Many-lights rendering

UCSD CSE 272 Advanced Image Synthesis Tzu-Mao Li

Rendering with many lights

shading point

occluder

Virtual point lights

• we can deposit point lights at light subpaths in bidirectional path tracing

Universität Kaiserslautern

Goal: importance sample lights

- important lights are:
 - closer
 - at BSDF peak
 - not occluded
 - high intensity

occluder

shading point

Naive approach: importance sample light intensity

shading point

Ideas

[Walter 2005]

hierarchical clustering [Shirley 1996, Paquette 1998, Walter 2005, ...]

data-driven [Donikian 2006, Vevoda 2018, Wang 2021]

[Ou 2011]

matrix formulation [Hasan 2007, Ou 2011, Huo 2015,]

spatial-temporal reuse + resampling [Benedikt 2020]

data-driven [Donikian 2006, Vevoda 2018, Wang 2021]

Ideas

[Ou 2011]

matrix formulation [Hasan 2007, Ou 2011, Huo 2015,]

spatial-temporal reuse + resampling [Benedikt 2020]

Idea: group light into clusters

- important lights = small clusters
- unimportant lights = large clusters

approximate each cluster with one sample

Use a tree to cluster lights

- important lights = small clusters
- unimportant lights = large clusters

a "lightcut"

Lightcuts: A Scalable Approach to Illumination

Bruce Walter Sebastian Fernandez Adam Arbree Kavita Bala Michael Donikian Donald P. Greenberg Program of Computer Graphics, Cornell University*

Determining lightcut

- estimate the importance of the cluster using an upper bound of all contributions
 - visibility is ignored

• refine the node with the highest importance and repeat

• refine the node with the highest importance and repeat

- uniformly pick a cluster
- sample a light from the cluster by traversing the tree

- uniformly pick a cluster
- sample a light from the cluster by traversing the tree

- uniformly pick a cluster
- sample a light from the cluster by traversing the tree

- uniformly pick a cluster
- sample a light from the cluster by traversing the tree

Stochastic Lightcuts

Cem Yuksel 匝

University of Utah, UT, USA

Lightcuts-like ideas are widely used in practice

Estevez's

Importance Sampling of Many Lights with Adaptive Tree Splitting

ALEJANDRO CONTY ESTEVEZ, Sony Pictures Imageworks CHRISTOPHER KULLA, Sony Pictures Imageworks

Lightcuts-like ideas are widely used in practice

Estevez's

Importance Sampling of Many Lights with Adaptive Tree Splitting

ALEJANDRO CONTY ESTEVEZ, Sony Pictures Imageworks CHRISTOPHER KULLA, Sony Pictures Imageworks

Lightcuts-like ideas are widely used in practice

Estevez's Our method

Importance Sampling of Many Lights with Adaptive Tree Splitting

ALEJANDRO CONTY ESTEVEZ, Sony Pictures Imageworks CHRISTOPHER KULLA, Sony Pictures Imageworks

Bidirectional Lightcuts

Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Cornell University*

Bruce Walter

Pramook Khungurn Cornell University*

Kavita Bala

Multidimensional lightcuts is (was?) used by Autodesk

with lightcuts

https://cgg.mff.cuni.cz/~jaroslav/papers/mlcourse2012/mlcourse2012%20-%2006%20-%20arbree.pdf

without lightcuts

Many-Lights Algorithms in Autodesk[®] 360 Rendering

Adam Arbree, Autodesk Inc.

Ideas

[Walter 2005]

hierarchical clustering [Shirley 1996, Paquette 1998, Walter 2005, ...]

[Ou 2011]

matrix formulation [Hasan 2007, Ou 2011, Huo 2015,]

spatial-temporal reuse + resampling [Benedikt 2020]

A pathological case for lightcuts

rendered image

Learning to Cluster for Rendering with Many Lights

YU-CHEN WANG, National Taiwan University, Taiwan YU-TING WU, National Taiwan University, Taiwan TZU-MAO LI, MIT CSAIL & University of California San Diego, United States YUNG-YU CHUANG, National Taiwan University, Taiwan

Idea: estimate importance of clusters using samples

• improve estimation as we render

histogram

Inappropriate clustering leads to noisy sampling

[Yuksel 2019] Stochastic Lightcut (30 sec rendering)

reference

Our method learns a good light clustering progressively

Ours (30 sec rendering)

original sampling probability & clustering

learned sampling probability & clustering

Algorithm

Algorithm

build light hierarchy & init clustering

Algorithm

build light hierarchy & init clustering

Algorithm

sample a cluster using importance

build light hierarchy & init clustering

Algorithm

sample a cluster using importance

sample a light within the cluster [Yuksel 2019]

build light hierarchy & init clustering

Algorithm

sample a cluster using importance

sample a light within the cluster [Yuksel 2019]

update importance & variance

build light hierarchy & init clustering

Algorithm

sample a cluster using importance

split cluster if variance is large

sample a light within the cluster [Yuksel 2019]

update importance & variance

Algorithm

group shading points into cells

build light hierarchy & init clustering

loop

sample a cluster using importance

sample a light within the cluster [Yuksel 2019]

split cluster if variance is large

update importance & variance

How do we initialize/update the importance?

• key idea: initialize the importance using lightcut upper bound, update with data

lightcuts importance based on distance/materials/etc

high contribution low contribution

Key idea: initialize the importance using lightcut upper bound, update with data

$Q_0(c) =$ lightcuts importance $Q_{t+1}(c) = (1 - \alpha_t)Q_t(c) + \alpha_t$ (sampling contribution)

goal: $Q_t(c)$ converges to the sum of contributions of lights in cluster c

lightcuts weight based on distance/materials/etc

 Q_t

high contribution

low contribution

 Q_{t+1}

Key idea: initialize the importance using lightcut upper bound, update with data

$Q_0(c) =$ lightcuts importance

$Q_{t+1}(c) = (1 - \alpha_t)Q_t(c) + \alpha_t$ (sampling contribution)

goal: $Q_t(c)$ converges to the sum of contributions of lights in cluster c

 Q_t

 Q_{t+1}

Need to be very careful with the "learning rate" α_t

$Q_{t+1}(c) = (1 - \alpha_t)Q_t(c) + \alpha_t(\text{sampling contribution})$

converges to the sum of contribution when

$$\sum_{t=1}^{\infty} \alpha_t = \infty \text{ and } \sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

(
$$\alpha_t$$
 = constant doesn't work!)

Stochastic Approximation [Robbins and Monro 1951]

Need to be very careful with the "learning rate" α_t

$Q_{t+1}(c) = (1 - \alpha_t)Q_t(c) + \alpha_t(\text{sampling contribution})$

converges to the sum of contribution when

$$\sum_{t=1}^{\infty} \alpha_t = \infty \text{ and } \sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

(
$$\alpha_t$$
 = constant doesn't work!)

Stochastic Approximation [Robbins and Monro 1951]

we pick $\alpha_t = \frac{1}{at^b}$

Using a constant α_t can lead to visual artifacts!

constant α_t

ours

 $Q_{t+1}(c) = (1 - \alpha_t)Q_t(c) + \alpha_t(\text{sampling contribution})$

We made data-driven methods robust

4776 lights, direct lighting only

Bayesian online [Vevoda 2018]

method:

stochastic lightcuts [Yuksel 2019]

relMSE:

0.152

0.095

variance-aware Bayesian [Rath 2020]

0.101

reinforcement lightcuts [Pantaleoni 2019] 0.065

ours

0.057

ref

We made data-driven methods robust

indirect illumination rendered with 71311 virtual point lights

method:

lightcuts [Yuksel 2019]

online [Vevoda 2018]

relMSE:

0.352

1.034

Bayesian [Rath 2020]

0.476

lightcuts [Pantaleoni 2019] 0.404

0.050

ours

ref

We made data-driven methods robust

90862 lights, direct illumination only

0.237

0.047

method:

relMSE:

0.153

0.766

0.480

Ideas

[Walter 2005]

hierarchical clustering [Shirley 1996, Paquette 1998, Walter 2005, ...]

data-driven [Donikian 2006, Vevoda 2018, Wang 2021]

spatial-temporal reuse + resampling [Benedikt 2020]

Many-lights rendering = estimating the light transport matrix

lights

figure from Ou 2011

Matrix Row-Column Sampling for the Many-Light Problem

Miloš Hašan* Cornell University Fabio Pellacini Dartmouth College Kavita Bala Cornell University

Many-lights rendering = estimating the light transport matrix

lights

observation: the light transport matrix is low-rank!

figure from Ou 2011

Matrix Row-Column Sampling for the Many-Light Problem

Miloš Hašan* Cornell University Fabio Pellacini Dartmouth College Kavita Bala Cornell University

Idea: reconstruct the light transport matrix by sampling rows and columns

Row/colummn sampling can be done using rasterization/shadow mapping!

column sampling = render a point light for all pixels

column sampling = render a pixel with all lights

Result: high-quality global illumination only using rasterization!

2.2m triangles: 300 rows, 900 columns, 16.9 s

388k triangles: 432 rows, 864 columns, 13.5 s

869k triangles: 100 rows, 200 columns, 3.8 s

Followup: applying matrix completion algorithms for light transport matrix estimation

A Matrix Sampling-and-Recovery Approach for Many-Lights Rendering

Yuchi Huo Rui Wang^{*} Shihao Jin Xinguo Liu Hujun Bao* State Key Lab of CAD&CG, Zhejiang University

Multidimensional Lightcuts

Lightslice

MDLightcut error image

Lightslice error image

Our method error image

Matrix Recovery by Matrix Separation. Matrix separation has been recently developed [Candès et al. 2011; Shen et al. 2014]. Specifically in our scenario, the reduced lighting matrix L can be separated from the corrupted matrix **D** with a sparse error matrix **Z**, $\mathbf{D} = \mathbf{L} + \mathbf{Z}$, by solving the following minimization:

$\min_{\mathbf{L},\mathbf{Z}}$	$\ \mathbf{L}\ _* + \lambda \ \mathbf{Z}\ _1$
s.t.	$P_{\Omega}(\mathbf{L} + \mathbf{Z}) = P_{\Omega}(\mathbf{D})$

(5)

Ideas

[Walter 2005]

hierarchical clustering [Shirley 1996, Paquette 1998, Walter 2005, ...]

data-driven [Donikian 2006, Vevoda 2018, Wang 2021]

[Ou 2011]

matrix formulation [Hasan 2007, Ou 2011, Huo 2015,]

Motivation: real-time rendering

with dynamic direct lighting

BENEDIKT BITTERLI, Dartmouth College CHRIS WYMAN, NVIDIA MATT PHARR, NVIDIA PETER SHIRLEY, NVIDIA AARON LEFOHN, NVIDIA WOJCIECH JAROSZ, Dartmouth College

Spatiotemporal reservoir resampling for real-time ray tracing

 each pixel starts with a single light sampled (can use lightcuts or whatever)

- each pixel starts with a single light sampled (can use lightcuts or whatever)
- for the center pixel, pick the unoccluded lights from neighbor pixels

- each pixel starts with a single light sampled (can use lightcuts or whatever)
- for the center pixel, pick the unoccluded lights from neighbor pixels
- sample from these lights using probability proportional to $L \cdot \rho \cdot G$

- each pixel starts with a single light sampled (can use lightcuts or whatever)
- for the center pixel, pick the unoccluded lights from neighbor pixels
 - sample from these lights using probability proportional to $L \cdot \rho \cdot G$

can propagate the information to the next frame

- each pixel starts with a single light sampled (can use lightcuts or whatever)
- for the center pixel, pick the unoccluded lights from neighbor pixels
 - sample from these lights using probability proportional to $L \cdot \rho \cdot G$

can propagate the information to the next frame

What are the connections between these ideas?

[Walter 2005]

hierarchical clustering [Shirley 1996, Paquette 1998, Walter 2005, ...]

data-driven [Donikian 2006, Vevoda 2018, Wang 2021] [Ou 2011]

matrix formulation [Hasan 2007, Ou 2011, Huo 2015,]

spatial-temporal reuse + resampling [Benedikt 2020]

Next: ReSTIR and Path-reusing

