this paper, we have studied a batch framework for
variational inference. Online approaches, like those
recently explored for LDA (Hoffman et al., 2010) and
HDPs (Wang et al., 2011; Wang & Blei, 2012; Bryant &
Sudderth, 2012), also seem worth exploring for tiLDA.
Such approaches may facilitate even larger and more
diverse applications.
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S1. Proof of Theorem 3.1

The basic steps to prove theorem 3.1 are contained in
two lemmas.

Lemma S1.1. Let f(x) = log Γ(x)+log(x)−x log(x).
Then f(x) is a concave function of x > 0.

Proof. We prove concavity by showing f ′′(x) < 0 for
all x > 0. Taking derivatives, we find:

f ′′(x) = Ψ′(x)− 1

x2
− 1

x
, (S1)

where Ψ(x) denotes the digamma function and Ψ′(x)
its derivative. A useful identity for this deriva-
tive (Abramowitz & Stegun, 1964) is the infinite series
representation:

Ψ′(x) =

∞∑
k=0

1

(x+ k)2
. (S2)

The lemma follows by substituting this series repre-
sentation into eq. (S1). In particular, we have:

f ′′(x) = − 1

x
+

∞∑
k=1

1

(x+ k)2

< − 1

x
+

1

x(x+ 1)
+

1

(x+ 1)(x+ 2)
+ · · ·

= − 1

x
+

[
1

x
− 1

x+ 1

]
+

[
1

x+ 1
− 1

x+ 2

]
+ · · ·

= 0

This completes the proof, but we gain more intuition
by plotting f(x) as shown in Fig. S1. Note that
log Γ(x), which contains only the first term in f(x), is a
convex function of x. Thus it is the other terms in f(x)
that flip the sign of its second derivative. Essentially,
the concavity of f(x) is established by adding log x at
small x and by subtracting x log x at large x.
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logΓ(x)

logΓ(x) + log(x) − x log(x)

Figure S1. Plots of the convex function log Γ(x) and the
concave function log Γ(x) + log x− x log x for x > 0.

Lemma S1.2. Let x be a nonnegative random variable
with bounded E[log(1/x)] <∞. Then:

E[log Γ(x)] ≤ log Γ(E[x]) + log E[x]− E[log x]

+ E[x log x]− E[x]log E[x]. (S3)

Proof. Let f(x) denote a concave function on
x > 0. From Jensen’s inequality, we have that
E[f(x)] ≤ f(E[x]). The result follows by setting
f(x) = log Γ(x) + log x− x log x as in Lemma S1.1.

Note that a naive application of Jensen’s inequality to
the left hand side of eq.(S3) yields the lower bound
E[log Γ(x)] ≥ log Γ(E[x]). Thus it is the additional
terms on the right hand side of eq. (S3) that establish
the upper bound. The direction of this inequality is
crucial in the context of variational inference, where
the upper bound in eq. (S3) is needed to maintain an
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overall lower bound on the log-likelihood. Equipped
with this lemma, we can now prove our main result.

Proof of Theorem 3.1. Let θ ∼ Dirichlet(ν), and also
let α > 0. Setting x = αθi in eq. (S3) gives:

E[log Γ(αθi)] ≤ log Γ(αE[θi)]) + log E[θi]− E[log θi]

+ αE[θilog θi]− αE[θi]log E[θi]. (S4)

All the expected values on the right hand side of this
inequality can be computed analytically for Dirichlet
random variables. In particular, let ν0 =

∑
i νi. Then:

E[θi] =
νi
ν0
, (S5)

E[log θi] = Ψ(νi)−Ψ(ν0), (S6)

E[θi log θi] = E[θi]

(
E[log θi] +

1

νi
− 1

ν0

)
. (S7)

The theorem follows from substituting these statistics
into eq. (S4).

How tight is the bound in Lemma S1.2? The question
is important because we use this inequality in conjunc-
tion with the variational approximation in eq. (3) to
generate a lower bound on the log-likelihood. Here we
make two useful observations.

First, we note that the bound in Lemma S1.2 is
exquisitely tuned to the shape of the function log Γ(x)
and the location of the expected value E[x]. To see
this, we provide an alternate derivation of the result
in eq. (S3). We begin by appealing to the concavity of
f(x), established in Lemma S1.1; from this we obtain
the upper bound

f(x) ≤ f(x0) + f ′(x0)(x− x0), (S8)

which holds for all values x0 > 0. Now we recall the
definition of f(x) in Lemma S1.1 to obtain an upper
bound on log Γ(x). Specifically we have:

log Γ(x) = f(x)− log x+ x log x, (S9)

≤ f(x0) + f ′(x0)(x−x0)− log x+ x log x. (S10)

Figure S2 illustrates this upper bound on log Γ(x) for
different values of x0; note especially its tightness in
the vicinity of x0. The upper bound on E[log Γ(x)] in
eq. (S3) is based on choosing the best approximation
from this family of upper bounds; it is easy to show
that this occurs at x0 = E[x]. Thus we obtain the
bound in Lemma S1.2 by taking expectations of both
sides of eq. (S10) and setting x0 = E[x].

Second, we note that the upper bound in eq. (S3) re-
duces to an equality in the limit of vanishing variance.
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Figure S2. Tightness of the upper bound on log Γ(x) in
eq. (S10) for different values of x0.

In particular, this is the limit in which E[log x] →
log E[x] and also E[x log x] → E[x] log E[x]. In this
limit, the last four terms on the right hand side of
eq. (S3) vanish, and we recover the result E[log Γ(x)] =
log Γ(E[x]). In general, we expect factorized approx-
imations such as eq. (3) to work well in the regime
where the true posterior is peaked around its mean
value. In this regime, we also expect the bound in
eq. (S3) to be tight. Put another way, if it is sufficiently
accurate to proceed with the factorized approximation
in eq. (3), then we do not expect to incur much addi-
tional loss from the inequality in Lemma S1.2.

S2. Parallel Implementation of tiLDA

Here we briefly describe our scheme for parallelizing
the recursive procedures in Algorithm 1. In practice,
we obtain a significant speedup from this parallel im-
plementation of tiLDA. This parallelization was nec-
essary, for example, to obtain the results in section 4.

One naive manner of parallelization would simply be to
allocate the inference for different top-level categories
to different threads of execution. This approach, how-
ever, has two obvious limitations. First, inference in
different categories may require different amounts of
time; if the goal is to minimize idle CPU cycles, then
we must more intelligently distribute the overall work-
load across different threads. Second, the number of
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parallel threads at our disposal may greatly exceed
the number of top-level categories. (For example, the
BlackHatWorld corpus has only three top-level cate-
gories.) In this case, the naive approach to paralleliza-
tion hardly makes the best use of available resources.
In the following, we describe a parallel implementation
of tiLDA that overcomes both these limitations.

Our parallel implementation is based on two key ideas.
The first is to partition the algorithm into three types
of tasks—START, DOCUMENT, and REPEAT—
which we explain below. The second is to maintain a
queue of these tasks and create multiple threads that
execute tasks from this queue.

A START task is associated with every internal node
in the corpus hierarchy. The task begins by initializ-
ing the node’s parameters αt and νt. After this ini-
tialization, the task then enqueues a new START task
for each subcategory of the node and a DOCUMENT
task for each document of the node. In Algorithm 1,
the START task corresponds to lines 5–10.

A DOCUMENT task is associated with each document
in the corpus. This task is responsible for optimizing
the variational parameters νd and ρdn for documents
given their observed words and (currently inferred) pa-
rameters of their parents. In Algorithm 1, the DOC-
UMENT task corresponds to the procedure called in
line 10.

A REPEAT task is issued at each internal node in
the corpus whenever all the tasks for the node’s chil-
dren complete. The REPEAT task is responsible for
maximizing the lower bound on the log-likelihood L ′

with respect to the node’s parameters. We mark the
node as complete if the lower bound does not improve
over its value from the previous REPEAT task at the
node. Otherwise, we enqueue START and DOCU-
MENT tasks again for the node’s children. The RE-
PEAT task corresponds to executing lines 11–13 and
then lines 6–10.

The overall algorithm begins with a START task at the
root node and ends in a REPEAT task at the root node
when the lower bound L ′ can no longer be improved.

S3. Background on Corpora

The Freelancer corpus collects seven years of job post-
ings from Freelancer.com, one of the largest crowd-
sourcing sites on the Internet. The postings can be
grouped by advertiser to form the three-level hierar-
chy shown in Fig. 1. In this hierarchy, tiLDA models
the advertisers as second-level interior nodes and the
job postings as third-level leaf nodes.

The BlackHatWorld corpus collects over two years of
postings from the “BlackHatWorld” Internet forum.
This data set was collected as part of a larger ef-
fort (Motoyama et al., 2011) to examine the social
networks that develop in underground forums among
distrustful parties. The BlackHatWorld forum evolved
to discuss abusive forms of Internet marketing, such as
bulk emailing (spam). The discussions are organized
into the multi-level hierarchy shown in Fig. 2. We treat
the threads in these subforums as documents for topic
modeling. (We do not consider individual posts within
threads as documents because they are quite short.)

We preprocessed these two corpora in the same way,
removing stopwords from a standard list (Lewis et al.,
2004), discarding infrequent words that appeared in
fewer than 6 documents, and stemming the words that
remain. In both data sets, we also pruned “barren”
branches of the hierarchy: specifically, in the Free-
lancer corpus, we pruned advertisers with fewer than
20 job postings, and in the BlackHatWorld corpus, we
pruned subforums with fewer than 60 threads.

S4. Additional Results

The multi-level tiLDA models can also be used to an-
alyze hierarchical corpora in ways that go beyond the
discovery of global topics. Recall that each tiLDA
model yields topic proportions θt and a concentration
parameter αt for each category of the corpus. We can
analyze these proportions and parameters for further
insights into hierarchical corpora. In general, they pro-
vide a wealth of information beyond what can be dis-
cerned from (say) ordinary LDA.

Consider for example the Freelancer corpus. In this
corpus, the categories of tiLDA represent advertisers,
and the topic proportions of these categories can be
used to profile the types of jobs that advertisers are
trying to crowdsource. Summing these topic propor-
tions over the corpus gives an estimate of the number
of advertisers for each job type. Table S1 shows the
results of this estimate: it appears that nearly one-
third of advertisers on Freelancer.com are commission-
ing abuse-related jobs, and of these jobs, the majority
appear to involve some form of SEO.

We gain further insights by analyzing the concentra-
tion parameters of individual advertisers. For exam-
ple, the advertiser with the maximum concentration
parameter (αt = 4065.00) on Freelancer.com commis-
sioned 34 projects, among which 32 have nearly the
exact same description. We also observe that adver-
tisers with lower concentration parameters tend to be
involved in a wider variety of projects.
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Table S1. Estimated ratio of number of buyers in job types
on the Freelancer data set.

Type Ratio Type Ratio
SEO 18.47% Affiliate Program 3.21%
Captcha Solving 2.68% Account Creation 1.42%
Bulk Emailing 1.85% OSN Linking 2.12%
Ad Posting 2.50% Benign Jobs 67.74%

On the BlackHatWorld corpus, the topic proportions
and concentration parameters of categories generally
reflect the titles of their associated subforums. For ex-
ample, the highest topic proportion (0.48) for “Email
Marketing” belongs to the subforum on ‘Email Mar-
keting and Opt-In Lists,’ and the highest topic pro-
portion (0.59) for “Blogging” belongs to the ‘Blog-
ging’ subforum. The highest concentration parameter
(29.62) belongs to the ‘Money, and Mo Money’ subfo-
rum. This is not surprising as this subforum itself has

only four subforums as children, all of which are nar-
rowly focused on specific revenue streams; see Fig. 2.
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