Computer Graphics

CSE 167 [Win 22], Lecture 4: Transformations 2
Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse167/wi22

Outline

Translation: Homogeneous Coordinates
Combining Transforms: Scene Graphs
Transforming Normals

Rotations revisited: coordinate frames

gluLookAt (quickly)

Homogeneous Coordinates

Add a fourth homogeneous coordinate (w=1)
4x4 matrices very common in graphics, hardware

Last row always 0 0 0 1 (until next lecture)

X+5

5
' 0
0
1

+
y
z
1

To Do

Start doing HW 1
Time is short, but needs only little code [Due Jan 19]
Ask questions or clear misunderstandings by next lecture

Specifics of HW 1

Last lecture covered basic material on transformations in 2D
Likely need this lecture to understand full 3D transformations

Last lecture had full derivation of 3D rotations.
You only need final formula

gluLookAt derivation this lecture helps clarifying some ideas
Read and post on Piazza re questions

Any remaining issues with UCSD Online graders,
submission of homeworks?

Translation

E.g. move x by +5 units, leave y, z unchanged

We need appropriate matrix. What is it?

X X+5
y
z

Transformations game demo

Representation of Points (4-Vectors)

Homogeneous coordinates x/w
Divide by 4 coord (w) to get P = Jiw
(inhomogeneous) point zlw

1

Multiplication by w > 0, no effect

Assume w = 0. For w > 0, normal
finite point. For w = 0, point at infinity
(used for vectors to stop translation)




Advantages of Homogeneous Coords General Translation Matrix

Unified framework for translation, viewing, rot...

Can concatenate any set of transforms to 4x4 matrix
No division (as for perspective viewing) till end
Simpler formulas, no special cases

Standard in graphics software, hardware

Combining Translations, Rotations Combining Translations, Rotations

Order matters!! TR is not the same as RT (demo) P'=(TRIP=MP=RP+T

General form for rigid body transforms

We show rotation first, then translation (commonly
used to position objects) on next slide. Slide after
that works it out the other way

Demos with applet, homework 1

Transformations game demo

Combining Translations, Rotations Outline

P'=(RT)P=MP=R(P+T)=RP+RT

Translation: Homogeneous Coordinates

Combining Transforms: Scene Graphs

R12
R,, R;, Transforming Normals
RSZ

Rotations revisited: coordinate frames

gluLookAt (quickly)

Transformations game demo

Slides for this part courtesy Prof. O’ Brien



Hierarchical Scene Graph

Scene Descriptions

Afully instantiated, i
hierarchical
‘with Transformations

on all Instances: ()
(=Inclusions, Invocations)

Scene Graph (DAG)
containin

Example Scene-Graphs

What is the "Right" Hierarchy W What is the "Right" Hierarchy
for this 18-Wheeler ? for this 18-Wheeler ?

TRAILER D
OB o %é?%

World

| — |

Cab Asmbly Cab Asmbly

i | \ / | \
Trailer Asmbly Trailer Asmbly

Flat Wheel
GROUPS GROUPS

Normals
Important for many tasks in graphics like lighting
Do not transform like points e.g. shear

Algebra tricks to derive correct transform

Incorrect to
transform
like points

Drawing a Scene Graph

Draw scene with pre-and-post-order traversal
Apply node, draw children, undo node if applicable

Nodes can carry out any function
Geometry, transforms, groups, color, ...

Requires stack to “undo” post children
Transform stacks in OpenGL

Caching and instancing possible

Instances make it a DAG, not strictly a tree

Outline

Translation: Homogeneous Coordinates
Combining Transforms: Scene Graphs
Transforming Normals

Rotations revisited: coordinate frames

gluLookAt (quickly)

Finding Normal Transformation
t—> Mt n— Qn Q="
n"t=0
n"Q'Mt=0 = QM=|




Outline

Translation: Homogeneous Coordinates
Combining Transforms: Scene Graphs
Transforming Normals

Rotations revisited: coordinate frames

gluLookAt (quickly)

Coordinate Frames: In general
Can differ both origin and orientation (e.g. 2 people)

One good example: World, camera coord frames (H1)

v

\/U
e
l Camera ®p

o X

Outline

Translation: Homogeneous Coordinates
Combining Transforms: Scene Graphs
Transforming Normals

Rotations revisited: coordinate frames

gluLookAt (quickly)

Coordinate Frames
All of discussion in terms of operating on points
But can also change coordinate system

Example, motion means either point moves
backward, or coordinate system moves forward

Coordinate Frames: Rotations

X

cosf -sin6 u | _| cosf -sin@ '
siné cos6 v sin6 cos6

Geometric Interpretation 3D Rotations

Rows of matrix are 3 unit vectors of new coord frame
Can construct rotation matrix from 3 orthonormal vectors
XLI yu ZU
X, Yy, z u=xX+yY+zZ




Axis-Angle formula (summary)

(b\a)por = (I, ,cOs0 —aa’ cosO)b+(A sinb)b
(b—a).. . =(aa )b

ROT —

R(a,0)=1, ,cos6+ aa’ (1-cosf)+A'sing

XX xy xz 0 -z y
R(a,0)=cos@ +(1-cos@)| xy y*> yz |+sinf] z 0 -x
Xz yz 2° -y x 0

Case Study: Derive gluLookAt

Defines camera, fundamental to how we view images
gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
Camera is at eye, looking at center, with the up direction being up

Up vector

Eye

May be important for HW1
Combines many concepts discussed in lecture

Core function in OpenGL for later assignments

Constructing a coordinate frame?

We want to associate w with a, and v with b
But a and b are neither orthogonal nor unit norm
And we also need to find u

a

B

bxw
u= 2
[loxw

V=wXu

from lecture 2

Outline

Translation: Homogeneous Coordinates
Combining Transforms: Scene Graphs
Transforming Normals

Rotations revisited: coordinate frames

gluLookAt (quickly)

Steps

gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

Camera is at eye, looking at center, with the up direction being up

First, create a coordinate frame for the camera
Define a rotation matrix

Apply appropriate translation for camera (eye) location

Constructing a coordinate frame

W:i u:bxw V=wXxu
el low]
We want to position camera at origin, looking down —Z dirn
Hence, vector a is given by eye — center

The vector b is simply the up vector 7y, vector




Steps

gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

Camera is at eye, looking at center, with the up direction being up

First, create a coordinate frame for the camera
Define a rotation matrix

Apply appropriate translation for camera (eye) location

Steps

gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

Camera is at eye, looking at center, with the up direction being up

First, create a coordinate frame for the camera
Define a rotation matrix

Apply appropriate translation for camera (eye) location

Combining Translations, Rotations

P'=(RTP=MP=R(P+T)=RP+RT

Geometric Interpretation 3D Rotations

Rows of matrix are 3 unit vectors of new coord frame
Can construct rotation matrix from 3 orthonormal vectors

u=xX+yY+zZ

Translation

gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

Camera is at eye, looking at center, with the up direction being up

Cannot apply translation after rotation

The translation must come first (to bring camera to
origin) before the rotation is applied

gluLookAt final form
0

0
10
0 1
00

V4 —-Xe —-ye —zZe
ux u’y u-z

V4 —-Xe —ye —zZe
v x vy vz

V4

u
v
0 1




