ReSTIR and Path Re-using

UCSD CSE 272 Advanced Image Synthesis Tzu-Mao Li

with slides from Benedikt Bitterli

Motivation: can we do importance sampling of lights without complex data structures?

Eye candy

22.9 million triangles, 3.4 million emissive, dynamic triangles, rendered at interactive rates (20-40ms?)

ReSTIR: a general sampling algorithm

Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting

BENEDIKT BITTERLI, Dartmouth College CHRIS WYMAN, NVIDIA MATT PHARR, NVIDIA PETER SHIRLEY, NVIDIA **AARON LEFOHN, NVIDIA** WOJCIECH JAROSZ, Dartmouth College

Fast Volume Rendering with Spatiotemporal Reservoir Resampling

DAQI LIN, University of Utah, USA CHRIS WYMAN, NVIDIA, USA CEM YUKSEL, University of Utah, USA

ReSTIR GI: Path Resampling for Real-Time Path Tracing

Y. Ouyang¹, S. Liu¹, M. Kettunen¹, M. Pharr¹, J. Pantaleoni¹

¹NVIDIA Corporation, Santa Clara, CA, USA

Generalized Resampled Importance Sampling: Foundations of ReSTIR

DAQI LIN*, University of Utah, USA MARKUS KETTUNEN*, NVIDIA, Finland **BENEDIKT BITTERLI, NVIDIA, USA** JACOPO PANTALEONI, NVIDIA, Germany CEM YUKSEL, University of Utah, USA CHRIS WYMAN, NVIDIA, USA

Let's start from the many-lights problem

shading point

• each pixel starts with a single light sampled (e.g., uniform sampling)

- each pixel starts with a single light sampled (e.g., uniform sampling)
- for the center pixel, pick the unoccluded lights from neighbor pixels

- each pixel starts with a single light sampled (e.g., uniform sampling)
- for the center pixel, pick the unoccluded lights from neighbor pixels
- sample from these lights using probability proportional to $L \cdot \rho \cdot G$

- each pixel starts with a single light sampled (e.g., uniform sampling)
- for the center pixel, pick the unoccluded lights from neighbor pixels
	- sample from these lights using probability proportional to *L* ⋅ *ρ* ⋅ *G*

• propagate the information to the next frame

- each pixel starts with a single light sampled (e.g., uniform sampling)
- for the center pixel, pick the unoccluded lights from neighbor pixels
	- sample from these lights using probability proportional to *L* ⋅ *ρ* ⋅ *G*

• propagate the information to the next frame

goal: approximately sampled arbitrary unnormalized target distribution *p*

Importance Resampling for Global Illumination

Justin F. Talbot David Cline Parris Egbert

Brigham Young University

goal: approximately sampled arbitrary unnormalized target distribution *p*

start with *M* samples with "candidate" distribution *p*

goal: approximately sampled arbitrary unnormalized target distribution *p*

start with *M* samples with "candidate" distribution *p*

evaluate on all of them *^p p p p*

goal: approximately sampled arbitrary unnormalized target distribution *p*

start with *M* samples with "candidate" distribution *p*

pick a sample with prob. proportional to \hat{P}

p p = evaluate on all of them *^p p*

density of the final sample

 $M=2$

density of the final sample

 $M=8$

density of the final sample

 $M = 16$

approximate integrals using RIS samples y_i with unnormalized target \hat{p}

 $\int f(x)dx \approx$ 1 *N N* ∑ *j wj f* (*yj*) \hat{p} (y_j)

quiz: why do we need *w*?*j*

approximate integrals using RIS samples y_i with unnormalized target \hat{p}

 $\int f(x)dx \approx$ 1 *N N* ∑ *j wj f* (*yj*) \hat{p} (y_j)

 w_j is an unbiased approximation of the normalization factor of *p*

$$
w_j = \frac{1}{M} \sum_{i}^{M} \frac{\hat{p}(x_i)}{p(x_i)}
$$

approximate integrals using RIS samples y_i with unnormalized target \hat{p}

 $\int f(x)dx \approx$ 1 *N N* ∑ *j* $W_j f(y_j)$ $W_j =$

1 *M* 1 $\hat{p}(y_j)$ *M* ∑ *i* $\hat{p}(x_i)$ $p(x_i)$

Jun S. Liu

Monte Carlo Strategies in Scientific Computing

"unbiased contribution weight" (Lin/Kettunen 2022) "properly weighted samples" (Liu 2001)

Example: resampled direct lighting

p ∝ *L*

p = *L* ⋅ *ρ* ⋅ *G*

Resampled importance sampling can be slow

pick a sample with prob. proportional to \hat{P}

$$
\hat{p} = \begin{array}{|c|c|c|c|}\n\hline\n0 & 0 & 0 & 0 \\
\hline\n0 & 5 & 8 & 0 & 2 & 3 \\
\hline\n0 & 0 & 0 & 0 & 0\n\end{array}
$$

need to build an array and compute CDF

idea: streaming through the samples using rejection sampling

A general purpose unequal probability sampling plan

idea: streaming through the samples using rejection sampling

$$
y = ?
$$

$$
w_{\text{sum}} = 0
$$

A general purpose unequal probability sampling plan

idea: streaming through the samples using rejection sampling

0000000000

A general purpose unequal probability sampling plan

idea: streaming through the samples using rejection sampling

0000000000

*p p w*sum

A general purpose unequal probability sampling plan

idea: streaming through the samples using rejection sampling

0000000000

ob.
$$
\frac{\hat{p}}{w_{\text{sum}}}
$$

A general purpose unequal probability sampling plan

Reservoir sampling vs inverse transform sampling

reservoir sampling

constant memory usage

no precomputation

O(M) computation per query

no stratification

inverse transform sampling

O(M) memory usage

O(M) pre computation

O(log(M)) computation per query

can be stratified

recall: we want to reuse neighbor pixels' sampling results

each pixel stores a "reservoir" which is the result from RIS

recall: we want to reuse neighbor pixels' sampling results

each pixel stores a "reservoir" which is the result from RIS

to reuse, we need to merge the reservoirs from two pixels

recall: we want to reuse neighbor pixels' sampling results

each pixel stores a "reservoir" which is the result from RIS

to reuse, we need to merge the reservoirs from two pixels

to merge, apply RIS to sample from the two reservoirs!

 $W_j = \frac{1}{M} \frac{1}{\hat{p}(y_i)} \sum_{i}^{M} \frac{\hat{p}(x_i)}{p(x_i)}$

 $W_j =$ 1 *M* 1 $\hat{p}(y_j)$ *M* ∑ *i* $\hat{p}(x_i)$ $p(x_i)$

sample with prob. proportional to $W \cdot \hat{p}$

$$
W_j = \frac{1}{M} \frac{1}{\hat{p}(y_j)} \sum_i \frac{\hat{p}(x_i)}{p(x_i)}
$$

$$
y_1
$$

$$
W = \frac{1}{\hat{p}(y_1)} \frac{M_0 W_0 + M_1 W_1}{M_0 + M_1}
$$

$$
M = M_0 + M_1 = 11
$$

• each pixel sample a light using RIS $(e.g., M = 32)$

- each pixel sample a light using RIS $(e.g., M = 32)$
- evaluate visibility and set $W = 0$ for occluded pixels

- each pixel sample a light using RIS $(e.g., M = 32)$
- evaluate visibility and set $W = 0$ for occluded pixels
- merge the reservoirs from previous frame

- each pixel sample a light using RIS $(e.g., M = 32)$
- evaluate visibility and set $W = 0$ for occluded pixels
- merge the reservoirs from previous frame
- merge the reservoirs from spatial neighbor pixels

Eye candy time

Reference

Restauranti

Le Petit Coin

Moreau et al., 2019), 34ms

20'000 Fanticies

ReSTIR (Unbiased), 30ms

Reference.

16 Phil Pain

Commencer of the same of the

-SPINNER

CLASSIFICATION

Courses and the minimum and

All County

Se Feder Gua

20'000 Emitters

The State of the State

Moreau et al., 2019), 30ms

ہے۔

201000 Enlistere

m

50.

ReSTIR (Unibiaged) 26ms each Greec

201000 Emitters

23'000 Emittens

[Moreau et al., 2019], 29ms

23'000 Emitters

ReSTRIEBeiased, 17ms

23'000 Emitters

both maintain a chain of samples and reuse previous ones

ReSTIR vs MCMC

Extending ReSTIR to handle global illumination

want to reuse paths instead of lights

Extending ReSTIR to handle global illumination

want to reuse paths instead of lights

Accelerating Path Tracing by Re-Using Paths

Philippe Bekaert Max-Planck-Institut für Informatik, Saarbrücken, Germany Philippe.Bekaert@mpi-sb.mpg.de

Mateu Sber nstitut d'Informàtica i Aplicacions, Universitat de Girona, Spair nateu@ima.udg.es

> John Haltor University of North Carolina at Chapel Hill. halton@cs.unc.edu

Combining Global and Local Virtual Lights for Detailed Glossy Illumination

Tomáš Davidovič Saarland University and DFKI

Jaroslav Křivánek Charles University, Prague **Cornell University**

Miloš Hašan **Harvard University**

Philipp Slusallek Saarland University and DFKI

ReSTIR GI: Path Resampling for Real-Time Path Tracing

Y. Ouyang¹, S. Liu¹, M. Kettunen¹, M. Pharr¹, J. Pantaleoni¹

Kavita Bala Cornell University

idea: treat the second path vertex as virtual point light

Extending ReSTIR to handle global illumination

want to reuse paths instead of lights

Accelerating Path Tracing by Re-Using Paths

Philippe Bekaer Max-Planck-Institut für Informatik, Saarbrücken, Germany Philippe.Bekaert@mpi-sb.mpg.de

Mateu Sber nstitut d'Informàtica i Aplicacions, Universitat de Girona, Spair $\text{rateu}(a)$ ima.udg.es

> John Haltor University of North Carolina at Chapel Hill. halton@cs.unc.edu

Combining Global and Local Virtual Lights for Detailed Glossy Illumination

Tomáš Davidovič Saarland University and DFKI

Jaroslav Křivánel Charles University, Prague **Cornell University**

Miloš Hašar **Harvard University**

Philipp Slusallek Saarland University and DFKI

ReSTIR GI: Path Resampling for Real-Time Path Tracing

Y. Ouyang¹, S. Liu¹, M. Kettunen¹, M. Pharr¹, J. Pantaleoni¹

Kavita Bala Cornell University

idea: treat the second path vertex as virtual point light

during reservoir merging, connect to the VPL

ReSTIR GI

path tracing (8 ms) ReSTIR GI (8.9 ms)

what if this is a mirror?

should put a VPL on the second diffuse surface

what if this is a mirror?

what if this is a glossy surface?

general formulation: we want to find a "shift mapping" to transfer paths between pixels

Gradient-Domain Metropolis Light Transport

 $Timo Aila¹$

general formulation: we want to find a "shift mapping" to transfer paths between pixels

general formulation: we want to find a "shift mapping" to transfer paths between pixels

general formulation: we want to find a "shift mapping" to transfer paths between pixels

ReSTIR for general GI

path tracing (70 ms) ReSTIR PT (70 ms)

ReSTIR for general GI

path tracing (80 ms) ReSTIR PT (80 ms)

Volumetric ReSTIR

- basically the same idea, with shift mapping designed for volume rendering
- requires very careful engineering for high performance

DAQI LIN, University of Utah **CHRIS WYMAN, NVIDIA** CEM YUKSEL, University of Utah

Fast Volume Rendering with Spatiotemporal Reservoir Resampling

Volumetric ReSTIR

Fast Volume Rendering with Daqi Lin Chris Wyman Cem Yuksel **University of Utah** University of Utah **NVIDIA**

SIGRAPH. Asia, 2021

Some cool theories from Lin 2022

most important message: you should "cap" the M count when merging reservoirs!

Generalized Resampled Importance Sampling: Foundations of ReSTIR

DAQI LIN^{*}, University of Utah, USA MARKUS KETTUNEN*, NVIDIA, Finland BENEDIKT BITTERLI, NVIDIA, USA JACOPO PANTALEONI, NVIDIA, Germany CEM YUKSEL, University of Utah, USA CHRIS WYMAN, NVIDIA, USA

$$
M = \min (M_0 + M_1, M_{\max})
$$

Discussion: ReSTIR vs path guiding vs MCMC

Next: production rendering for visual effects

The Reyes Image Rendering Architecture

Robert L. Cook Loren Carpenter Edwin Catmull

Pixar P. O. Box 13719 San Rafael, CA 94913

