
ReSTIR and Path Re-using

UCSD CSE 272
Advanced Image Synthesis

Tzu-Mao Li

with slides from Benedikt Bitterli

Motivation: can we do importance
sampling of lights without complex data structures?

difficult to maintain & slow for real-time rendering

Eye candy
22.9 million triangles, 3.4 million emissive, dynamic triangles, rendered at interactive rates (20-40ms?)

ReSTIR: a general sampling algorithm

Let’s start from the many-lights problem

camera

shading point

occluder

contribution = L ⋅ ρ ⋅ G ⋅ V
intensity

BSDF

geometry
term

visibility

Idea: reuse neighboring pixels’
sampling results

occluder

• each pixel starts with a single light sampled
(e.g., uniform sampling)

Idea: reuse neighboring pixels’
sampling results

occluder

• each pixel starts with a single light sampled
(e.g., uniform sampling)

• for the center pixel, pick the unoccluded lights
from neighbor pixels

Idea: reuse neighboring pixels’
sampling results

occluder

• each pixel starts with a single light sampled
(e.g., uniform sampling)

• for the center pixel, pick the unoccluded lights
from neighbor pixels

• sample from these lights using probability
proportional to L ⋅ ρ ⋅ G

Idea: reuse neighboring pixels’
sampling results

occluder

• each pixel starts with a single light sampled
(e.g., uniform sampling)

• for the center pixel, pick the unoccluded lights
from neighbor pixels

• sample from these lights using probability
proportional to

• propagate the information to the next frame

L ⋅ ρ ⋅ G

Idea: reuse neighboring pixels’
sampling results

occluder

•benefits
• occluded lights have low probability

to be sampled
• & G are considered during reuse
• sampling distribution is improved

over time

ρ • each pixel starts with a single light sampled
(e.g., uniform sampling)

• for the center pixel, pick the unoccluded lights
from neighbor pixels

• sample from these lights using probability
proportional to

• propagate the information to the next frame

L ⋅ ρ ⋅ G

Math: resampled importance sampling
goal: approximately sampled arbitrary unnormalized target distribution ̂p

Math: resampled importance sampling
goal: approximately sampled arbitrary unnormalized target distribution ̂p

start with samples with “candidate” distribution M p

Math: resampled importance sampling
goal: approximately sampled arbitrary unnormalized target distribution ̂p

start with samples with “candidate” distribution M p

evaluate on all of them
̂p

p

̂p
p

= 5 8 0 2 3 5 20 4 6 1 7

Math: resampled importance sampling
goal: approximately sampled arbitrary unnormalized target distribution ̂p

start with samples with “candidate” distribution M p

5 8 0 2 3 5 20 4 6 1 7

pick a sample with prob. proportional to
̂p

p

̂p
p

=

evaluate on all of them
̂p

p

Math: resampled importance sampling

̂p

Math: resampled importance sampling

p

Math: resampled importance sampling

M = 2

density of
the final sample

Math: resampled importance sampling

M = 8

density of
the final sample

Math: resampled importance sampling

M = 16

density of
the final sample

Math: resampled importance sampling

∫ f(x)dx ≈
1
N

N

∑
j

wj

f (yj)
̂p (yj)

approximate integrals using RIS samples with unnormalized target yj ̂p

quiz: why do we need ?wj

Math: resampled importance sampling
approximate integrals using RIS samples with unnormalized target yj ̂p

wj =
1
M

M

∑
i

̂p(xi)
p(xi)

 is an unbiased approximation of
the normalization factor of

wj
̂p∫ f(x)dx ≈

1
N

N

∑
j

wj

f (yj)
̂p (yj)

Math: resampled importance sampling

∫ f(x)dx ≈
1
N

N

∑
j

Wj f (yj)

approximate integrals using RIS samples with unnormalized target yj ̂p

Wj =
1
M

1
̂p(yj)

M

∑
i

̂p(xi)
p(xi)

“unbiased contribution weight” (Lin/Kettunen 2022)
“properly weighted samples” (Liu 2001)

Example: resampled direct lighting

p ∝ L

̂p = L ⋅ ρ ⋅ G

Resampled importance sampling
can be slow

5 8 0 2 3 5 20 4 6 1 7
̂p

p
=

need to build an array and compute CDF

pick a sample with prob. proportional to
̂p

p

Solution: reservoir sampling
idea: streaming through the samples using rejection sampling

Solution: reservoir sampling
idea: streaming through the samples using rejection sampling

y = ?
wsum = 0

Solution: reservoir sampling
idea: streaming through the samples using rejection sampling

̂p
p

= 5

y = 0
wsum = 5

Solution: reservoir sampling
idea: streaming through the samples using rejection sampling

̂p
p

= 8

accept with prob.

̂p
p

wsum

y = 1
wsum = 13

Solution: reservoir sampling
idea: streaming through the samples using rejection sampling

̂p
p

= 0

accept with prob.

̂p
p

wsum

y = 1
wsum = 13

Reservoir sampling vs
inverse transform sampling

reservoir sampling

constant memory usage

no precomputation

O(M) computation per query

no stratification

inverse transform sampling

O(M) memory usage

O(M) pre computation

O(log(M)) computation per query

can be stratified

Applying (reservoir) RIS to ReSTIR
recall: we want to reuse neighbor pixels’ sampling results

each pixel stores a “reservoir” which is the result from RIS

Applying (reservoir) RIS to ReSTIR
recall: we want to reuse neighbor pixels’ sampling results

each pixel stores a “reservoir” which is the result from RIS

to reuse, we need to merge the reservoirs from two pixels

Applying (reservoir) RIS to ReSTIR
recall: we want to reuse neighbor pixels’ sampling results

each pixel stores a “reservoir” which is the result from RIS

to reuse, we need to merge the reservoirs from two pixels

to merge, apply RIS to sample from the two reservoirs!

Applying (reservoir) RIS to ReSTIR

Wj =
1
M

1
̂p(yj)

M

∑
i

̂p(xi)
p(xi)

Applying (reservoir) RIS to ReSTIR

Wj =
1
M

1
̂p(yj)

M

∑
i

̂p(xi)
p(xi)

W0 = 10 W1 = 15
M0 = 5 M1 = 6

y0 y1

Applying (reservoir) RIS to ReSTIR

Wj =
1
M

1
̂p(yj)

M

∑
i

̂p(xi)
p(xi)

M = M0 + M1 = 11

sample with prob. proportional
to W ⋅ ̂p

y1

W =
1
̂p(y1)

M0W0 + M1W1

M0 + M1

W0 = 10 W1 = 15
M0 = 5 M1 = 6

y0 y1

The ReSTIR algorithm

occluderprevious
frame

The ReSTIR algorithm

occluder

• each pixel sample a light using RIS
(e.g., M = 32)

previous
frame

The ReSTIR algorithm

occluder

• each pixel sample a light using RIS
(e.g., M = 32)

• evaluate visibility and set W = 0 for occluded
pixels

previous
frame

The ReSTIR algorithm

occluder

• each pixel sample a light using RIS
(e.g., M = 32)

• evaluate visibility and set W = 0 for occluded
pixels

• merge the reservoirs from previous frame
previous

frame

The ReSTIR algorithm

occluder

• each pixel sample a light using RIS
(e.g., M = 32)

• evaluate visibility and set W = 0 for occluded
pixels

• merge the reservoirs from previous frame

• merge the reservoirs from spatial neighbor pixels

previous
frame

Eye candy time

Reference 20’000 Emitters

44

[Moreau et al., 2019], 34ms 20’000 Emitters

45

ReSTIR (unbiased), 30ms 20’000 Emitters

46

Reference 20’000 Emitters

47

[Moreau et al., 2019], 30ms 20’000 Emitters

48

ReSTIR (unbiased), 26ms 20’000 Emitters

49

Reference 23’000 Emitters

50

[Moreau et al., 2019], 29ms 23’000 Emitters

51

ReSTIR (unbiased), 17ms 23’000 Emitters

ReSTIR vs MCMC
both maintain a chain of samples and reuse previous ones

Extending ReSTIR to handle global illumination
want to reuse paths instead of lights

Extending ReSTIR to handle global illumination
want to reuse paths instead of lights

idea: treat the second path vertex as virtual point light

Extending ReSTIR to handle global illumination
want to reuse paths instead of lights

idea: treat the second path vertex as virtual point light

during reservoir merging, connect to the VPL

ReSTIR GI

path tracing (8 ms) ReSTIR GI (8.9 ms)

Extending ReSTIR to handle GI

what if this is a mirror?

Extending ReSTIR to handle GI

should put a VPL on the
second diffuse surface

what if this is a mirror?

Extending ReSTIR to handle GI

what if this is a glossy surface?

Extending ReSTIR to handle GI
general formulation: we want to find a “shift mapping” to transfer paths between pixels

Extending ReSTIR to handle GI
general formulation: we want to find a “shift mapping” to transfer paths between pixels

Extending ReSTIR to handle GI
general formulation: we want to find a “shift mapping” to transfer paths between pixels

∫Ω0
∫Ω1

Extending ReSTIR to handle GI
general formulation: we want to find a “shift mapping” to transfer paths between pixels

∫Ω0
∫Ω1

a shift mapping is an invertible mapping
between points in the domains and Ω0 Ω1

ReSTIR for general GI

path tracing (70 ms) ReSTIR PT (70 ms)

ReSTIR for general GI

path tracing (80 ms) ReSTIR PT (80 ms)

Volumetric ReSTIR
• basically the same idea, with shift mapping designed for volume rendering

• requires very careful engineering for high performance

Volumetric ReSTIR

https://www.youtube.com/watch?v=Jnfs41od5OQ

Some cool theories from Lin 2022
most important message: you should “cap” the M count when merging reservoirs!

M = min (M0 + M1, Mmax)

Discussion: ReSTIR vs path guiding vs MCMC

Next: production rendering
for visual effects

