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ABSTRACT

Currently, Internet hosting centers and content distribution net-
works leverage statistical multiplexing to meet the performance
requirements of a number of competing hosted network services.
Developing efficient resource allocation mechanisms for such ser-
vices requires an understanding of both the short-term and long-
term behavior of client access patterns to these competing services.
At the same time, streaming media services are becoming increas-
ingly popular, presenting new challenges for designers of shared
hosting services. These new challenges result from fundamentally
new characteristics of streaming media relative to traditional web
objects, principally different client access patterns and significantly
larger computational and bandwidth overhead associated with a
streaming request. To understand the characteristics of these new
workloads we use two long-term traces of streaming media ser-
vices to develop MediSyn, a publicly available streaming media
workload generator. In summary, this paper makes the following
contributions: i) we model the long-term behavior of network ser-
vices capturing the process of file introduction and changing file
popularity, ii) we present a novel generalized Zipf-like distribution
that captures recently-observed popularity of both web objects and
streaming media not captured by existing Zipf-like distributions,
and iii) we capture a number of characteristics unique to streaming
media services, including file duration, encoding bit rate, session
duration and non-stationary popularity of media accesses.
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1. INTRODUCTION

Two recent trends in network services motivate this work,
a move toward shared service hosting centers and the grow-
ing popularity of streaming media. Traditionally, service
providers over-provision their sites to address highly bursty
client access patterns. These access patterns can vary by
an order of magnitude on an average day [9] and by three
orders of magnitude in the case of flash crowds. In fact, ser-
vices are often most valuable exactly when the unexpected
takes place. Thus, we are pursuing a vision where large-scale
hosting infrastructures simultaneously provide “resource-on-
demand” capabilities to competing Internet services [17, 7].
The idea is that the system can use statistical multiplexing
and efficient resource allocation to dynamically satisfy the
requirements of services subject to highly bursty access pat-
terns.

A second emerging trend is the growing popularity of stream-
ing media services. Streaming media takes the form of video
and audio clips from news, sports, entertainment, and ed-
ucational sites. Streaming media is also gaining momen-
tum in enterprise intranets for training purposes and com-
pany broadcasts. These workloads differ from traditional web
workloads in many respects, presenting a number of chal-
lenges to system designers and media service providers [12,
16, 11]. For instance, transmitting media files requires more
computing power, bandwidth and storage and is more sen-
sitive to network jitter than web objects. Further, media
access lasts for a much longer period of time and allows for
user interaction (pause, fast forward, rewind, etc.).

The long-term goal of our work is to study resource provi-
sioning and resource allocation at the confluence of the above
two trends: network service hosting infrastructures for next-
generation streaming workloads. A key obstacle to carrying
out such a study is the lack of understanding of changing
client access patterns over a long period of time. For both
hosting centers and content distribution networks (CDNs),
we require such an understanding to determine, for example,
how to place objects at individual sites (potentially spread
across the network) and how to allocate resources to individ-
ual streams and to individual clients.

Thus, we use long-term traces from two streaming media
services to construct an open-source media workload gener-
ator called MediSyn'. For MediSyn, we develop a number
of novel models to capture a broad range of characteristics

1Currcntly MediSyn is implemented on UNIX platforms. The soft-
ware can be downloaded from http://www.hpl.hp.com/research/
iii/projects/medisyn.html.



for network services. We also demonstrate how these models
generalize to capture the characteristics of traditional web
services. Overall, this paper makes the following contribu-
tions:

e A primary contribution of our work is its focus on the
long-term behavior of network services. Among the fea-
tures of our synthetic generator is the ability to reflect
the dynamics and evolution of content at media sites
and the change of access rate to this content over time.
Existing workload generators assume that there is a set
of active objects fixed at the beginning of the “trace”.
Similarly, existing techniques assume that object pop-
ularity remains the same over the entire duration of
the experiment. While these are reasonable assump-
tions for experiments designed to last for minutes, we
are interested in long-term provisioning and resource
allocation, as well as the resource allocation for simul-
taneously competing services (consider a CDN simulta-
neously hosting hundreds of individual services).

e It was observed [2, 11] that the popularity distribution
in media workloads collected over significant period of
time (more than 6 months) does not follow a Zipf-like
distribution. We present a novel generalized Zipf-like
distribution to capture the popularity distribution in
such workloads. The traditional Zipf-like distribution
is a special case of the proposed generalized Zipf-like
distribution.

e We designed a set of new models to capture a number
of characteristics critical to streaming media services,
including file duration, file access prefix duration, non-
stationary file popularity, new file introduction process
and diurnal access patterns.

The rest of this paper is organized as follows. Section 2
outlines the workload properties that MediSyn attempts to
capture and the workloads used to develop the models for
MediSyn. We present the workload generation process adopted
by MediSyn in Section 3. Section 4 introduces the models
used in MediSyn and discusses their specifics. We review
previous related work in Section 5. Finally, we conclude with
a summary and future work in Section 6.

2. MEDIA WORKLOAD PROPERTIES

Accurate workload characterization is critical for successful
generation of realistic workloads. A synthetic media work-
load generator can produce traces with targeted, controllable
parameters and desired distributions for performance exper-
iments studying effective streaming media delivery architec-
tures and strategies. For such experiments, the generated
workload must not only mimic the highly dynamic resource-
utilization patterns found on today’s media systems but also
provide flexible means to generate more intensive, bursty and
diverse workloads for future media systems. Challenges to de-
signing a useful analytical workload generator include:

e identifying essential properties of workloads targeted by
synthetic workload generators, and those that most af-
fect the behavior of hosting centers;

e designing appropriate statistical models that closely re-
produce the identified workload properties from real
traces.

In this section, we highlight the main properties of streaming
media workloads modeled in MediSyn, and explain why we
believe these properties are important. Throughout this pa-
per, we use two representative streaming media server logs,
collected over a period of years, to demonstrate the chosen
properties and to validate our statistical models introduced
to reflect these properties. The streaming media server logs
represent two different media services: HP Corporate Media
Solutions Server (HPC) and HPLabs Media Server (HPL).
The HPC site hosts diverse video coverage of major event,
keynote speeches, hardware and software releases of HP, etc.
The HPL site provides video coverage about HP Labs, such
as coffee talks, presentations, seminars, etc. Table 1 briefly
summarizes the workloads.

HPC HPL
Log duration 29 months | 21 months
Number of files 2,999 412
Number of sessions 666,074 14,489

Table 1: Summary for two media logs used to develop
property models in MediSyn.

We partition media workload properties in two groups:
static and temporal properties. Static properties provide
the characteristics of the underlying media file set, reflect
the aggregate, quantitative properties of client accesses (in-
dependent of the access time), and present the properties of
individual file accesses. Temporal properties reflect the
dynamics and evolution of accesses to media content over
time, and determine the ordering and the timing of session
arrivals. Sections 2.1 and 2.2 briefly describe these properties.

2.1 Static Properties

e File Duration. Different from web, media files have
two dimensions: duration of the file measured in time
and the corresponding media file size measured in bytes,
a direct product of the file duration and the correspond-
ing encoding bit rate. Earlier media workload stud-
ies report various distributions characterizing file du-
rations. However, the duration distribution is largely
determined by the nature of the media content stored
at a site, which could be a short (a few minutes) media
clip or a long (one to two hours) movie. Thus, any sin-
gle distribution, e.g, the heavy-tail distribution used to
capture web object size, may fail to characterize media
file duration.

e File Encoding Bit Rate. The encoding bit rate of
a media file determines the bandwidth and system re-
sources required to deliver the file. Typically, there is a
set of popular encoding bit rates offered by commercial
encoding software and guided by the bandwidth from
different groups of Internet audience.

e File Popularity. File popularity is defined as the num-
ber of accesses to a file over the trace period. Recent
studies observe highly uneven file popularity both in
web and streaming media workloads [12, 11, 4], imply-
ing that most accesses to a site are concentrated on
a relatively small set of files. 14%(30%) of the files
accessed on the server account for 90% of the media
sessions for the HPC(HPL) trace. Traditionally, a Zipf-
like distribution is used to capture the file popularity for



web workloads. However, several media workload stud-
ies [2, 11] report that the popularity distribution for
media workloads over significant periods of time ( more
than 6 months) does not follow a Zipf-like distribution.
Instead, the distribution curve (on a log-log scale) ex-
hibits a “circular’-shape. Accurately reflecting these
skewed file popularity distributions is very important.

e File Access Prefix. Prior studies [11, 3] show that
many clients do not finish the playback of a full me-
dia clip. Typically, this reflects the browsing nature of
client accesses, client time constraints, or QoS-related
issues. Most incomplete sessions access only the initial
segments of media files. In the HPC(HPL) trace, only
29%(12.6%) of the accesses finish the playback of the
files. 50%(60%) of the accesses last less than 2 min-
utes [11]. This high percentage of incomplete accesses
and the existence of a large number of sessions access-
ing only the initial part of the file are widely exploited
in streaming media cache design [20].

2.2 Temporal Properties

Temporal reference locality, which is universally observed
in web and media workloads [12, 11, 4], is the primary factor
that affects session arrival ordering. Temporal locality states
that recently accessed objects are likely to be accessed in
the near future in the access stream. Two factors can cause
the temporal locality in the access stream: skewed popularity
distribution and temporal correlation [10, 14].

We observe that our traces only exhibit long-term temporal
correlation on daily time scale, and that there is not obvious
temporal correlation within a single day [21]. We introduce
temporal properties, new file introduction process, life span,
and diurnal access pattern, to model temporal locality. The
temporal locality generated by MediSyn is a combined effect
of the skewed popularity distribution, new file introduction
process and life span distributions of media files. The con-
crete session arrival times are determined by diurnal access
pattern.

e New File Introduction. Among the design goals of
our synthetic generator is the ability to reflect the evo-
lution of media content provided by various media sites
over a long period of time (months). Thus we must
enable MediSyn to model the dynamic introduction of
new content and its relative popularity over the entire
trace period.

e File Life Span. A new property life span has recently
been proposed [11] to measure the change of access rate
for media files. We observe that accesses to a media file
are not uniformly distributed over the entire trace pe-
riod. Most accesses occur shortly after the file is intro-
duced, with access frequency gradually decreasing over
time. For the HPC(HPL) log, 52%(51%) of the accesses
occur during the first week after file introduction, while
only 16%(10%) of the accesses occur during the second
week, etc. Hence, the file access frequency (file popular-
ity) changes over time. In other words, file popularity
is mon-stationary over the trace period.

e Diurnal Access Patterns. The diurnal access pat-
tern defines how the number of accesses to a site varies
during a given period of time, e.g., a day. Earlier stud-
ies observed the diurnal access patterns for streaming

media workloads [12, 16, 2, 3, 15]. Diurnal access pat-
terns might significantly vary for different media sites.
The diurnal access pattern is important for capturing
the burstiness of resource consumption within a given
time period. The diurnal access patterns are defined
using the second time scale in our synthetic workload
generator, e.g. within a day.

3. WORKLOAD GENERATION PROCESS IN
MEDISYN

MediSyn’s goal is to generate a synthetic trace representing
a sequence of file accesses (sessions) to a set of media files.
During the generation process, we incorporate all the prop-
erties we introduced in Section 2. A workload generated by
MediSyn is comprised of a file set and sessions. Each file has
its own popularity, duration, and encoding bit rate. In our
session model, a session may be terminated without finishing
the playback of a media file. Media session interactivity is
not modeled. So each session specifies an arrival time, the
accessed media file, and a prefix duration.

Overall, the generation process consists of two steps: file
property generation and file access generation.

e File Property Generation

The first step is to generate values for file-based proper-
ties introduced in Section 2 for each file. MediSyn gen-
erates these properties based on a parameterized set of
distributions specified in a configuration file. If a prop-
erty can be described by a value such as file popularity,
duration, or encoding bit rate, MediSyn first generates
a sequence of values according to the specified distri-
bution, and then selects a value for each file. There
are well-defined methods to generate a series of values
following a particular distribution [13]. For example,
we use the rejection method [13] to generate a series of
values following normal or lognormal distributions.

If a property of a file is modeled as a distribution, the
choice of the distribution and the parameter(s) of the
distribution are generated for the file. For example,
during the generation of life span property, for each file,
we first generate the choice of the distribution (either
Pareto or lognormal). If a file’s life span follows a Pareto
distribution, the o parameter is generated. If it follows
a lognormal distribution, both p and o for this lognor-
mal distribution are generated.

Overall, a file is the basic unit to which the property
values are propagated at the first step of workload gen-
eration. At the end of the this step, a set of static and
temporal properties shown in Table 2 is generated for
each file. Section 4 describes each property generation
and correlations among the properties in detail.

e File Access Generation

In MediSyn, the session generation process first gener-
ates sessions for each individual file and then simply
merges them according to session arrival time. To gen-
erate sessions for a particular file, MediSyn takes the
assigned file popularities as the basis and generates the
arrivals of media sessions to the file using: i) the ini-
tial file introduction time, ii) the life span of the file,
and iii) the diurnal access pattern of the file. We also
generate the prefix duration for each session. Details of
generation are given in Section 4.



File id | Duration | Bit rate | Popularity | File Introduction | Life span | Life span pa-
(Kbps) Time (sec) rameters
1 3600 | 112 20000 100 Pareto 1.0
2 200 | 350 14300 50 Lognormal | 2.0,10.0
n 600 | 28.8 1 10000 Lognormal | 1.0, 1.0

Table 2: Properties generated for each file.

Each session includes the following three fields:

— timestamp indicating the session arrival time,

— file id specifying the target file accessed during the
media session,

— file access prefir describing the duration of the me-
dia session.

Once a sequence of media sessions is generated for each
file, all the media sessions are sorted according to a
global time and merged to generate a synthetic trace.

4. MAIN MODELS OF WORKLOAD GEN-
ERATION IN MEDISYN

This section describes the models used in MediSyn to cap-
ture static and temporal properties of streaming media work-
loads.

4.1 Duration

Prior studies [11, 3] observed that media files might be
classified into a set of groups according to their durations.
Different workloads can be grouped based on the content of
media files hosted by a streaming service. For example, music
sites may have file durations from 3 to 5 minutes, while movie
sites may have file durations from one and half to two hours.
While a particular workload might be captured by a certain
statistical distribution, this distribution may fail to capture
another workload. In our case, although the file duration
distribution of the HPC trace can be modeled by a heavy-
tail distribution such as a Weibull distribution [13], the HPL
trace cannot be captured by it at all.

As shown in Figure 1 (a) and Figure 2 (a), the file du-
rations in our traces are concentrated around a set of hot
points. These hot points are usually some common dura-
tions, semantically meaningful to some particular types of
media content. Based on this observation, we classify these
hot points into a set of groups and use a set of normal dis-
tributions to model the grouped file duration distribution as
shown in Figure 1 (a) and Figure 2 (a). Here, each group is
modeled by a normal distribution with the mean (u) defined
by the hot point of that group. The standard deviation (o)
of each normal distribution determines the concentration of
the durations within that group.

Note that we do not use segmented PDFs (Probability Den-
sity Functions) to model the duration distribution. We as-
sume a hot point can affect the entire duration scope rather
than just a segment. Thus, we use an aggregated distribution,
whose PDF sums the PDF's of all normal distributions pro-
portionally. To proportionally sum all duration groups, we
associate each group with a ratio determined by the number
of files in the group compared with the total number of files
in the trace. So the normal distribution PDF of each group is
normalized against the ratio of that group. If only a fraction
of a normal distribution for a group is used, normalization is

performed on the adopted fraction of the distribution. For
example, since the mean of the first group in Table 3 is 0,
only half of the normal distribution is used. Tables 3 and 4
present the mean (i), the standard deviation (o) and the ra-
tio of each normal distribution for the HPC and HPL traces
respectively. They show that the HPC and HPL traces have
different hot points.

In MediSyn, users can specify a set of duration groups with
different p, o and ratios based on the nature of the media
workload they want to generate. For each duration group,
MediSyn generates a sequence of durations according to the
ratio and the normal distribution of the group. We use the re-
jection method [13] to generate the duration sequence accord-
ing to the parameterized normal distribution. Figure 3 (a)
and Figure 3 (b) show the durations generated by MediSyn to
simulate the HPC trace based on the parameters in Table 3.

Group | 1 2 3 4

“w 0 2000 3300 5821

o 600 400 600 1223

ratio 63% 10% 18% 9%
Table 3: Parameters of the normal distributions for
the HPC trace.

Group | 1 2 3 4 5

”w 117 2900 4200 5160 6300

o 1200 240 360 180 1000

ratio 19% 26% 30% 10% 15%
Table 4: Parameters of the normal distributions for

the HPL trace.

4.2 Encoding Bit Rate

Since most of commercial media servers are designed to
stream media files encoded at some constant bit rates, the
current version of MediSyn is designed to only generate a
set of constant bit rates for the underlying file set. MediSyn
models encoding bit rates by a discrete distribution, where
the value of each bit rate and the ratio of the bit rate oc-
cupied in the file set can be specified. Based on the discrete
distribution provided by users, MediSyn generates a sequence
of bit rates for the file set and matches the bit rate with the
file duration randomly, since we observe that there is no corre-
lation between them in our traces (the correlation coefficient
is 0.0144).

4.3 Popularity

Earlier studies [12, 16] found that media file popularity can
often be captured by a Zipf-like distribution. A Zipf-like dis-
tribution states that the access frequency of the i-th most
popular file is proportional to 1/i%. If the frequencies of files
and the corresponding popularity ranks are plotted on a log-
log scale, a Zipf-like distribution can be fitted by a straight
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line. A larger a implies more sessions are concentrated on the
most popular files. Some synthetic workload generators [6,
15] also adopt a Zipf-like distribution in generating file pop-
ularity.

However, recent studies [2, 11, 3, 5, 8] observed that for
some web and streaming media workloads, a Zipf-like distri-
bution does not accurately capture the file popularity distri-
bution. The popularity distribution of these workloads shows
a circular curve on a log-log scale. For instance, Figure 4
shows the file popularity distributions of the HPC and the
HPL traces over the entire trace periods on a log-log scale.
They exhibit circular curves similar to those studies.

If we use a straight line (a Zipf-like distribution) to fit the
circular curve and generate session frequencies based on the
value of o obtained by curve fitting, the generated frequencies
must be skewed from the original session frequencies. Breslau
et al [8] calculated a by excluding the top 100 files. For our
traces, not only the beginning but also the end of the curves
cannot be fitted by straight lines. Moreover, since the most
popular files are especially important for synthetic streaming
media workloads, we cannot ignore the first 100 files.

Thus, an important contribution of this work is that a gen-
eralized Zipf-like distribution is proposed as a unified method
to capture file popularity distributions of both Zipf-like and
circular-curve shapes. A generalized Zipf-like distribution can
be fitted by a straight line on a log-log scale after a Zipf k-
transformation. The Zipf k-transformation for file popularity
is defined as follows: assume z is a file rank, y is the cor-
responding access frequency for the file, k, and k, are scale
parameters, the k-transformation transforms the original x
and y as follows:

x+ks—1 y+ky—1
Ty = ————— ==

1
o U T (1)

After the k-transformation, zx and y, denote the trans-
formed file rank and frequency respectively. Figure 5 shows
the relationship between x, and yr of the HPC and HPL

traces on a log-log scale respectively. It shows perfectly straight
lines. The « value of the Zipf k-transformation is derived
through linear regression [13]. Table 5 shows some critical
parameters related to the curve fitting of the two workloads.
As shown in the table, R? is 0.995 for both the HPC and HPL
traces, indicating that straight lines fit both the distributions
very well?.

Trace «@ R? ke | ky | Max freq | Files
HPC | 1.561 | 0.995 | 12 | 12 17831 1434
HPL 1.23 | 0.995 | 7 7 961 364

Table 5: Parameters of Zipf k-transformation of the HPC
and the HPL traces.

The reason that the original traces do not show perfectly
straight lines at the heads of the curves is that there is lit-
tle differentiation in the frequencies of the most popular files
(with smaller z). It can be attributed to the fact that a
long-term trace can collect enough files with similar popular-
ities over time, and thus these files can be considered as a
group (equivalence class), where a group rank will be a bet-
ter reflection of the file popularities. Intuitively, the effect of
the k-transformation is that the popularity follows a Zipf-like
distribution if we check every group of k, files. We divide
x by ke to scale the file ranks so that the ((¢ — 1)ks + 1)-th
rank becomes the i-th rank and reflects the corresponding file
group rank. Other file ranks are transformed to float num-
bers evenly distributed among integral ranks. So we actually
move all points on the log-log scale along the z-axis to the
left and squeeze the points to a more straight line. Similarly,
the reason that the traces do not show perfectly straight lines
at the tails of the curves is that there is not enough differ-
entiation in the number of files with the lowest frequencies.
So we divide y by ky to squeeze those points along the y axis

2The coefficient of determination R? measures the goodness of a
regression. If R2 =1, the model is perfect. A larger R? implies a
more accurate model [13].
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same as k,. However, MediSyn uses the same value for k.
and k, based on our observations for both the HPC and HPL
traces, which we simply refer to as k. The scale parameter k
of our k-transformation is similar to the scale parameter k of
a generalized Pareto distribution [1].

Another explanation for the k-transformation is that the
original frequency sequence cannot be fitted by a Zipf-like
distribution starting from rank 1, but it can be fitted into part
of a Zipf-like distribution starting from rank k;. To describe
this file rank starting from k., by a Zipf-like distribution, we
have to divide its original rank by k.. Similar explanation
can be applied for k,. Clearly, Zipf-like distributions are a
special case of generalized Zipf distributions when k = 1.

To generate a sequence of frequencies following a general-
ized Zipf-like distribution, users of MediSyn specify the max-
imum frequency M for the most popular file, the number of
files N, the scale parameter k£ and the Zipf-like distribution
parameter . MediSyn computes the frequency of the most
popular z-th file (z € [1, N]) using the following formula

(et 1) e ®

k

where My = % + 1. Figure 6 compares the frequencies
generated by MediSyn with the original frequencies in our
traces.

To determine whether there is a correlation between file
duration and file popularity, we compute the correlation co-
efficient between file popularity and file duration for both of
our workloads. Table 6 shows these results. We use both the
file frequency and the file rank as the popularity metric to
compute the correlation coefficient. Overall, we observe no
strong correlation between file popularity and file duration.
So file duration and file popularity are randomly matched in
MediSyn.

‘Workload | HPC HPL | HPC | HPL
Freq | Freq | Rank | Rank
Correlation -0.03 0.05 -0.20 | -0.002
Coefficient

Table 6: Correlation coefficient between file popularity
and file duration.

We also check for possible correlation between popularity
and encoding bit rate. Once again, there is no correlation
between them, so MediSyn matches popularity and encoding
bit rate randomly.

One major characteristics of streaming workloads is that
a significant amount of clients do not finish playing an en-
tire media file. We refer to the duration between the start
of a media session and the time when the session is termi-
nated by the client as the prefiz duration of the session, or
simply the prefiz. Figure 7 and Figure 8 show the PDF for
the prefixes of two typical example files in the HPC trace.
The “spikes” in the figures correspond to successfully com-
pleted media sessions for the files, while the other prefixes in
the figures are incomplete sessions. We observe that there is
a strong correlation between the file duration and the prefix
distribution:

e Complete sessions. The fraction of complete sessions of
a file highly depends on the file duration. A short file
tends to have more complete sessions. For example, the
file durations in Figure 7 and Figure 8 are 723 seconds
and 4133 seconds respectively. The file in Figure 7 has
more complete sessions than that in Figure 8. We use
r. to denote the ratio of complete sessions for a file
compared with the total number of sessions for the file.
Figure 9 shows the relationship between file duration
and r.. We can observe that the r. of each file highly
depends on the file duration.

o Incomplete sessions. The prefix distribution of incom-
plete sessions of a file depends on the file duration. Fig-
ure 7 reflects that the prefixes of incomplete sessions
for a short-duration media file can be captured by an
exponential distribution. While for a long-duration file
as shown in Figure 8, the prefixes of incomplete ses-
sions follows a heavy-tail distribution, which cannot be
captured by an ezponential distribution.

Thus, the overall prefix distribution of a media workload
highly depends on each file’s prefix distribution, which in turn
depends on the duration of the file. There is not a straight-
forward solution to directly capture the overall prefix distri-
bution for the entire workload. To generate each file’s prefix
distribution, we first generate 7. for the file, then model the
distribution of incomplete sessions for the file based on the
assigned re.

To generate r. for a file, we need to determine the relation-
ship between r. and the file duration as shown in Figure 9.
We observe that the contour of the dotted area in Figure 9
follows a Zipf-like distribution. We use a bin-based process
to generate 7. values following this contour. The detail can
be found in [21].
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Figure 7: A typical access prefix
distribution of short duration media
file.

After the r. value of each file is determined, the distribution
of incomplete sessions needs to be determined. As mentioned
above, depending on the file duration, it could be captured
by an exponential distribution or some heavy-tail distribu-
tion. Additionally, both Figure 7 and Figure 8 show a similar
shape in the beginning of the distributions within a certain
range of duration. We observe that for more than 90% of
the media files in the HPC trace, the distributions of pre-
fixes within the first 5 minutes can be fitted by exponential
distributions. These results confirm similar findings for an
educational workload studied by Almeida et al [3]. Given the
fact that prefixes within a certain duration range (e.g., the
first 5 minutes) occupy a high percentage of total incomplete
sessions, we introduce a cut-off point and use the following
method to model the prefix distribution of a given media file:

e If a media file duration is less than the cut-off point,
its incomplete prefixes are modeled by an exponential
distribution.

e If a media file duration is longer than the cut-off point,
the distribution of incomplete prefixes is modeled by the
concatenation of two distributions. The distribution of
incomplete prefixes less than the cut-off point is mod-
eled by an ezponential distribution. The distribution of
the remaining incomplete prefixes longer than the cut-
off point is approximated by a uniform distribution.

In the HPC trace, the cut-off point is 5 minutes. Users of
MediSyn can specify their own cut-off point. The detail of
prefix distribution generation can be found in [21]. After gen-
erating a sequence of prefixes for each file, MediSyn randomly
matches the prefixes with all the sessions of the file.

45 New File Introduction Process

The process of new file introduction mimics how files are
introduced at a media site and attempts to answer the fol-
lowing questions:

e What is the new file arrival process on a daily time
scale?

e What is the new file arrival process within an introduc-
tion day?

To model new file arrival on a daily level, we capture the
time gap measured in days between two introduction days
and the number of new files introduced in each introduction
day. Figure 10 shows the distribution of new file introduction
gaps measured in days for the HPC trace. The distribution
depicted in Figure 10 can be captured by a Pareto distribu-
tion with a = 2.0164. Figure 11 shows the introduction gap
distribution for the HPL trace, which can be captured by an
exponential distribution with p = 4.2705.

Figure 8: A typical access prefix dis-
tribution of long duration media file.
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Figure 9: Fraction of complete ses-
sions (r.’s) versus the corresponding
media file durations.

MediSyn can generate new file introduction time gaps ac-
cording to one of three possible distributions: 1) a Pareto dis-
tribution, 2) an ezponential distribution, 3) a fized interval.
If users specify a Pareto distribution for the new file intro-
duction process, files tend to be introduced into the system
clustered over time. If the introduction process is specified
by an exponential distribution, the new file arrival process is
a Poisson arrival process, which means the interarrival times
are independent. The fixed interval is used to model some
artificial introduction process with regular patterns.

Since there may be multiple new files introduced in a given
day, we must also model the number of files introduced per
introduction day. Figure 12 shows the distribution for the
number of files introduced in a given day for the HPC trace.
The distribution can be fitted by a Pareto distribution with
a = 1.1323.

After determining the number of files introduced in a given
day, MediSyn needs to model the new file arrival process
within that day. We model this process by capturing the gap
between two file arrivals. Figure 13 shows the time gaps for
new files introduced within a day. Since the distribution is too
sparse on time scale of seconds, we measure the time gaps at
multiples of 900 seconds (15 minutes). The distribution can
be captured by a Pareto distribution with o = 1.0073.

Due to the properties of Pareto distribution, if we only
model the time gap between two file arrivals and start to
introduce new files from the beginning of a day, then most
of the files will be introduced in the beginning of every day.
So we also capture the start times of new file introduction
process within every introduction day. Figure 14 shows this
distribution. Since it looks like a rotated normal distribution
with the peak at 0, we capture this by a normal distribution
as shown in Figure 15 after rotating the original distribution
by 12 hours. The mean of the rotated normal distribution is
43200 seconds and the standard deviation is 21600 seconds.

4.6 Life Span

Since temporal correlation is observed in media workloads,
an independent reference model combined with a popularity
distribution [8] is insufficient for a synthetic workload gen-
erator to generate a file access stream. SURGE [6] uses a
stack distance model to generate web reference streams with
reference locality. Both the independent reference model [§]
and the stack distance model [6, 4] assume that each file’s
popularity is stationary over the entire trace period and that
each file is introduced at the start of the trace. Since we
observe non-stationary popularity in streaming media work-
loads, such models are unsuitable for generating session ar-
rivals in streaming media workloads.
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To accurately model the non-stationarity of file popularity,
we use the new file introduction process to mimic how media
files are introduced at media sites as we described above. In
addition, each file has its own life span, which characterizes
its changing popularity after the file’s introduction. Thus,
the file popularity distribution, the file introduction process
and life spans of individual files, all together capture the pop-
ularity change of media files over the entire trace.

We define the relative access time of a file as a random vari-
able whose value is the time measured in days when the file
is accessed by a client after the file is introduced. The distri-
bution of a file’s relative access times describes the temporal
correlation of all accesses to the file. We also call this distri-
bution the life span distribution of the file. In our traces, we
observe two types of life span distributions as illustrated in
Figure 16 and Figure 17 respectively. Since most files in our
traces have life spans similar to Figure 16, we call this type
of life span a regular life span.

News-like streaming contents typically have life span dis-
tributions similar to Figure 17, where most accesses occur
shortly after the file introduction and the access frequency
diminishes relatively quickly. So we refer to this kind of life
span as a news-like life span.

We experimented with gamma, Pareto, exponential and log-
normal distributions to fit the relative access times of our
traces. Although gamma distributions can somehow cap-
ture both news-like and regular life spans, the combination of
Pareto and lognormal distributions can better fit them. Thus,
news-like life spans follow Pareto distributions, and regular
life spans follow lognormal distributions.

To generate a sequence of regular life spans and news-like
life spans, we need to model the distributions of the mean
(1) and the standard deviation (o) for regular life spans, and
the distributions of « for news-like life spans. Our analysis of
the HPC and HPL traces shows that these parameters follow

10 0 5 10 15
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Figure 14: The start times of new
file introduction within introduction

Hﬂﬂﬂﬂﬂﬂzs

Figure 15: The rotated start times
of new file introduction within intro-
duction days.
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normal distributions. Table 7 shows the parameters for these
normal distributions derived from the HPC log to capture the
parameters of regular life spans (¢ and o) and news-like life
spans («).

Normal dist. lognormal | lognormal | Pareto
paramaters o o «

o 3.0935 1.1417 0.7023
o 0.9612 0.3067 0.2092

Table 7: The parameters for the distributions (normal
distributions) of the parameters in lognormal and Pareto
life span distributions.

There is a strong correlation between file popularity and
life span shape. A file with a higher popularity rank tends
to have a higher probability to have a news-like life span.
Figure 18 shows the PDF for this probability. The distri-
bution can be captured by an exponential distribution. File
ranks have been transformed between 0 and 1 so that p for
the exponential distribution is independent of the number of
media files generated. In the HPC trace, we observed 82
news-like life spans out of the 400 most popular files. Users
of MediSyn can specify their own ratio according to the work-
load they want to generate. A workload including more files
with news-like life spans has a more bursty access pattern.

4.7 Diurnal Access Pattern

After determining the life span and the popularity of every
file, MediSyn can generate the number of accesses for every
day of a file’s life span. Distributing these accesses over a
day is challenging because we want to model both session
interarrival time and diurnal access patterns.

Figure 19 shows a typical session interarrival time distri-
bution for a file measured in a day. It is a heavy-tail distri-
bution and can be fitted by a Pareto distribution better than
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nal pattern for the HPC trace. Each
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an exponential distribution. However, if we generate all inter-
arrival times within a day based on this Pareto distribution,
it is difficult to simultaneously ensure diurnal pattern. Fig-
ure 20 shows the interarrival time distribution for the same
file within one hour of the same day. This distribution is not
a heavy-tail distribution and can be captured by an exponen-
tial distribution. Thus, if we can determine the number of
accesses in each hour of a day according to a certain diurnal
pattern, we can use an ezponential distribution to generate
the interarrival times of the accesses in this hour. Thus, we
can both generate the diurnal pattern and satisfy the ob-
served exponential distribution for interarrival times.

Diurnal access patterns are universally observed by other
streaming workload analyses. But we do not explicitly find
diurnal patterns for single files. We only observe an aggregate
diurnal access pattern for all file accesses. Figure 21 shows
the average ratios of accesses in each hour for all files in the
HPC trace.

In MediSyn, a user can specify a global diurnal pattern like
Figure 21, which contains a set of bins. Each bin specifies a
time period and the ratio of accesses in this bin. Since we
believe there is no temporal correlation among file accesses
within a day (i.e., the temporal locality within a day is en-
tirely determined by file popularities), we can make every
file follow the diurnal pattern. Essentially, each file’s session
arrival process within a given day is modeled as a nonhomo-
geneous Poisson process [19], where only the session arrivals
within each bin can be modeled by a Poisson process. The
session arrival rate of the file for a given bin is computed
based on the diurnal pattern specified by the user and the
number of accesses within a day determined by the file life
span. MediSyn generates the interarrival time gaps within
each bin and constructs a sequence of sessions for the file on
the scale of seconds.

5. RELATED WORK

Accurate workload characterization lays down a foundation
for a successful synthesis of realistic workloads. A number of
studies on multimedia workload analysis have been reported
in literature [2, 3, 12, 11, 16, 18].

Acharya et al [2], presented the analysis of the six-month
trace data from mMOD system (the multicast Media on De-
mand) which had a mix of educational and entertainment
videos. They observed high temporal locality of accesses, the
special client browsing pattern showing clients preference to
preview the initial portion of the videos, and that rankings
of video titles by popularity do not fit a Zipfian distribution.

Almeida et al [3] performed an analysis of two educational
media server workloads. The authors provide a detailed study
of client session arrival process: the client session arrivals
in one workload can be characterized as a Poisson process,
and the interarrival times in the second workload follow a
heavy-tail Pareto distribution. They also observed that media
delivered per session depends on the media file length.

The study by Chesire et al [12] analyzed the media proxy
workload at a large university. The authors presented a de-
tailed characterization of session duration (most of the media
streams are less than 10 minutes), object popularity (78% of
objects are accessed only once), sharing patterns of streaming
media among the clients, and that popularity distribution fol-
lows a Zipf-like distribution (trace duration covers one week).

Two enterprise media server workloads have been exten-
sively studied in [11]. The data was collected over significant
period of time. Thus authors concentrated on the analysis
of media server access trends, access locality, dynamics and
evolution of the media workload over time. They reported
non-Zipfian and non-stationary popularity of files observed
in their data.

In our work, we attempt to summarize findings from the
earlier work, and build a general, unified model for workload



characteristics capturing unique properties of streaming me-
dia workloads as well as the dynamics in media workloads
observed over long period of time.

The only synthetic workload generator for streaming me-
dia reported in literature is GISMO [15]. MediSyn adopts
similar approach chosen in GISMO to organize the synthetic
trace generation in two steps: i) defining the individual ses-
sion characteristics, and #) determining the media session
arrival process. GISMO operates over a “fixed” set of media
files already “introduced” at a media site, with the assump-
tion that object popularity follows a Zipf-like distribution and
remains the same over the entire duration of the experiment.
Since we pursue the goal of developing a synthetic workload
generator which reflects the dynamics and evolution of media
workloads over time, we propose a set of new models to reflect
these new temporal properties of streaming media workloads
in MediSyn.

6. CONCLUSION AND FUTURE WORK

Development of efficient resource allocation mechanisms for
streaming media hosting centers and CDNs requires scalable,
configurable, and realistic streaming media workloads. In this
work, we present a synthetic streaming media workload gener-
ator, MediSyn, which is specially designed for accomplishing
this goal. In MediSyn, we develop a number of novel models
to capture a set of characteristics critical to streaming media
services, including file duration, file access prefix, file popular-
ity, new file introduction process, and diurnal access pattern.
Among the primary features of MediSyn is the ability to re-
flect the dynamics and evolution of content at media sites
and the change of access rate to the content over time. We
introduce a generalized Zipf-like distribution to capture the
recently-observed skewed popularity of both web objects and
streaming media that cannot be captured by existing Zipf-like
distributions. Based on two long-term traces of streaming
media services, our evaluation demonstrates that MediSyn
can accurately capture the essential properties of the media
workloads.

MediSyn implementation is based on a modular design al-
lowing particular system properties to be customized, en-
hanced or extended to reflect the requirements of various sce-
narios. In the future, we plan to enable MediSyn to support
client interactivities within media sessions.
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