
Optimizing Grid Site Manager Performance with
Virtual Machines

Ludmila Cherkasova, Diwaker Gupta
Hewlett-Packard Labs

Palo Alto, CA 94304, USA
{lucy.cherkasova,diwaker.gupta}@hp.com

Eygene Ryabinkin, Roman Kurakin, Vladimir Dobretsov
Russian Research Center “Kurchatov Institute”

Moscow, Russia
{Eygene.Ryabinkin,Roman.Kurakin,Vladimir.Dobretsov}@grid.kiae.ru

Amin Vahdat
University of California

San Diego, CA 92122, USA
vahdat@cs.ucsd.edu

Abstract— Virtualization can enhance the functionality and
ease the management of current and future Grids by enabling on-
demand creation of services and virtual clusters with customized
environments, QoS provisioning and policy-based resource allo-
cation. In this work, we consider the use of virtual machines
(VMs) in a data-center environment, where a significant portion
of resources from a shared pool are dedicated to Grid job
processing. The goal is to improve efficiency while supporting a
variety of different workloads. We analyze workload data for the
past year from a Tier-2 Resource Center at the RRC Kurchatov
Institute (Moscow, Russia). Our analysis reveals that a large
fraction of Grid jobs have low CPU utilization, which suggests
that using virtual machines to isolate execution of different Grid
jobs on the shared hardware might be beneficial for optimizing
the data-center resource usage. Our simulation results show that
with only half the original infrastructure employing VMs (50
nodes and four VMs per node) we can support 99% of the load
processed by the original system (100 nodes). Finally, we describe
a prototype implementation of a virtual machine management
system for Grid computing.

I. INTRODUCTION

One of the largest Grid efforts unfolds around the Large
Hadron Collider (LHC) project [1] at CERN. When it begins
operations in 2007, it will produce nearly 15 Petabytes (15
million Gigabytes) of data annually. This data will be accessed
and analyzed by thousands of scientists around the world. The
main goal of the LHC Computing Grid (LCG) is to develop
and deploy the computing environment for use by the entire
scientific community. The data from the LHC experiments
will be distributed for processing, according to a three-tier
model as shown in Figure 1. After initial processing at CERN
— the Tier-0 center of LCG — this data will be distributed
to a series of Tier-1 facilities: large computer centers with
sufficient storage capacity for a significant fraction of the data
and 24/7 support for the Grid. The Tier-1 centers will, in
turn, make data available to Tier-2 centers, each consisting
of one or more collaborating computing facilities, which can
store sufficient data and provide adequate computing power
for specific analysis tasks. Individual scientists will access
these facilities through Tier-3 computing resources, which can
consist of local clusters in a University Department or even
individual PCs, and which may be allocated to LCG on a
regular basis. The analysis of the data, including comparison
with theoretical simulations, requires of the order of 100,000
CPUs. Thus the strategy is to integrate thousands of computers
and dozens of participating institutes worldwide into a global
computing resource.

Fig. 1: LHC Vision: Data Grid Hierarchy.

The LCG project aims to collaborate and interoperate with
other major Grid development projects and production en-
vironments around the world. More than 90 partners from
Europe, the US and Russia are leading a worldwide effort
to re-engineer existing Grid middleware to ensure that it is
robust enough for production environments like LCG.

One of the major challenges in this space is to build
robust, flexible, and efficient infrastructures for the Grid.
Virtualization is a promising technology that has attracted
much interest and attention, particularly in the Grid community
[2], [3], [4]. Virtualization can add many desirable features to
the functionality of current and future Grids:

• on-demand creation of services and virtual clusters with
pre-determined characteristics [5], [6],

• policy-based resource allocation and and management
flexibility [5],

• QoS support for Grid jobs processing [7],
• execution environment isolation,
• improved resource utilization due to statistical multi-

plexing of different Grid jobs demands on the shared
hardware.

Previous work on using virtual machines (VMs) in Grids
has focused on the utility of VMs for better customization
and administration of the execution environments.

This paper focuses on the performance/fault isolation and
flexible resource allocation enabled by the use of VMs. VMs
enable diverse applications to run in isolated environments on
a shared hardware platform and dynamically control resource
allocation for different Grid jobs. To the best of our knowl-
edge, this is the first paper to analyze real workload data from
a Grid and give empirical evidence for the feasibility of this
idea. We show that there is actually a significant economic and

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10 100 1000 10000

C
D

F

Logscale: Duration (min)

Wall CPU Time and Actual CPU Time per Job (Logscale)

 Job Duration
Actual Used CPU Time

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

C
D

F

Duration (min)

Overall CPU Usage (Wall Time) by Jobs of Different Duration

Overall_CPU_Usage

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000

C
D

F

MBytes

 Memory and Virtual Memory Usage

Virtual Memory
Physical Memory

(c)
Fig. 2: Basic Trace Characterization.

performance incentive to move to a VM based architecture.
We analyze workloads from a Tier-2 Resource Center (a part

of the LCG infrastructure) supported by the Russian Research
Center “Kurchatov Institute” (Moscow, Russia). Our analysis
shows that the machines in the data center are relatively under-
utilized: 50% of the jobs use less than 2% CPU-time and 70%
use less than 14% of cpu-time during their lifetime. However,
existing LCG specifications do not support or require time
sharing; only a single job runs on a processor at a time. While
this simple resource allocation model provides guaranteed
access to the requested resources and supports performance
isolation between different Grid jobs, it may lead to significant
under-utilization of resources.

Our results indicate that assigning multiple Grid jobs to
the same node for processing may be beneficial for optimized
resource usage in the data center. Our analysis of memory
usage reveals that for 98% of the jobs virtual memory usage
is less than 512 MB. This means that we can spawn 4-8 virtual
machines per compute node (with 4 GB of memory) and have
no memory contention due to virtualization layer.

These statistics provide strong motivation for executing Grid
jobs inside different virtual machines for optimized resource
usage in data-center. For instance, our simulation results show
that a half-size infrastructure augmented with four VMs per
node can process 99% of the load executed by the original
system (see Section IV). In addition, the introduction of VMs
for Grid job execution enables policy-based resource allocation
and management in the data center: the administrator can
dynamically change the number of physical nodes allocated
for Grid jobs versus enterprise applications without degrading
performance support for Grid processing. Live migration of
VMs makes the management process even more flexible.

We next present our analysis of the Grid workload.

II. WORKLOAD ANALYSIS

The RRC Kurchatov Institute (RRC-KI) in Moscow con-
tributes a part of their data-center to the LCG infrastructure
(100 nodes with Xeon 2.8 GHz CPU processor, 2GB of
memory, and 80 GB ATA or SCSI disks). LCG requires access
logs for each job to generate the accounting records [8]. We
analyzed the access logs for Grid job processing at RRC-
KI between 04/29/2005 and 05/25/2006, spanning almost 390
days of operation. The original trace has 65,368 entries. Each
trace entry has information about the origin of the job, its start
and end time, as well as a summary of resources used by the
job. For our analysis, we concentrated on the following fields:

• start and end times;

• Virtual Organization (VO) that originated the job;
• CPU time used per job processing (sec)’
• memory and virtual memory used (MB)
For CPU time, we make the distinction between Wall CPU

Time (WCT) and Actual CPU Time (ACT). WCT is the overall
time taken for a job to finish. ACT reflects the actual CPU time
consumed by the job.

First, we filter the data to remove erroneous entries. There
were numerous failed Grid jobs (jobs that could not be
executed or failed due to some mis-configuration): entries with
zero job duration (i.e., when start time = end time), as well
as entries with zero ACT, or zero memory/virtual memory
consumption. After the filtering, 44,183 entries out of the
original 65,368 entries are left for analysis.

Figure 2(a) shows the Cumulative Distribution Function
(CDF) of the job duration: the WCT is shown by the solid line.
We can see that there is a large variation in the job durations:

• 58% of jobs have a duration less than 10 min;
• 91% of jobs have a duration less than 60 min (i.e., 34%

of jobs have duration between 10 min and 1 hour);
• 96% of jobs have a duration less than 1440 min (i.e., 5%

of jobs have duration between 1 hour and 1 day);
• 99.96% of jobs have a duration less than 4325 min (i.e.,

3.96% of jobs have duration between 1 day and 3 days);
The dotted (green) line in Figure 2(a) shows the CDF of

the ACT for the jobs. It is evident from the figure that the
ACT for a job is typically much lower than the WCT. For
example, 95% of the jobs use less than 1 hour of actual CPU
time during their processing.

Figure 2(b) presents the fraction of wall CPU time summed
over jobs of different duration out of the overall CPU time
consumed by all the jobs. We can see that longer jobs are
responsible for most of the CPU time consumed by the jobs
in the entire trace. For example,

• jobs that are less than 1 day in duration are responsible
for only 20% of all consumed CPU resources while they
constitute 91% of all the jobs;

• jobs that execute for about 3 days are responsible for 42%
of all consumed CPU resources while they constitute only
2% of all the jobs.

Finally, Figure 2(c) shows the CDF of memory and virtual
memory consumed per job in mega-bytes (MB). For 98% of
the jobs virtual memory usage is less than 512 MB. Only
0.7% of the jobs are using more than 1 GB of virtual memory.
Such reasonable memory consumption means that we can use
4-8 virtual machines per node with 4 GB of memory and
practically support the same memory performance per job.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

lhcb fusion dteam alice atlas cms

F
ra

ct
io

n
of

 J
ob

s

User

Fraction of Jobs per User

Jobs

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

lhcb fusion dteam alice atlas cms

F
ra

ct
io

n
of

 U
se

d
W

al
l T

im
e

User

Fraction of Used Wall Time per User

Wall Time

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

lhcb fusion dteam alice atlas cms

C
P

U
-U

sa
ge

-E
ffi

ci
en

cy
 (

%
)

User

CPU-Usage-Efficiency (CPU Usage/Wall time) per User

CPU-Usage-Efficiency

(c)
Fig. 4: General per Virtual Organization Statistics.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

C
D

F

CPU-Usage-Efficiency (%)

CPU-Usage-Efficiency per Job

CPU-Usage-Efficiency

Fig. 3: CDF of CPU-Usage-Efficiency per Job.

To get a better understanding of CPU utilization, we intro-
duce a new metric called the CPU Usage Efficiency (CUE),
defined by the percentage of actual CPU time consumed by a
job out of the wall CPU time. That is, CUE = ACT/WCT .
Figure 3 shows the CDF of CPU-usage-efficiency per job. For
example,

• 50% of the jobs use less than 2% of their WCT
• 70% of the jobs use less than 14% of their WCT
This data shows that CPU utilization is low for a significant

fraction of the Grid jobs, and therefore for nodes hosting
these Grid jobs. One possible explanation for the low CPU
utilization could be a situation where the bandwidth at the
Kurchatov Data Center becomes the bottleneck. To verify
this, we analyzed the network bandwidth consumption at the
gateway to the Kurchatov Data Center for last year, and the
analysis showed that the peak bandwidth usage never exceeded
60% of the available bandwidth. This point is important:
since there was enough surplus available bandwidth, the low
CPU utilization is not because of a network bottleneck within
Kurchatov. We suspect that a bottleneck in the upstream
network path might be involved, or there might be over-
head/inefficiency in the middleware layer.

Next, we analyze the origin of Grid jobs: which Virtual Or-
ganization (VO) for which jobs? Six major VOs had submitted
their jobs for processing. Figure 4(a) shows the percentage of
jobs submitted for processing by these different VOs.

• LHCb (45% of all the jobs)
• FUSION(22.5% of all the jobs)
• DTEAM (18% of all the jobs)
• ALICE (8% of all the jobs)
• ATLAS (4% of all the jobs)
• CMS (2.5% of all the jobs)
Discovering new fundamental particles and analyzing their

properties with the LHC accelerator is possible only through
statistical analysis of the massive amounts of data gathered

by the LHC detectors ATLAS, CMS, ALICE and LHCb, and
detailed comparison with compute-intensive theoretical simu-
lations. So these four VOs are directly related to LHC project.
DTEAM is the VO for the Grid users in Central Europe and
infrastructure testing. FUSION is a VO for researchers in
plasma physics and nuclear fusion.

Figure 4(b) shows percentage of wall CPU time consumed
by different VOs over duration of the entire trace. Grid
jobs from LHCb significantly dominate resource usage in
Kurchatov data-center: they consumed 50% of overall used
CPU resources.

Finally, Figure 4(c) presents CPU-usage-efficiency across
different VOs. Here, we can see that Grid jobs from CMS [9]
and ATLAS [10] have significantly higher CPU utilization
during their processing (85% and 70% relatively) compared to
the remaining VOs. Understanding workload characteristics of
different VOs is very useful for design of efficient VMs/jobs
placement algorithm.

While the analyzed workload is representative and covers
1-year of Grid job processing in Kurchatov Data Center, we
note that our analysis provides only a snapshot of overall Grid
activities: Grid middleware is constantly evolving, as is the
Grid workload itself. However, the current Grid infrastructure
inherently faces potential inefficiencies in resource utilization
due to the myriads of middleware layers and the complexity
introduced by distributed data storage and execution systems.
The opportunity for improvement (using VMs) will depend on
the existing mixture of Grid jobs and their types: what fraction
of the jobs represent computations that are remote data depen-
dent (e.g., remote data processing) and what fraction of the
jobs are pure CPU intensive (e.g., a simulation experiment).

III. GRID JOB RESOURCE USAGE PROFILING

To better understand the resource usage during Grid job
processing, we implemented a monitoring infrastructure and
collected a set of system metrics for the compute nodes in
RRC-KI, averaged over 10 sec intervals for one week in
June, 2006. Since I/O operations typically lead to lower CPU
utilization, the goal was to build Grid job profiles (metric
values as a function of time) to reflect I/O usage patterns,
and analyze whether local disk I/O or networking traffic may
be a cause of the low CPU utilization per job. During this time
1372 Grid jobs were processed and 90% of the processed jobs
had CPU-usage-efficiency less than 10%.

For each Grid job, we consider the following metrics:
• The percentage of CPU time that is spent in waiting for

disk I/O events;

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70

C
D

F
 o

f J
ob

s

CPU Time Waiting for Disk I/O Events (%)

Jobs Profile over Time: Blocked CPU Time on Disk I/O Events

 99th
 90th
 80th

(a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100 1000 10000

C
D

F
 o

f J
ob

s

KB/sec (Logscale)

Jobs Profile over Time: Incoming Network Traffic

 99th
 90th
 80th

(b)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100 1000

C
D

F
 o

f J
ob

s

KB/sec (Logscale)

Jobs Profile over Time: Outgoing Network Traffic

 99th
 90th
 80th

(c)
Fig. 5: Grid Job I/O usage Profiles.

• Incoming network traffic in KB/sec;
• Outgoing network traffic in KB/sec;
To simplify the job profile analysis, we present the profiles

as CDFs for each of the three metrics. This way, we can
see what percentage of CPU time is spent while waiting for
disk I/O events during each 10 sec time interval over a job’s
lifetime. For understanding the general trends, we plot 80-th,
90-th, and 99-th percentile for each metric in the job profile.
For example, to construct the CDF corresponding to the 80-th
percentile, we would look at the metric profile for each job
and collect the 80-th percentile points, and then plot the CDF
of these collected points.

Figure 5(a) plots the Grid job profiles related to local disk
I/O events. It shows that

• for 80% of the time nearly 90% of the jobs have no CPU
time waiting on disk events, and for remaining 10% of
jobs CPU waiting time does not exceed 5%;

• for 90% of the time approximately 80% of the jobs have
no CPU time waiting on disk events, and for remaining
20% of jobs CPU waiting time does not exceed 10%;

• for 99% of the time nearly 50% of the jobs have no CPU
time waiting on disk events, for remaining 45% of jobs
CPU waiting time in this 1% of time intervals does not
exceed 10%, and only 5% of the jobs have CPU time
waiting in the range 10-60%.

Hence, we can conclude that local disk I/O can not be a
cause of low CPU utilization.

Figures 5(b) and 5(c) summarize the incoming/outgoing
network traffic profiles across all jobs (note the graphs use log-
scale for X-axes). One interesting (but expected observation)
is that there is a higher volume of incoming networking traffic
compared to the volume of outgoing networking traffic. The
networking infrastructure in the Kurchatov Data Center is not
a limiting factor: the highest volume of incoming networking
traffic is in the range of 1 MB/sec to 10MB/sec and is observed
only for 1% of time intervals and 10% of Grid jobs. More
typical behavior is that 70%-80% of the jobs have a consistent
(relatively small) amount of incoming/outgoing network traffic
in 1% of time intervals. Additionally, 40% of grid jobs have
incoming/outgoing network traffic in 10% of time intervals,
while only 10%-20% of jobs have incoming/outgoing network
traffic in 20% of time intervals. While it does not explain
completely why CPU utilization is low for large fraction of
the Grid jobs, our speculation is that it might be caused due
to inefficiencies in remote data transfers and by slowdown in
related data processing.

IV. SIMULATION RESULTS

To analyze potential performance benefits of introducing
VMs, we use a simulation model with the following features
and parameters:

• NumNodes - the number of compute nodes that can be
used for Grid job processing. By setting this parameter
to unlimited value, we can find the required number
of nodes under different scenarios (combination of the
other parameters in the model). When NumNodes is
set to a number less than the minimum nodes required
under a certain scenario, the model implements admission
control, and at the end of the simulation the simulator
reports the number (percentage) of rejected jobs from a
given trace.

• NumV Ms - the number of VMs that can be spawned
per node. NumV Ms = 1 corresponds to the traditional
Grid processing paradigm with no virtual machines and
one job per node. When setting NumV Ms = 4 no more
than four VMs are allowed to be created per node.

• Overbooking - the degree of over booking (or un-
der booking) of nodes when assigning multiple VMs
(jobs) per node. Overbooking = 1 corresponds to
the ideal case where the virtualization layer does
not introduce additional performance overhead. Using
Overbooking ≤ 1, we can evaluate performance ben-
efits solution under different virtualization overheads.
By allowing Overbooking ≥ 1, we can evaluate the
effect of limited time overbooking of the node resources.
This may lead to potential slowdown of Grid job pro-
cessing: processing time slowdown is another valuable
metric for evaluation. Note that we don’t experiment with
Overbooking > 1 in this work.

The model implements a least-loaded placement algorithm:
an incoming job is assigned to the least-loaded node that has
a spare VM that can be allocated for job processing. This
model provides optimistic results compared to the real case
scenario because the placement algorithm above has “perfect”
knowledge about required CPU resources of each incoming
job and therefore its performance is close to the optimal.

First, we used this model to simulate the origi-
nal Grid job processing in Kurchatov Data Center over
time (NumNodes = unlimited, NumV Ms = 1,
Overbooking = 1). Figure 6(a) shows the number of concur-
rent Grid jobs over time, i.e., the number of CPUs allocated
and used over time. Figure 6(b) shows the actual utilization
of these nodes, i.e, the combined CPU requirements of jobs

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

N
um

C
P

U
s

Time (days)

AllocatedCPUs

(a)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

N
um

C
P

U
s

Time (days)

Combined_ActuallyUsedCPUs

(b)
Fig. 6: Original Grid Job Processing in Kurchatov Resource Center Over Time.

in progress, based on their actual CPU usage. The X-axes
is in days since the beginning of the trace. While RRC-
KI advertised 100 compute nodes available for processing
throughput last year, there are rare days when all of these
nodes are actually used. Figure 6(b) shows that the allocated
CPUs are significantly underutilized most of the time.

We simulated processing of the same job trace under
different scenarios with limited available CPU resources:

• NumNodes = 40, 50, 60;
• NumV Ms = 1, 2, 4, 6, 8;
• Overbooking = 0.8, 0.9, 1.0.

Table I shows the results: the percentage of rejected jobs from
the overall trace under different scenarios. The simulation
results for different values of Overbooking = 0.8, 0.9, 1.0
are the same, this is why we show only one set of the
results. It means that even with virtualization overhead of 20%
the consolidation of different grid jobs for processing on a
shared infrastructure with VMs is highly beneficial and there
is enough spare capacity in the system to seamlessly absorb
an additional virtualization overhead.

Orig 2 VMs 4 VMs 6 VMs 8 VMs
40 nodes 20.1% 4.72% 2.75% 2.52% 2.51%
50 nodes 10.9% 1.51% 1.08% 1.06% 1.05%
60 nodes 4.73% 0.53% 0.49 % 0.48% 0.48%

TABLE I: Percentage of rejected Grid jobs during processing on
limited CPU resources with VMs.

First of all, we evaluated the scenario when the original
system has a decreased number of nodes. As Table I shows,
when the original system has 40 nodes the percentage of
rejected jobs reaches high 20%, while under scenario when
these 40 nodes support 4 VMs per node the rejection rates are
only 2.75% for the overall trace.

Another observation is that increasing the number of VMs
per node from two to four has a significant impact on de-
creasing the number of rejected jobs. Further increasing the

number of VMs per node to six or eight provides almost no
additional reduction in number of rejected jobs. This indicates
the presence of diminishing returns: arbitrarily increasing the
multiplexing factor will not improve performance.

Thus with a half-size infrastructure and use of VMs (50
nodes and four VMs per node) we can process 99% of the
load processed by the original system with 100 nodes.

V. PROTOTYPE

We now describe our prototype design built on top of the
Xen VMM. Let us briefly look at the current work-flow for
executing a Grid job at Kurchatov shown in Figure 7:

Fig. 7: Original work-flow for a Grid job.

• A Resource Broker (RB) is responsible for managing
Grid jobs across multiple sites. The RBs sends jobs to
Computing Elements (CE). CEs are just Grid gateways
to computing resources (such as a Data Center).

• CEs run a batch system (in particular, LCG uses Torque
with the MAUI job scheduler [11]). The job scheduler
determines the machine — called a Worker Node (WN)
— that should host the job.

• a local job execution service is notified of a new job
request. A job execution script (Grid task wrapper) is
passed to the job execution service and the job is executed
on the WN. The job script is responsible for retrieving
in the necessary data files for the job, exporting the logs

to the RB, executing the job and doing cleanup upon job
completion.

The goal is to modify the current work-flow to use VMs.
At a high level, the entry point for VMs in the system are the
worker nodes; we want to immerse each WN within a VM. The
interaction with the job scheduler also needs to be modified.
In the existing model, the scheduler picks a WN using some
logic, perhaps incorporating resource utilization. When VMs
are introduced, the scheduler needs to be made VM aware.

Our prototype is built using Usher [12] – a virtual machine
management suite. We extended Usher to expose additional
API required for our prototype as shown in Figure 8. The
basic architecture of Usher is as follows:

• Each physical machine provisioned in the system runs a
Local Node Manager (LNM). The LNM is responsible
for managing VMs on that physical machine. It exposes
API to create, destroy, migrate and configure VMs. Ad-
ditionally, it also monitors the resource usage for the
machine as a whole as well as for each VM individually
and exposes API for resource queries.

• A central controller is responsible for co-ordinating the
management tasks across the LNMs. Clients talk to the
controller and the controller is responsible for dispatching
the request to the appropriate LNM.

Fig. 8: VM Management System Architecture.
The modular architecture and API exposed by Usher made

it very easy to implement a “policy daemon” geared towards
our use case. We are, in fact, experimenting with several policy
daemons varying in sophistication to evaluate the trade-off
between performance and overhead.

An example of a simple policy would be to automatically
create VMs on machines that are not being utilized “enough”,
where the definition of “enough” is governed by several
parameters such as the CPU load, available memory, number
of VMs already running on a physical machine etc. The policy
daemon periodically looks at the resource utilization on all the
physical machines and spawns new VMs on machines whose
utilization is low. Each new VM basically boots as a fresh
Worker Node. When the VM is ready, it notifies Torque (the
resource manager) that it is now available and then Maui (the
scheduler) can schedule jobs on this new VM as if it were any
other compute node. When a job is scheduled on the VM, a
prologue script makes sure that the VM is re-claimed once the
job is over. This approach is attractive because it requires no
modifications to Torque and Maui.

This policy daemon, albeit simple, can be inefficient if there
are not enough jobs in the system – it would pre-emptively
create VMs which would then go unused. A more sophisticated
policy daemon requires extending Maui: using the Usher API,
Maui can itself query the state of physical machines and VMs

(just like it currently queries Torque for state of physical
machines and processes) and make better informed decisions
about VM creation and placement.

Our system has been deployed on a test-bed at RRC-
KI and work is underway to evaluate different policies for
Grid job scheduling. We hope to gradually increase the size
of the test-bed and plug it into the production Grid work-
flow, to enable statistical comparison with the original setup.
Virtual machine migration is also critical to efficiently utilizing
resources. Migration brings in many more policy decisions
such as: which VM to migrate? when to migrate? where to
migrate? how many VMs to migrate? Some earlier work on
dynamic load balancing [13] showed that performance benefits
of policies that exploit pre-emptive process migration are
significantly higher than those of non pre-emptive migration.
We expect to see similar advantages for policies that exploit
live migration of VMs.

VI. CONCLUSION

Over the past few years, the idea of using virtual machines
in a Grid setting has been suggested several times. However,
most previous work has advocated this solution from a qualita-
tive, management-oriented viewpoint. In this paper, we make
the first attempt to establish the utility of using VMs for
Grids from a performance perspective. Using real workload
data from a Tier-2 Grid site, we give empirical evidence for
the feasibility of VMs and using simulations we quantify
the benefits that VMs would give over the classical Grid
architecture. We also describe a prototype implementation for
such a deployment using the Xen VMM.

REFERENCES
[1] “LCG project.” http://lcg.web.cern.ch/LCG/.
[2] I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and R. J. Figueiredo,

“VMPlants: Providing and Managing Virtual Machine Execution Envi-
ronments for Grid Computing,” in SC ’04: Proceedings of the 2004
ACM/IEEE conference on Supercomputing, (Washington, DC, USA),
p. 7, IEEE Computer Society, 2004.

[3] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I. Krsul,
A. Matsunaga, M. Tsugawa, J. Zhang, M. Zhao, L. Zhu, and X. Zhu,
“From virtualized resources to virtual computing grids: the In-VIGO
system,” Future Gener. Comput. Syst., vol. 21, no. 6, pp. 896–909, 2005.

[4] K. Keahey, K. Doering, and I. Foster, “From Sandbox to Playground:
Dynamic Virtual Environments in the Grid,” in Proceedings of the 5th
International Workshop in Grid Computing, 2004.

[5] J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and S. E. Sprenkle,
“Dynamic Virtual Clusters in a Grid Site Manager,” in HPDC ’03:
Proceedings of the 12th IEEE International Symposium on High Per-
formance Distributed Computing (HPDC’03), (Washington, DC, USA),
p. 90, IEEE Computer Society, 2003.

[6] R. J. Figueiredo, P. A. Dinda, and J. A. B. Fortes, “A Case For
Grid Computing On Virtual Machines,” in ICDCS ’03: Proceedings of
the 23rd International Conference on Distributed Computing Systems,
(Washington, DC, USA), p. 550, IEEE Computer Society, 2003.

[7] K. Keahey, I. Foster, T. Freeman, and X. Zhang, “Virtual Workspaces:
Achieveing Quality of Service and Quality of Life in the Grid,” in
Scientific Programming Journal, 2006.

[8] “LCG accounting proposal.” http://goc.grid-support.ac.
uk/gridsite/accounting/apel-schema.pdf.

[9] “CMS.” http://cms-project-ccs.web.cern.ch/.
[10] “ATLAS.” http://atlas.web.cern.ch/.
[11] “Cluster, grid and utility computing products.” http://www.

clusterresources.com/pages/products.php.
[12] T. U. Team, “Usher: A Virtual Machine Scheduling System.” http:

//usher.ucsdsys.net/.
[13] M. Harchol-Balter and A. Downey, “Exploiting Process Lifetime Dis-

tributions for Dynamic Load Balancing,” in Proceedings of ACM Sig-
metrics ’96 Conference on Measurement and Modeling of Computer
Systems, (SIGMETRICS 96), 1996.

