
Dynamic Workload Characterization for Power Efficient
Scheduling on CMP Systems∗

Gaurav Dhiman§

gdhiman@cs.ucsd.edu
Vasileios Kontorinis§

vkontori@cs.ucsd.edu
Dean Tullsen§

tullsen@cs.ucsd.edu
Tajana Rosing§

tajana@ucsd.edu
Eric Saxe†

eric.saxe@oracle.com
Jonathan Chew†

jonathan.chew@oracle.com
§Department of Computer Science and Engineering

University of California, San Diego
La Jolla, CA 92093-0404

†Oracle Corporation
17 Network Circle

Menlo Park, CA 94025

ABSTRACT
Runtime characteristics of individual threads (such as IPC, cache
usage, etc.) are a critical factor in making efficient scheduling de-
cisions in modern chip-multiprocessor systems. They provide key
insights into how threads interact when they share processor re-
sources, and affect the overall system power and performance effi-
ciency. In this paper, we propose and implement mechanisms and
policies for a commercial OS scheduler and load balancer which
incorporates thread characteristics, and show that it results in im-
provements of up to 30% in performance per watt.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Scheduling

General Terms
Design, Experimentation, Performance

Keywords
Power, Multi-cores, Workload Characterization

1. INTRODUCTION
With recent advances in processor architecture and the advent

of chip multiprocessors (CMPs), also called multicore architec-
tures, parallelism has become pervasive in modern systems. CMPs
bring a hierarchy of levels of asymmetric resource sharing, result-
ing in a system where efficient scheduling of threads becomes non-
trivial. Two threads scheduled on the same multithreaded core
share pipelines, L1 caches etc. Two threads on the same multicore
processor may share lower-level caches and various levels and par-
titions of the interconnect. Threads scheduled across multiple mul-
ticores still share off-chip buses, caches, and main memory. Thus,
∗This work has been funded in part by Sun Microsystems,
UC MICRO, Center for Networked Systems (CNS) at UCSD,
MARCO/DARPA Gigascale Systems Research Center, NSF grant
CCF-0702349 and NSF Greenlight.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’10, August 18–20, 2010, Austin, Texas, USA.
Copyright 2010 ACM 978-1-4503-0146-6/10/08 ...$5.00.

the ways in which these threads interact and impact each others’
performance and overall power efficiency is critically affected by
their relative placement on the shared execution resources.

This paper examines a modern Operating System (OS) running
on a modern multicore architecture which exhibits such resource
sharing asymmetries. It shows that the OS schedulers struggle to
properly handle them, despite being specifically structured to do
so. They fail to extract the full efficiency available from these
parallel architectures, hence delivering poor performance per watt
(Perf/Watt). We show that the primary reason for this is the lack of
knowledge available to the scheduler and load balancer regarding
the characteristics of the threads sharing these different resources.
To solve this problem, we first identify and understand the corre-
lation between the characteristics of the threads and the way these
affect overall performance and power efficiency when they share
resources. Based on this, we propose and implement mechanisms
and metrics in a real OS for runtime workload characterization of
threads. We then extend the scheduler and load balancer with poli-
cies to exploit this information to extract higher power and per-
formance efficiency gains from the system. We refer to the new
scheduler as the “Workload Characteristics Aware” (WCA) sched-
uler.

Furthermore, this paper also uncovers and provides a solution
to a significant impediment to predictable scheduling – transient
threads. These are threads that come onto the system for far too
short a period (eg. kernel daemons) to have a direct impact on per-
formance; yet mislead the scheduler about the load on the system,
resulting in unnecessary load balancer induced thread migration
decisions. These decisions can be pathologically bad, and result
in non-deterministic run-times of threads and poor system level
Perf/Watt. We show that transient thread characterization makes
the WCA scheduler more efficient, and results in more predictable
performance and overall power efficiency.

Based on this discussion, this paper makes the following primary
contributions: (1) It presents the first implementation, together with
power and performance results, for a commercial OS scheduler
and load balancer with runtime workload characterization and feed-
back. Our results across 30 workloads indicate that it can improve
the overall average Perf/Watt of the system (at negligible overhead)
by 15% (maximum gain of 30%). (2) It identifies transient threads,
initiated by modern OSs, as a critical impediment to properly char-
acterizing threads and implementing predictable scheduling, and
provides a solution to the problem.

The rest of the paper is organized as follows. Section 2 discusses
prior related work. We then present the current state of the art in

scheduling methodologies and motivate our work in 3. The imple-
mentation details of our design are discussed in section 4 followed
by details on our evaluation, methodology and results in section 5.
We conclude in section 6.

2. RELATED WORK
Significant prior research has sought to minimize conflicts and

capacity problems on shared resources in a processor or multipro-
cessor (resources like last level cache, pipeline, etc.). Snavely, et
al. [10] propose algorithms for efficient thread co-scheduling in
multi-threaded processors, and demonstrate the benefits of symbi-
otic thread co-scheduling – this is a sampling-based solution, which
can thus only reason about schedules that have actually been run.
McGregor, et al. [6] show that on multiprocessors consisting of
multiple simultaneous multithreading (SMT) cores, memory band-
width utilization, bus transaction rate, and processor stall cycles of
threads are as important as cache interference for determining the
best co-schedules. Similarly, Bulpin, et al. [1] use hardware perfor-
mance counters to derive a model for symbiotic co-scheduling on
SMT processors.

However, on a real system with dynamic workloads, run-time
workload characterization is required to find schedules that mini-
mize resource contention. Towards this end, Fedorova, et al. [4]
propose a new design for an OS scheduler to reduce cache conflicts
and capacity misses based on a model of cache miss ratios using
CPU performance counters. However, their prototype is based on
a user-level scheduler. Similarly, Zhang, et al. [11] propose the
use of CPU performance counter as a first class system resource to
dynamically detect and resolve resource contention. Knauerhase,
et al. [5] and Merkel, et al. [8] propose schemes for minimizing
resource contention at the last level cache (LLC) in a CMP sys-
tem. They leverage the CPU performance counters to dynamically
characterize the threads in terms of their LLC intensity, and modify
the OS scheduler runqueue management mechanism to make sure
that threads with heterogeneous cache usage characteristics are co-
scheduled across the different cores at any given point in time. This
provides speedup in multi-program workloads with heterogeneous
characteristics. Merkel, et al. [8] show that this is beneficial from
an energy efficiency perspective as well, since it results in a reduc-
tion in the energy required to execute a workload.

However, these approaches work only if there are enough threads
in the system to fill up the runqueues of all the cores in the system,
since otherwise the system is considered to be balanced. They also
require threads with heterogeneous characteristics to be present
across all the runqueues, since they sort each runqueue separately
based on the cache intensiveness of the threads. With increasing
core density in CMP processors, we are more likely to see sce-
narios where the total number of active threads in the system is
less than or equal to the number of contexts in the system. State
of the art load balancing algorithms in modern OSs like Linux
and Solaris just balance the number of threads across the core re-
sources, and are agnostic to their characteristics. Our work shows
that this is largely insufficient and can result in thread schedules
that cause severe resource contention and degrade overall system
power and performance efficiency. We further highlight the insta-
bility introduced into the system in such scenarios due to short-
running threads, which we refer to as transient threads.

In terms of active power management on modern CMP based
systems, recent work [7, 8, 3] shows that the effectiveness of tech-
niques like dynamic voltage scaling has largely diminished due to
a combination of factors like increasing leakage, faster memory
speeds etc. Instead, it is more energy efficient to run the system
faster within a given set of workloads and then utilize low power

(a) Topology of an Intel
Quad Core Xeon E5430
Processor

(b) Processor group structure

Figure 1: Example of a processor and its corresponding processor
group constructed by OpenSolaris

��� � ��� ��� 	 � ��� 	 ��� 	 �
�� �
 �
��� � ��� � � ��� ���� 	 � � �� � � ��� � � � � � � � � � �
���
� ���
�����
�����
� ���
� ���
�����
� ���

 ! "
"$% &
$'#% &
(% (
) "$* +
, '## - . / 0 1 2 34�5 6 7 3

(a)

8 9 : ; < = > ? @ AB C DFE GHC I JFKML9�N 8
9�N =
: N 8
: N =
; N 8
; N =

O PQ
RSTU V
WX Y
ZW[\
]U P^
_U R
WP` a
SQ]a

b c d efHg h d ei c j k l m e

(b)

Figure 2: (a) % deterioration in Perf/Watt normalized against the
best case; (b) Normalized run-times for "art" across 10 iterations in
art-equake-equake combination

modes available widely on modern systems [7, 3, 8]. This obser-
vation motivates our approach towards power efficiency. We ex-
ploit the workload characteristics to reduce resource contention,
and achieve higher performance within roughly the same power
budget, thereby significantly improving the overall Perf/Watt of the
system.

3. BACKGROUND AND MOTIVATION
Modern processors are comprised of multiple computing cores

that share different resources (like pipelines, caches etc.) across
the system. The degree of sharing is often asymmetrical based on
the core location. For instance, Figure 1a illustrates the layout of a
state-of-the-art Intel Xeon quad core E5430 processor. Cores 1 and
2 share an L2 cache, as do cores 3 and 4, while all cores share the
same bus going to the memory. This means that in terms of sharing
the bus, the relationship between any two cores in this processor is
symmetrical, while in terms of sharing L2 cache they are not.

It is imperative that the OS scheduler capture this sharing rela-
tionship among the different computing cores, and ensure that the
resource conflicts are minimized. Most modern OSs do this by
building abstractions dynamically to capture the hardware topol-
ogy of the system, and then load balancing the threads across the
topology to minimize resource contention. Examples of such ab-
stractions include processor and logical groups in OpenSolaris, and
scheduler domains in Linux. In this paper, we will focus on the for-
mer, though the basic underlying principles are similar for both.

Figure 1b gives an example of a processor group (PG) structure
that OpenSolaris would build for the processor shown in Figure 1a.
It is a hierarchical structure, where each level represents a shared
resource. The computing cores form the leaves of the structure,
and have their own pipelines and L1 caches (referred to as c1, c2
etc). The next level represents the L2 cache, and the cores shar-

ing them are joined together into one node to represent the shar-
ing (referred to as L2C1, L2C2). The next level represents the
bus, which is shared by all the cores (referred to as B). The load
balancing algorithm seeks to ensure that the number of running
threads at any point in time are balanced across nodes at all lev-
els. It does so by maintaining a count on the number of threads
at each level of the hierarchy (referred to as ni in Figure 1b), and
balances it by thread migrations across different cores. This is our
baseline/default scheduler.

To understand the performance of the default scheduler we did
some offline experiments with benchmarks with different instruc-
tion and memory characteristics from the SPEC2000 benchmark
suite. We created three-program workloads with two instances of
one benchmark and one instance of the other (eg. gzip-art-art).
Such workloads provide only two possible schedules in terms of
thread assignment to cores (eg. either ‘gzip’ and ‘art’ share cache
or ‘art’ and ‘art’ share it). For each run of the workload we mea-
sured the execution time of the threads as well as the whole system
level power consumption under three different schedules. In the
first two, we manually create the best and worst among the two pos-
sible schedules in terms of Perf/Watt by binding threads to cores.
In the third, we let the default scheduler determine the schedule.

Figure 2a shows the results for the worst and the default sched-
ules (relative to the best) averaged across 10 runs for 5 workloads.
The large gap between the best and worst schedules highlights the
importance of identifying good schedules, and the fact that the ac-
tual default scheduler falls roughly in the middle, with a high vari-
ance, demonstrates its inability to distinguish between good and
bad schedules. For instance in the case of the art-equake-equake
combination, the Perf/Watt degrades by as much as 70%. This hap-
pens because art is very sensitive to its L2 cache data, and when
it shares it with equake (in the worst schedule), its execution time
goes up significantly.

The results for the default scheduler come from ping-ponging
between the best and worst schedule, both across different runs but
also within a run. This is illustrated by the error bars in Perf/Watt
in Figure 2a which indicate the variance in the measured run-times.
This variance is further highlighted in Figure 2b, which shows ‘art’
performance for the various runs in the art-equake-equake work-
load. The runtime variance is explained by the presence of ker-
nel high-priority threads that regularly preempt the long-running
threads during the experiment. We refer to these short, high pri-
ority running threads as transient threads. Transient threads, as
we show in the next section, result in unnecessary load balancer
induced thread migrations, which result in the thread schedule of
the workload oscillating between best and worst at a random fre-
quency. Running these same experiments on a Linux system, we
observed the same type of runtime variance across different runs,
with Perf/Watt degradation as high as 70%. This issue is not spe-
cific to a particular OS, then, but represents a much more general
problem – insufficient abstractions in modern OSs to account for
the nature of the load in the system, beyond simple thread counts.

Thus, these experiments motivate both of the key findings of this
paper: (1) We must provide the scheduler with more information
to better balance resources (in these experiments, cache utilization
is the dominant factor) and identify good schedules for extracting
higher Perf/Watt from the system, and (2) We must account for
the existence of short-running transient threads in the scheduler to
avoid frequent disruption of good schedules.

4. DESIGN AND IMPLEMENTATION
Based on the discussion in the prior sections, we need characteri-

zation of threads on two fronts: (1) Transience captures the amount

of time a thread stays blocked relative to the time it spends execut-
ing. (2) Cache sensitivity captures the sensitivity of a thread’s
performance to a cache, and contention for that cache. This section
details the design principles behind measuring and modeling these
characteristics.

4.1 Thread Transience
In a running system there are many kernel threads that are used

to service various tasks in the system. These threads typically stay
blocked the vast majority of the time and then run for a very short
duration (on the order of microseconds). Examples of such threads
that we observed in OpenSolaris included java, fsflush (daemon for
flushing dirty file system pages), nscd (caching daemon), etc. Be-
ing kernel threads, they have high priority and get to run as soon as
they become runnable, possibly pre-empting a user thread. Since
they run for such short amounts of time, they have little direct im-
pact on the overall execution time of the user threads they pre-empt
in terms of either CPU time or cache footprint . However, the prob-
lem is that the OS load balancer is agnostic to the runtime character-
istics of threads; as a result, it cannot distinguish transient threads.
It strives to load balance for these threads, making decisions that
may be highly detrimental to overall system efficiency.

Figures 3a and 3b show two scenarios where transient threads
can result in unnecessary load-balancer-induced migrations. In sce-
nario 1, thread U1 and U2 are user threads running on CPUs 1 and
3 when a transient thread TT becomes runnable. However, as soon
as TT gets scheduled on CPU1, U2 gets blocked for disk I/O as
shown in Figure 3a. At the same time, the OS load balancer is
invoked and it detects an imbalance in the PG nodes L2C1 and
L2C2 (refer to figure 1b), since there are two threads under one,
and none under the other. Thus, it migrates U1 to either CPU3 or
4 to restore balance. However, this is an unnecessary migration,
since TT may again become blocked before thread U1 even fully
completes its migration. We refer to this scenario as the ‘artificial
load’ case, since the load balancer is made to believe there is load in
the system when there practically is none. In scenario 2, three user
threads U1-3 are running. A transient thread TT becomes runnable
and pre-empts U1, as shown in Figure 3b. This can happen due
to the fact that TT last ran on CPU1, and hence according to the
scheduler has cache affinity for it. Now the idling CPU4 will de-
tect U1 in the CPU1 runqueue and will steal it for better balance
and fairness. However, this is also an unnecessary migration. We
refer to this scenario as migration from an ‘almost idle’ CPU – we
are migrating load away from a CPU that is going to become idle
almost immediately.

The solution to the transient thread problem is a simple two-part
process. First, we identify transient threads. To identify transient
threads, we make a simple observation: they spend the majority
of their time blocked. For this purpose, we add a flag to indicate
whether a thread is transient or not, and maintain a runtime his-
tory that captures the time it spends on and off the CPU in the
OpenSolaris thread data structure. Based on the ratio of "on time"
to the total time, we mark the thread as transient if the ratio falls
below a threshold TOntr and vice versa. In our experiments, the
value of TOntr =1% served us well in cleanly separating the tran-
sient threads from the non-transient ones. Second, we modify the
load balancing algorithm of OpenSolaris to balance only the non-
transient threads across the system. For the ‘artificial load’ prob-
lem, Figure 3a, this means that the load balancer would no longer
consider the system to be imbalanced when U2 gets blocked, since
only one non-transient thread (U1) is there. In the ‘almost idle’
case, Figure 3b, CPU4 would not steal U1, since there is only 1
non-transient thread on CPU1.

(a) Scenario-1 (Artificial Load) (b) Scenario-2 (Migration from ‘almost idle’ CPU)

Figure 3: Examples of avoidable migrations due to transient threads

Thus, a transient thread characterization aware scheduler has a
much more accurate view of the real load on the system, and as we
show in Section 5, makes the system more efficient and determin-
istic.

4.2 Cache Sensitivity
Based on the observations in section 3 , we know that sub-optimal

cache sharing can significantly degrade the performance of cache
sensitive threads. To alleviate this problem, we need the OS load
balancer to know the cache sensitivity of threads it is trying to
schedule. This requires two steps: (1) Identify characteristics/metrics
that separate a cache sensitive thread from a non-sensitive one, (2)
Reconstruct the load balancer to use this information to more effec-
tively balance the demand on shared resources. In this section we
discuss the metrics we employ and how we extend the OpenSolaris
load balancer to account for shared caches.

Metrics for cache sensitivity While prior work [10, 6, 11] has
shown that a sophisticated model of the expected interactions of
two threads that share a cache can create better schedules, a real
OS needs a scheduler that is distributed, fast, and runs in constant
time. Hence, we adopt a simple and more coarse-grained approach,
which is both constant time and utilizes commonly available CPU
performance counters for performing binary classification to dis-
tinguish among the cache-sensitive and cache-insensitive threads.
Good candidates for a binary classification heuristic should exhibit
low variance during the execution of a program and low sensitiv-
ity to the current schedule. Based on these criteria, we identify the
following two as complementary and effective indicators of cache
sensitivity of a thread: (1) Last level cache requests per instruc-
tion (LLCRPI): The threads with high LLCRPI are highly likely to
have a big chunk of their working set in the LLC (last level cache).
Thus, sharing it with another thread increases the probability of its
useful data (and the other thread’s) getting evicted. (2) Instructions
committed per cycle (IPC): Threads with high IPC typically see a
larger degradation when their working set is suddenly displaced by
another thread. Although both of these factors affect co-scheduled
performance, the LLCRPI (cache working set) is the dominant ef-
fect and is given priority over IPC. To account for this phenomenon
we assign different weights of cache sensitivity to these two differ-
ent categories of cache sensitive threads, with a higher weight sig-
nifying higher sensitivity and priority. Specifically, high LLCRPI
threads (LLCRPI > 0.1) are attributed a cache weight (CW) of 2
while the high IPC (IPC > 1) threads are attributed a CW of 1. This
ensures that we can further refine our scheduling decisions when all
applications are cache-sensitive, so that high LLCRPI benchmarks
are preferred to be scheduled alone over the high IPC ones. All
the other threads in the system are identified as cache insensitive
(CW=0).

WCA scheduler Implementation: With the metrics for cache
sensitivity defined, we need to dynamically capture the required
data, and use the classification for load balancing. We make use
of CPU performance counters provided by the Intel Xeon perfor-
mance monitoring unit. The counters that we use are: Instructions
retired (INST), clock cycles (CLK) and LLC requests (LLCR). When-

Figure 4: Modified PG structure

ever a thread begins to run on the CPU, we turn the performance
counters on to monitor these events. When the thread leaves the
CPU or completes its time slice, we calculate IPCcur and LLCRPIcur

for the latest run. However, these numbers represent the metrics
only for the current run of the thread on the CPU. To account for
longer-term effects, we maintain them as exponential averages as
shown below:

IPCnew = α · IPCcur + (1 − α) · IPCprev

LLCRPInew = α · LLCRPIcur + (1 − α) · LLCRPIprev (1)

where the updated average (eg. IPCnew) is the exponential aver-
age of the previous average (eg. IPCprev) and the current value
(eg. IPCcur). The factor α represents the relative weight of the
previous and current value, which we set to 0.5 to give equal weight
to both. Based on these average metric values we determine the
cache weight (CW) of a thread as described in the discussion on
metrics previously. These metric estimates and updates occur in-
dependently on each of the CPUs in the system in a distributed
fashion.

To incorporate these characteristics into the load balancing fab-
ric, we modify the PG structure to include these metrics. Figure
4 shows the modified PG for the Intel Xeon E5430 processor. A
quick comparison to the original structure in Figure 1b indicates
that now at each level of the hierarchy we maintain a 3-tuple of
(number of threads, cache weight, IPC) instead of just the number
of threads. Cache weight (CW) takes into account the cache sen-
sitivity of threads based on their LLCRPI and IPC. For the case
where the cache weight of all running threads are the same, we fur-
ther store the absolute IPC as our tiebreaker – we then determine
the best schedule by giving priority to the high IPC thread. This
is based on the observation that a higher IPC thread is likely to
undergo higher performance loss when sharing cache.

Table 1 shows our modified load balancing algorithm, which bal-
ances all these parameters across the PG hierarchy for minimizing
resource contention. The algorithm first tries to balance the number
of threads across nodes at different levels in Figure 4. For the Intel
Xeon E5430 processor, this corresponds to balancing the number
of threads under L2C1 and L2C2. The algorithm is invoked inde-
pendently on each CPU, and runs in the context of the thread sched-

Table 1: WCA Scheduler Load Balance Algorithm

T ← curthread

N1 ← L2C1
N2 ← L2C2
/*Assume T is running on CPU under L2C1*/
1: if (N1 − 1) > N2 then
2: /* Stage 1: Balance number of threads */
3: Migrate T to an idle CPU in N2

4: return
5: end if
6: /* The default load balancer ends here */
7: if (CWN1

− CWT) > CWN2
then

8: /* Stage 2: Balance cache weight */
9: Migrate T to an idle CPU in N2

10: return
11: end if
12: if (IPCN1

− IPCT) > IPCN2
then

13: /* Stage 3: Balance IPC */
14: Migrate T to an idle CPU in N2

15: return
16: end if

uled on it. Lets assume that the algorithm is invoked for a thread
T , which is running on CPU1 (i.e. under L2C1). Further, let N1

and N2 be the pointers to the L2 cache level PG structures L2C1
and L2C2 respectively. The algorithm first of all checks if there is
an imbalance in terms of the number of threads running under the
two PG siblings (N1 and N2). This could happen if there are two
threads running under N1, and none under N2. If that is the case,
then the thread T migrates itself to an idle CPU under N2 (step 3
in Table 1). In the default load balancer, this is where the balancing
finishes and the algorithm returns. However, this logic will fail to
detect cache imbalances. For instance, consider a scenario where
two cache sensitive threads are running under N1, while one non
cache sensitive thread is running under N2. The load balancing
algorithm in this case would consider the number of threads to be
balanced, although severe cache contention results under N1.

Step 7 and beyond in Table 1 represents the logic we add to the
load balancing algorithm to exploit runtime workload character-
ization and address possible resource contention. In step 7, our
algorithm checks for cache weight imbalance. If this is the case
(like in the example above), thread T migrates itself to an idle
CPU under N2 as shown in step 9 in Table 1. The check in step
7 ((CWN1

− CWT) > CWN2
) ensures that the migration should

take place only if it makes the system more balanced and does not
swap the imbalance between N1 and N2. Such a swap is undesir-
able since it can result in a ping-pong migration of the thread be-
tween N1 and N2. If this stage is also balanced, then it implies that
both the number of threads and cache weight is balanced across the
PG. At this point, the algorithm checks whether T is co-scheduled
with a higher IPC thread compared to the one scheduled under N2

(step 12 in Table 1). If that is the case, T migrates to an idle CPU
under N2. As discussed before, this ensures more fine grained bal-
ancing if the cache weight is already balanced across the PG.

5. EVALUATION
5.1 Methodology

We perform our experiments on a state of the art 45nm Intel quad
core Xeon E5430 based server machine. The operating system is
based on OpenSolaris build 98, which is modified to include our
changes, outlined in Section 4. For our experiments we construct
multi-program workloads using a selection of twelve SPEC2000
benchmarks. The benchmark subsetting is based on Tables 2 and

3 of [9], so that it covers all SPEC suite clusters according to their
overall characteristics and data locality. The selected benchmarks
were used to generate what we refer to as the 3-thread workloads.
The 3-thread workloads are of the form of bench1-bench2-bench2,
where bench1 and bench2 are different benchmarks. We choose
3-thread workloads, since it creates a difficult case for the sched-
uler from the perspective of both workload characterization as well
as transient threads. The case of 1 and 2 thread workloads is un-
interesting, since the long running threads will never share any re-
sources (see Figure 1), while the 4-thread case does not expose
the transient thread problem, since all the cores are occupied. In
future many-core architectures many such combinations exposing
both the issues would be possible. The choice of duplicated thread
is intentional – it helps us understand the effect of bench1 execu-
tion on bench2 both with and without cache sharing. Across all
the runs we record the execution times of the threads and measure
the power of the whole system using a power analyzer at the gran-
ularity of 500ms.

To evaluate the effectiveness of our WCA scheduler against the
default one for each workload combination, we make use of the
average weighted Perf/Watt metric (based on a similar metric in
[10]). The metric is defined as:

AWPerf/Watt = (

P

benchi

Tdefaulti

Talonei

P

benchi

TW CAi

Talonei

)/(
PWCA

Pdefault

) − 1 (2)

where Tdefaulti
and TWCAi are the execution times of a bench-

mark i in the workload combination with the default and our WCA
scheduler respectively. These run-times are normalized against the
execution time of the benchmark i when it is running alone in the
system (without any contention). PWCA and Pdefault refer to the
average system level power consumption for the benchmark com-
bination run with the WCA and default scheduler respectively. A
positive value of AW Perf/Watt indicates that WCA scheduler is
more power efficient than the default scheduler (referred to as gain)
and vice versa (referred to as loss).

5.2 Results
Average weighted Perf/Watt: This section demonstrates the

gains in Perf/Watt achieved by our changes to the OpenSolaris sched-
uler. In the first set of experiments we ran workload combinations
comprised of threads with heterogeneous characteristics (at least
one cache sensitive and one not). Figure 5a illustrates the actual
AW Perf/Watt values across 30 such workload combinations. We
can observe that the WCA scheduler achieves significant gains, as
much as 30% better than the default OpenSolaris scheduler, with
an average close to 15%. The highest gain (30% in gzip-art-art)
comes because the WCA scheduler is able to dynamically iden-
tify the high cache sensitivity of art and prevent the two instances
from sharing a cache. The transient thread characterization makes
the threads stick to the cores they have been scheduled on and thus
preserve these gains. As a consequence, we observe that across all
the workload combinations, the AW Perf/Watt results of the WCA
scheduler are equal to the best possible (calculated offline by bind-
ing threads to cores in an optimal fashion).

Figure 5b illustrates the breakdown of the AW Perf/Watt results
into AW Speedup and power variance ratio across 13 workloads
with the highest gains. The strong gains in Perf/Watt are achieved
with relatively unchanged power and significant throughput gains.
This means we are able to process jobs faster with no correspond-
ing rise in power – this results in significant energy savings per job,
and accelerates the system to a condition where it can employ low-
power states. Recent research suggest that this is a much more ef-

n n o p q q r s t s u v w x y zn { | n o o v } p u ~ o � q � � q r } n � q s t t s u ~ o v } t n x w t � x z ~ w y � { | q � z } o z ~ x q

�� � � � � � �� � � � � � � � � � � � � � � � � � �
� � � � � �� � � � � � � � � � �� � � � � � � � � � � � � � � �

�
� � � �

� � � � � � � � � � � � � �� �
�
� �
� �

� � � � � � � � � � � � � � ���
�
� � � � �� � � � �

� ����

� �

� ���

�� �

�����

� � �

�����

��
� ��
 ¡�
¢££
¤ ¥¦

(a)

§©¨ ª¬« ¨ ª « §©¨ ¨ § ¨ ® ¨ ® ¯ ¨ ªF« ¨ ª « ª ¨ ° ¨ ° ª¬« ¨ § ¨ § ±F² ¨ § ¨ § ±F³ ¨ § ¨ § ¨ §©¨ § ° ¨ ¨ ° ¨ ´ ¨ ´ µ ¨ ´ ¨ ´ ´ ¨ § ¨ §
¶ ·
¸ ·
¹ ¶ ·
¹ ¸ ·
º ¶ ·
º ¸ ·
» ¶ ·
» ¸ ·

¼½
¾ ¿À
ÀÁ Â¿
Ã ÄÅ

¶ ·
¸ ·
¹ ¶ ·
¹ ¸ ·
º ¶ ·
º ¸ ·
» ¶ ·
» ¸ ·

Æ Ç
ÈÀÉ
Ê ËÉÌ ËÍ
ÎÀÃ Ä
Å

Ï¬ÐÒÑ�Ó�Ô�ÔÕHÖ�Ó×Ø ÙÚÔ�Û

(b)

Figure 5: (a) The AW Perf/Watt results; (b) Breakdown of AW Speedup and Power Variance ratio (PW CA
Pdefault

− 1) for workloads with highest AW
Perf/Watt gains. The WCA scheduler is able to extract high speedups in roughly the same power budget.

Table 2: Rate of migrations and standard deviation of runtime
normalized to best schedule over 10 different runs with default
and the WCA scheduler

Workload Default WCA Reduction(%)
mig/s Std.Dev.(%) mig/s Std.Dev.(%) mig/s Std.Dev.(%)

art-equake-equake 1.01 86% 0.14 2% 87% 98%
mcf-applu-applu 1.46 21% 0.06 1% 96% 96%
bzip2-lucas-lucas 1.22 22% 0.04 1% 97% 96%
vortex-swim-swim 1.28 15% 0.10 2% 92% 87%
gcc-wupwise-wup. 1.67 12% 0.14 3% 91% 75%
art-mcf-mcf 1.42 38% 0.17 4% 88% 90%
mcf-bzip2-bzip2 1.42 4% 0.17 1% 88% 75%
vortex-equake-eq. 1.14 44% 0.05 3% 96% 93%
Average 1.33 30% 0.11 2% 91% 89%

fective way of performing energy efficient computation, compared
to active power management techniques like DVFS [7, 3].

We next did experiments across workloads comprising of threads
with homogeneous characteristics. We observed that for such com-
binations the overall performance of the WCA scheduler converged
to that of the default scheduler, since the individual threads bene-
fited little from characterization aware placement (the resource us-
age was homogeneous anyway). Thus, these set of experiments in-
dicate that WCA scheduler is able to extract much higher efficiency
out of the system compared to default scheduler, when threads with
heterogeneous characteristics are present in the workload, and de-
liver equivalent performance, if that is not the case.

Workload Performance Predictability: Besides performance
and power efficiency, there are two other qualities we would like
from our scheduler – Performance predictability (or stability) and
reduced migrations. The result of excessive migrations can be seen
both in Perf/Watt stability (results shown here) and raw efficiency
(shown in Figure 5a). Transient thread identification dramatically
reduces the number of total thread migrations on the system, as
shown in Table 2. To measure this, we use DTrace [2] to instrument
the OS code responsible for migrations.

Overall, we observe from Table 2 over 90% average reduction
in the total number of migrations with the WCA scheduler. The
high migration rate in the default scheduler results in high vari-
ance in its execution time across successive runs, highlighted by
an average standard deviation of 30% in Table 2. In contrast, that
variance is dramatically reduced with the WCA scheduler (around
90%). A fine-grained analysis of the migrations with the WCA
scheduler shows that the number of migrations that still happen in
the system are all due to non-transient threads. Therefore, the tran-

sient thread characterization virtually eliminates avoidable migra-
tions, and achieves predictable and power efficient run-times for
the workloads across multiple runs by making sure the schedules
determined by the WCA scheduler are adhered to.

6. CONCLUSIONS
This paper demonstrates modifications to an existing OS sched-

uler, already tuned to identify and balance across shared resources,
that significantly improve power and performance efficiency. It
does so by incorporating lightweight runtime workload characteri-
zation into the scheduler and extending the load balancer to exploit
them to better balance demand for shared resources. It also shows
that it is critical that we characterize transient threads to prevent
them from causing the load balancer to overreact to short-lived im-
balances for more efficient and stable schedules. The real life im-
plementation of our framework achieves up to 30% improvement in
performance per watt over the default OpenSolaris scheduler, and
reduces thread migrations by close to 90%.

7. REFERENCES
[1] J. R. Bulpin and I. A. Pratt. Hyper-threading aware process

scheduling heuristics. In Proc. ATEC, 2005.
[2] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic

instrumentation of production systems. In Proc. ATEC, 2004.
[3] G. Dhiman, K. Pusukuri, and T. Rosing. Analysis of dynamic voltage

scaling for system level energy management. In USENIX HotPower,
2008.

[4] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum. Performance
of multithreaded chip multiprocessors and implications for operating
system design. In Proc. ATEC, 2005.

[5] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using OS
observations to improve performance in multicore systems. Proc.
IEEE Micro, 28(3), 2008.

[6] R. L. McGregor, C. D. Antonopoulos, and D. S. Nikolopoulos.
Scheduling algorithms for effective thread pairing on hybrid
multiprocessors. In proc. IPDPS, 2005.

[7] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap: eliminating
server idle power. In Proc. ASPLOS, 2009.

[8] A. Merkel and F. Bellosa. Memory-aware scheduling for energy
efficiency on multicore processors. In USENIX HotPower, 2008.

[9] A. Phansalkar, A. Joshi, L. Eeckhout, and L. John. Measuring
program similarity: Experiments with spec cpu benchmark suites. In
Proc. ISPASS, 2005.

[10] A. Snavely and D. Tullsen. Symbiotic jobscheduling for a
simultaneous multithreading architecture. In Proc. ASPLOS, 2000.

[11] X. Zhang, S. Dwarkadas, G. Folkmanis, and K. Shen. Processor
hardware counter statistics as a first-class system resource. In Proc.
USENIX HOTOS, 2007.

