Computer Graphics

CSE 167 [Win 22], Lecture 4: Transformations 2 Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse167/wi22

To Do

- Start doing HW 1
 - Time is short, but needs only little code [Due Jan 19]
 Ask questions or clear misunderstandings by next lecture
- Specifics of HW 1
 - Last lecture covered basic material on transformations in 2D Likely need this lecture to understand full 3D transformations
 - Last lecture had full derivation of 3D rotations. You only need final formula
 - gluLookAt derivation this lecture helps clarifying some ideas
- Read and post on Piazza re questions
- Any remaining issues with UCSD Online graders, submission of homeworks?

Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Translation

- E.g. move x by +5 units, leave y, z unchanged
- We need appropriate matrix. What is it?

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} & & \\ & ? & \\ & & \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+5 \\ y \\ z \end{pmatrix}$$

Transformations game demo

Homogeneous Coordinates

- Add a fourth homogeneous coordinate (w=1)
- 4x4 matrices very common in graphics, hardware
- Last row always 0 0 0 1 (until next lecture)

$$\begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x+5 \\ y \\ z \\ 1 \end{pmatrix}$$

Representation of Points (4-Vectors)

Homogeneous coordinates

mogeneous coordinates

Divide by 4th coord (w) to get
$$P = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x/w \\ y/w \\ z/w \\ 1$$

- Multiplication by w > 0, no effect
- Assume $w \ge 0$. For w > 0, normal finite point. For w = 0, point at infinity (used for vectors to stop translation)

Advantages of Homogeneous Coords

- Unified framework for translation, viewing, rot...
- Can concatenate any set of transforms to 4x4 matrix
- No division (as for perspective viewing) till end
- Simpler formulas, no special cases
- Standard in graphics software, hardware

General Translation Matrix

$$T = \left(\begin{array}{cccc} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{array}\right) = \left(\begin{array}{ccc} I_3 & T \\ 0 & 1 \end{array}\right)$$

$$P' = TP = \begin{pmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x + T_x \\ y + T_y \\ z + T_z \\ 1 \end{pmatrix} = P + T$$

Combining Translations, Rotations

- Order matters!! TR is not the same as RT (demo)
- General form for rigid body transforms
- We show rotation first, then translation (commonly used to position objects) on next slide. Slide after that works it out the other way
- Demos with applet, homework 1

Combining Translations, Rotations

$$P' = (TR)P = MP = RP + T$$

$$M = \begin{pmatrix} 1 & 0 & 0 & T_{x} \\ 0 & 1 & 0 & T_{y} \\ 0 & 0 & 1 & T_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} & R_{13} & 0 \\ R_{21} & R_{22} & R_{23} & 0 \\ R_{31} & R_{32} & R_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} R_{11} & R_{12} & R_{13} & T_{x} \\ R_{21} & R_{22} & R_{23} & T_{y} \\ \frac{R_{31}}{0} & R_{32} & R_{33} & T_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} R & T \\ 0 & 1 \end{pmatrix}$$

Transformations game demo

Combining Translations, Rotations

$$P' = (RT)P = MP = R(P+T) = RP + RT$$

$$M = \begin{pmatrix} R_{11} & R_{12} & R_{13} & 0 \\ R_{21} & R_{22} & R_{23} & 0 \\ R_{31} & R_{32} & R_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} R_{3\times3} & R_{3\times3}T_{3\times1} \\ 0_{1\times3} & 1 \end{pmatrix}$$

Transformations game demo

Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Slides for this part courtesy Prof. O' Brien

Drawing a Scene Graph

- Draw scene with pre-and-post-order traversal
 Apply node, draw children, undo node if applicable
- Nodes can carry out any function
 - Geometry, transforms, groups, color, ...
- Requires stack to "undo" post children
 - Transform stacks in OpenGL
- Caching and instancing possible
- Instances make it a DAG, not strictly a tree

Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Finding Normal Transformation

$$t \rightarrow Mt$$
 $n \rightarrow Qn$ $Q = ?$

$$n^{T}t = 0$$

$$n^{T}Q^{T}Mt = 0 \Rightarrow Q^{T}M = I$$

$$Q = (M^{-1})^{T}$$

Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Coordinate Frames All of discussion in terms of operating on points But can also change coordinate system Example, motion means either point moves backward, or coordinate system moves forward P = (2,1) P = (1,1) P = (1,1)

Coordinate Frames: In general

- Can differ both origin and orientation (e.g. 2 people)
- One good example: World, camera coord frames (H1)

Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Geometric Interpretation 3D Rotations

- Rows of matrix are 3 unit vectors of new coord frame
- Can construct rotation matrix from 3 orthonormal vectors

$$R_{uvw} = \begin{pmatrix} x_u & y_u & z_u \\ x_v & y_v & z_v \\ x_w & y_w & z_w \end{pmatrix} \quad u = x_u X + y_u Y + z_u Z$$

Axis-Angle formula (summary)

$$(b \setminus a)_{ROT} = (I_{3\times 3} \cos \theta - aa^{T} \cos \theta)b + (A^{*} \sin \theta)b$$
$$(b \to a)_{ROT} = (aa^{T})b$$

$$R(a,\theta) = I_{3\times 3}\cos\theta + aa^{T}(1-\cos\theta) + A^{*}\sin\theta$$

$$R(a,\theta) = \cos\theta \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + (1-\cos\theta) \begin{pmatrix} x^2 & xy & xz \\ xy & y^2 & yz \\ xz & yz & z^2 \end{pmatrix} + \sin\theta \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$$

Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Case Study: Derive gluLookAt

Defines camera, fundamental to how we view images

- gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
- Camera is at eye, looking at center, with the up direction being up

- May be important for HW1
- Combines many concepts discussed in lecture
- Core function in OpenGL for later assignments

Steps

- gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
- Camera is at eye, looking at center, with the up direction being up
- First, create a coordinate frame for the camera
- Define a rotation matrix
- Apply appropriate translation for camera (eye) location

Constructing a coordinate frame?

We want to associate w with a, and v with b

- But **a** and **b** are neither orthogonal nor unit norm
- And we also need to find u

$$w = \frac{a}{\|a\|}$$

$$u = \frac{b \times w}{\|b \times w\|}$$

from lecture 2

Constructing a coordinate frame

$$w = \frac{a}{|a|}$$

$$u = \frac{b \times w}{|b \times w|}$$

$$V = W \times U$$

- We want to position camera at origin, looking down –Z dirn
- Hence, vector a is given by eye center
- The vector **b** is simply the **up** vector Up vector

Steps

- gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
- Camera is at eye, looking at center, with the up direction being up
- First, create a coordinate frame for the camera
- Define a rotation matrix
- Apply appropriate translation for camera (eye) location

Geometric Interpretation 3D Rotations

- Rows of matrix are 3 unit vectors of new coord frame
- Can construct rotation matrix from 3 orthonormal vectors

$$R_{uvw} = \begin{pmatrix} x_u & y_u & z_u \\ x_v & y_v & z_v \\ x_w & y_w & z_w \end{pmatrix} \qquad u = x_u X + y_u Y + z_u Z$$

Steps

- gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
- Camera is at eye, looking at center, with the up direction being up
- First, create a coordinate frame for the camera
- Define a rotation matrix
- Apply appropriate translation for camera (eye) location

Translation

- gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
- Camera is at eye, looking at center, with the up direction being up
- Cannot apply translation after rotation
- The translation must come first (to bring camera to origin) before the rotation is applied

Combining Translations, Rotations

$$P' = (RT)P = MP = R(P+T) = RP + RT$$

$$M = \begin{pmatrix} R_{11} & R_{12} & R_{13} & 0 \\ R_{21} & R_{22} & R_{23} & 0 \\ R_{31} & R_{32} & R_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} R_{3\times3} & R_{3\times3}T_{3\times1} \\ 0_{1\times3} & 1 \end{pmatrix}$$

gluLookAt final form

$$\left(\begin{array}{cccc}
x_u & y_u & z_u & 0 \\
x_v & y_v & z_v & 0 \\
x_w & y_w & z_w & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\left(\begin{array}{cccc}
1 & 0 & 0 & -e_x \\
0 & 1 & 0 & -e_y \\
0 & 0 & 1 & -e_z \\
0 & 0 & 0 & 1
\end{array}\right)$$

$$\begin{pmatrix} x_{u} & y_{u} & z_{u} & -x_{u}e_{x} - y_{u}e_{y} - z_{u}e_{z} \\ x_{v} & y_{v} & z_{v} & -x_{v}e_{x} - y_{v}e_{y} - z_{v}e_{z} \\ x_{w} & y_{w} & z_{w} & -x_{w}e_{x} - y_{w}e_{y} - z_{w}e_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$