Uniformly sample a point on a triangle

incorrect strategy:
1. uniform sample b1

Uniformly sample a point on a triangle

incorrect strategy:
1. uniform sample b1
2. uniform sample $b 2 \sim \mathrm{U}(0,1-\mathrm{b} 1)$

Uniformly sample a point on a triangle

incorrect strategy:
1. uniform sample b1
2. uniform sample $b 2 \sim \mathrm{U}(0,1-\mathrm{b} 1)$

why is this wrong?

Uniformly sample a point on a triangle

smaller b1 has more area!

Recall: sampling = change of variable

$$
\begin{array}{rlrl}
& \iint A(\mathbf{x}) \mathrm{d} \mathbf{x} & \mathbf{x}=T(\mathbf{u}) \\
\mathbf{u} & =T^{-1}(\mathbf{x})
\end{array}
$$

A triangular area integral has variable dependent bounds

$$
\int_{0}^{1} \int_{0}^{1-b_{1}} \mathrm{~d} b_{2} \mathrm{~d} b_{1}
$$

Sampling $=$ mapping a uniform domain to the target

Strategy: deal with one dimension at a time

we want to sample b1 s.t. $p\left(b_{1}\right)=\left|\frac{\mathrm{d} u_{1}}{\mathrm{~d} b_{1}}\right| \propto 1-b_{1}$

Strategy: deal with one dimension at a time

we want to sample b1 s.t. $p\left(b_{1}\right)=\left|\frac{\mathrm{d} u_{1}}{\mathrm{~d} b_{1}}\right| \propto 1-b_{1}$

Strategy: deal with one dimension at a time

we want to sample b1 s.t. $p\left(b_{1}\right)=\left|\frac{\mathrm{d} u_{1}}{\mathrm{~d} b_{1}}\right| \propto\left(1-b_{1}\right)$
we want to find an invertible transformation $b_{1}=T\left(u_{1}\right)$

Strategy: deal with one dimension at a time

we want to sample b1 s.t. $p\left(b_{1}\right)=\left|\frac{\mathrm{d} u_{1}}{\mathrm{~d} b_{1}}\right| \propto\left(1-b_{1}\right)$
we want to find an invertible transformation $b_{1}=T\left(u_{1}\right)$
we want to find an invertible transformation $u_{1}=T^{-1}\left(b_{1}\right)$ whose derivative is proportional to $\left(1-b_{1}\right)$

Strategy: deal with one dimension at a time

we want to sample b1 s.t. $p\left(b_{1}\right)=\left|\frac{\mathrm{d} u_{1}}{\mathrm{~d} b_{1}}\right| \propto\left(1-b_{1}\right)$
we want to find an invertible transformation $b_{1}=T\left(u_{1}\right)$
we want to find an invertible transformation $u_{1}=T^{-1}\left(b_{1}\right)$ whose derivative is proportional to $\left(1-b_{1}\right)$
the anti-derivative!

$$
u_{1}=T^{-1}\left(b_{1}\right) \propto \int_{0}^{b_{1}}\left(1-b_{1}^{\prime}\right) \mathrm{d} b_{1}^{\prime}=\frac{1}{2}\left(1-b_{1}\right)^{2}
$$

Strategy: deal with one dimension at a time

 we want to sample b1 s.t. $p\left(b_{1}\right)=\left|\frac{\mathrm{d} u_{1}}{\mathrm{~d} b_{1}}\right| \propto\left(1-b_{1}\right)$ we want to find an invertible transformation $b_{1}=T\left(u_{1}\right)$ we want to find an invertible transformation $u_{1}=T^{-1}\left(b_{1}\right)$ whose derivative is proportional to $\left(1-b_{1}\right)$ the anti-derivative!

$$
u_{1}=T^{-1}\left(b_{1}\right) \propto \int_{0}^{b_{1}}\left(1-b_{1}^{\prime}\right) \mathrm{d} b_{1}^{\prime}=\frac{1}{2}\left(1-b_{1}\right)^{2}
$$

add constraints: $T^{-1}(0)=0, T^{-1}(1)=1$

Strategy: deal with one dimension at a time

we want to sample b1 s.t. $p\left(b_{1}\right)=\left|\frac{\mathrm{d} u_{1}}{\mathrm{~d} b_{1}}\right| \propto\left(1-b_{1}\right)$
we want to find an invertible transformation $b_{1}=T\left(u_{1}\right)$
we want to find an invertible transformation $u_{1}=T^{-1}\left(b_{1}\right)$ whose derivative is proportional to $\left(1-b_{1}\right)$
the anti-derivative!

$$
\begin{aligned}
& u_{1}=T^{-1}\left(b_{1}\right) \propto \int_{0}^{b_{1}}\left(1-b_{1}^{\prime}\right) \mathrm{d} b_{1}^{\prime}=\frac{1}{2}\left(1-b_{1}\right)^{2} \\
& \text { add constraints: } T^{-1}(0)=0, T^{-1}(1)=1 \quad b_{1}=1-\sqrt{u_{1}}
\end{aligned}
$$

We can uniformly sample b2 after b1 is sampled

$$
\begin{aligned}
& b_{1}=1-\sqrt{u_{1}} \\
& b_{2}=\left(1-b_{1}\right) u_{2}
\end{aligned}
$$

