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Multiple importance sampling

idea: weighted average of the two estimators
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Multiple importance sampling

idea: weighted average of the two estimators
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How do we determine w; and w,?



How do we determine w; and w,?

goal: choose w; and w, such that Var (F )] is minimized
f Xl N
/\/\ (F) = Z Xll
N1 P1 Xl 1



Veach'’s strategy

trick 1: assuming X, ; and X, ; are uncorrelated
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Veach'’s strategy

trick 1: assuming X, ; and X, ; are uncorrelated
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trick 2: minimize upper bound of the variance

Var [X] = E |X*| - E[X]" < E |[X?]
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w: x N;p:is a good choice [Veach 1995]

aka balance heuristic

Nip (%) N, py(x)
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M T () minimizes E l(F )
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| Z X2 intuition: higher weight for higher sampling density
N, &

J
see CSE 168 for the proof | ‘ | L



Can we do better than Veach?

trick 1: assuming X, ; and X, ; are uncorrelated

1 f(Xl i) 1 fw, 1 fw
F)y = — —w, (X ; Var|(F)| = Var | — ) — +Var[— —2]
o N, Z D1 (Xl,i> 1 ( 1’l) ) [Nl 2 P N, Z P>
— (Xz,j) . o .
i W, ( X, j) trick 2: minimize upper bound of the variance

Var [X] = E |X*| - E[X]" < E |[X?]



Can we do better than Veach?

trick 1: assuming X, ; and X, ; are uncorrelated

1
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. ) Wi (Xl l-) Var[(F)] = Var [NLIZ%

1 / (Xz’j ) trick 2: minimize upper bound of the variance
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Optimal Multiple Importance Sampling

Var [X] = E |X*| - E[X]" < E |[X?]
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Minimizing variance for
multiple importance sampling

goal: choose w; and w, to minimize Var [(F )] s.t. w +w, =1
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of generality



Minimizing variance for
multiple importance sampling

goal: choose w; and w, to minimize Var [(F )] s.t. w +w, =1
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Minimizing variance for
multiple importance sampling

choose w; to minimize
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Minimizing variance for
multiple importance sampling

choose w; and 4 to minimize

V= Z[Wizf—z— Uwif2+/1(2wi—1)

i Pi i

https:/ /en.wikipedia.org/wiki/Lagrange multiplier



https://en.wikipedia.org/wiki/Lagrange_multiplier

Minimizing variance for
multiple importance sampling

choose w; and 4 to minimize

=X

need to solve this using “calculus of variations”
https:/ /en.wikipedia.org /wiki/Calculus_of variations

2

sz‘_l

l

generalizes differentiation with vectors to differentiation with functions


https://en.wikipedia.org/wiki/Calculus_of_variations

Minimizing variance for
multiple importance sampling

choose w; and 4 to minimize

V= Z[Wizf—z— Uwif2+/1(2wi—1)

i Pi i

set derivatives to zero
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Minimizing variance for
multiple importance sampling

choose w; and 4 to solve
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Minimizing variance for
multiple importance sampling

choose w; and 4 to solve
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Minimizing variance for
multiple importance sampling

choose w; and 4 to solve
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Minimizing variance for
multiple importance sampling

choose w; and 4 to solve
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Minimizing variance for
multiple importance sampling

choose w; and 4 to solve
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Minimizing variance for
multiple importance sampling

choose w; to solve



Minimizing variance for
multiple importance sampling

choose w; to solve
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Minimizing variance for
multiple importance sampling

choose w; to solve




Minimizing variance for
multiple importance sampling

choose w; to solve




Minimizing variance for
multiple importance sampling

the MIS weight that minimizes the variance!




a) integrand and sampling
techniques

Optimal MIS weight requires

negative weights

Var: 0.158 (baseline)

w3

b) balance heuristic
weights

Var: 0.123 (1.3x | )
w3

1k W9

Var: 1.33 (1x | )
w3

c) power heuristic weights

Var: 0.0442 (3.6x | )

Var: 1.26 (1.05x | )

W9
w3
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d) best-technique
heuristic weights

Var: 0.0176 (9x | )

W9

w3

Var: 0.307 (4.3x | )

w3
8
) \——J
TR A
1 2 3 4
W9

e) optimal weights
(unconstrained sign)



Inuitition: control variates of mixture PDFs
lead to optimal MIS

control variates: variance reduction using known integrals

Jf (x)dx = J f(x) — g(x)dx + J g2(x)dx = J f(x) — g(x)dx + G
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Inuitition: control variates of mixture PDFs
lead to optimal MIS

control variates: variance reduction using known integrals

J f(x)dx = J f(x) — Z a;p,(x)dx + Z Qa;

J P1P1 J PiP> j 2
. o P+ P2 P1tT P2 P+ P2
optimal a; satisfies o =
J P2Pq J 1263 %) P>
P1T P2 P11t P2 Ip1+19f>

Safe and Effective Importance Sampling

Art OWEN and Yi ZHOU



Optimal MIS can outpertorm MIS

Trained technique Uniform technique

Optimal '
‘ .

weights A
MSE: 1.82
(9.6x)

Optimal weights

2
= Power
o heuristic
-
~ MSE: 17.4
2 (baseline)
a

a) Reference b) MIS weights c) Equal-sample comparison



Downside of Optimal MIS



Downside of Optimal MIS

computing the weights requires solving integrals!
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Variance-aware MIS

e combine balance heuristic with empirical variance

(2
El(E
- U1Pq Pi
W = ———— y=— =
V1Pt P Var | &
1%

if v, = 1, balance heuristic is optimal, if v; —» 0, variance is high and we should distrust technique i

Variance-Aware Multiple Importance Sampling

PASCAL GRITTMANN, Saarland University, Germany

ILIYAN GEORGIEV, Autodesk, United Kingdom

PHILIPP SLUSALLEK, DFKI and Saarland University, Germany

JAROSLAV KRIVANEK, Charles University and Chaos Czech a. s., Czech Republic



Variance-aware MIS takes stratification
into consideration

(Gritmann et al.

ce) d) BPT (power) e) BPT (eun)-

B

a) Reference b) Path tracing c) BPT (balan

Global Hlum.

24
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=

Direct [Hlum.
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Rel. error (MRSE) 0.170 (x. 0332

).315 (x0.9) 0.184 (x0.6)



MIS compensation:
modify a PDF based on other techniques

df df
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) Wz o SN W . Importance Sampling
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c) Setup with the optimized technique d) MIS with the optimized technique MARTIN SIK, Chaos Czech a. .
PETR VEVODA, Charles University, Prague and Chaos Czech a. s.
TOMAS SKRIVAN, IST Austria
JAROSLAV KRIVANEK, Charles University, Prague and Chaos Czech a. s.



MIS compensation:
modify a PDF based on other techniques

super simple to implement for discrete PMFs!

void MIS compensation()

!
for (int 1 = 0; 1 < N; ++1) {
probability[i] = max(probability[i] - averageValue, 0.f);

}

https:/ /www.iliyan.com / publications / RenderingCourse2020 / RenderingCourse2020_Notes revl.pdf

MIS Compensation: Optimizing Sampling Techniques in Multiple
Importance Sampling

ONDREJ KARLIK, Chaos Czech a. s.

MARTIN SIK, Chaos Czech a. s.

PETR VEVODA, Charles University, Prague and Chaos Czech a. s.
TOMAS SKRIVAN, IST Austria

JAROSLAV KRIVANEK, Charles University, Prague and Chaos Czech a. s.


https://www.iliyan.com/publications/RenderingCourse2020/RenderingCourse2020_Notes_rev1.pdf

MIS compensation:
modify a PDF based on other techniques

Basic MIS Our method RIS

Reference NMS

Reference

e
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R
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Original HDR map Pdf used by MIS Our pdf



Can we do better than Veach?

trick 1: assuming X, ; and X, ; are uncorrelated

1 f(Xl i) 1 fw, 1 fw
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i W, ( X, j) trick 2: minimize upper bound of the variance

Var [X] = E |X*| - E[X]" < E |[X?]



Can we do better than Veach?

trick 1: assuming X, ; and X, ; are uncorrelated

1 X
(F) = — f( 1’l> Wi (Xl l-) Var |(F)| = Var lizm + Var lizm]
i Pl (Xl,i) | Ny D1 N, %)
— (Xz,j) | o .
4 W, ( X, j) trick 2: minimize upper bound of the variance

Var [X] = E |X*| - E[X]" < E |[X?]
how do we choose N, and N,?



Can we randomly choose one technique?

effectively blending the two PDFs into one

|/\mf, O3 Z3m
‘ /\\pl ‘ QQ ) Py erwm
‘\/\Pz




One-sample MIS

e instead of sampling from both p; and p,, we randomly choose one of them

/ /

< F >mS — p_wl -+ p_W2 “multi-sample” MIS
1 2

“one-sample” MIS



Balance heuristic is optimal in one-sample MIS

f
<F>OS — Wil_
5 Pi
P;
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Balance heuristic is optimal in one-sample MIS

YR A

P 5 (p1+ )

e one-sample MIS = just average the distribution

Pi * not really doing anything!




MIS is helpful because of
stratification!

e stratification ensures we have the same amount of samples for each sampling distribution

one-sample MIS multi-sample MIS

o0 ©
o © o ©
® O O
O O
P1 P> P1 1%,

extra variance comes from

more variance reduction
uneven sample counts



- PPn (xn) = (P(xn) =

Many alternatives between
one-sample and multi-sample

2 PP (Xn) = Pjrn 1 (Xn) = P(Xn|j1:n-1)

Since the sampling process is sequential, this option is of particular interest.
It interprets the proposal pdf as the conditional density of x,, given all the
previous proposal indexes of the sampling process.

D P, (Xn) = Pin (Xn) = P(Xn|jn) = dj, (Xn)

It interprets that if the index j, is known, pp, is the proposal g;,,.

2 P, (%Xn) = p(Xn)

It interprets that x,, is a realization of the marginal p(x,). This is probably
the most “natural” option (as it does not assume any further knowledge in
the generation of x,,) and is a usual choice for the calculation of the weights

in some of the existing MIS schemes (see Section 5).
1

- PP, (xn) = PN (xn) — f(xnljlzN) =N Zszl qj,, (xn)

This interpretation makes use of the distribution of the r.v. X conditioned
on the whole set of indexes (defined in Section 3.5).

N
f(xn) — % Zk:l Qk(xn)
This option considers that all the x,, are realizations of the r.v. X defined
in Section 3.5 (see Appendix A for a thorough discussion of this interpre-

tation).

[R1]:

[R2]:

[R3]:

Sampling with replacement, 81, and weight denominator Ws:

For the weight calculation of the n-th sample, only the proposal selected
for generating the sample is evaluated in the denominator.

Sampling with replacement, 81, and weight denominator Wy:

With the N selected indexes j,, for n = 1,..., N, one forms a mixture
comprising all the corresponding proposal pdfs. The weight calculation of
the n-th sample considers this a posterior: mixture evaluated at the n-th
sample in the denominator, i.e., some proposals might be used more than
once while other proposals might not be used.

Sampling with replacement, S, and weight denominator Wy, W3, or Ws:
For the weight calculation of the n-th sample, the denominator applies the
value of the n-th sample to the whole mixture 1 composed of the set of
initial proposal pdfs (i.e., the function in the denominator of the weight
does not depend on the sampling process). This is the approach followed
by the so called mixture PMC method [Cappé et al., 2008].

[N1]:

[N2]:

[N3]:

Sampling without replacement (random or deterministic), So or

weight denominator Wy (for S3) or Wy, W, or W3 (for S3):
For calculating the denominator of the n-th weight, the specific
used for the generation of the sample is used. This is the approach fre
used in particle filtering [Gordon et al., 1993] and in the standar
method [Cappé et al., 2004].

Sampling without replacement (random), Sz, and weight denomina
This MIS implementation draws one sample from each proposal,
order matters (it must be random) since the calculation of the n-th
uses for the evaluation of the denominator the mixture pdf formed
proposal pdfs that were still available at the generation of the n-th

Sampling without replacement (random or deterministic), Sz or .
weight denominator Ws, Wy, or Ws (for S2), or W4 or W5 (for S:
In the calculation of the n-th weight, one uses for the denomina
whole mixture. This is the approach, for instance, of [Martino et al
Cornuet et al., 2012]. As shown in Section 6, this scheme has several
over the others.

Generalized Multiple Importance
Sampling

Victor Elvira'*, Luca Martino?, David Luengo®, and Ménica F.

Bugallo*

LUniversity of Edinburgh (United Kingdom), 2Universidad Rey Juan Carlos (Spain),
3Universidad Politécnica de Madrid (Spain), “Stony Brook University (USA)



Choosing N: to minimize variance

1 f(X;)
(F) —;pl x" (X1,)
f( X,
+L ( 2]) W, (ij)

can we pick optimal N,?



Choosing N: to minimize variance

i 7 ( X ) need to jointly optimize w; and N,
(F) = Z (;l ) Wy (Xl,l-) (given a total budget N)
L P1\A1,




Choosing N: to minimize variance

X ) need to jointly optimize w, and N,
& ) Wy (X1 l-) (given a total budget N)

convex optimization problem!

XA .
1 Z f ( 2,] Many people have shown that this can be formulated as a
Wo \ Ap;
o]

On Learning the Best Local Balancing Strategy

D. Murray1 and S. Benzait! and R. Pacanowski” and X. Granier*>

Optimal mixture weights in multiple importance

Optimal Deterministic Mixture Sampling sampling

Mateu Sbert! & Vlastimil Havran® & Laszl6 Szirmay-Kalos3 Hera Y. He AI‘t B. OWGII
Stanford University Stanford University



Choosing N to minimize efficiency

1 f ( Xl ,i) . minimize

C(N,, N,)Var [<F>N1»N2]

C = how long it takes to render

Efficiency-aware multiple importance sampling for bidirectional
rendering algorithms

PASCAL GRITTMANN, Saarland University, Germany

OMERCAN YAZICI, Saarland University, Germany

ILIYAN GEORGIEV, Autodesk, United Kingdom

PHILIPP SLUSALLEK, Saarland University, Germany and DFKI, German y



Grittmann et al.’s strategy:
just try out ditterent combinations of Ns!

1 f ( Xl ,i) . minimize

C(N,, N,)Var [<F>N1»N2]

C = how long it takes to render

estimate _
C(10 % ,90%)Var | (F
< >1O%’9O%. Efficiency-aware multiple importance sampling for bidirectional
C(30 % ,70%)Var <F>307 00 rendering algorithms
- o 0 PASCAL GRITTMANN, Saarland University, Germany

OMERCAN YAZICI, Saarland University, Germany
ILIYAN GEORGIEV, Autodesk, United Kingdom
PHILIPP SLUSALLEK, Saarland University, Germany and DFKI, German



Choosing number of samples for MIS
is crucial for bidirectional methods

Merge mask

¥Merge mask

FisH TARGET PRACTICE

153k light paths
8 connections

10.89 X faster than PT
2.71X faster than VCM

153k light paths
0 connections

1.72 X faster than PT
3.54 X faster than VCM

‘Pathi tracing Path tracing

-

e e




Can we do better than Veach?

trick 1: assuming X, ; and X, ; are uncorrelated

1 f(Xl i) 1 fw, 1 fw
F)y = — —w, (X ; Var|(F)| = Var | — ) — +Var[— —2]
o N, Z D1 (Xl,i> 1 ( 1’l) ) [Nl 2 P N, Z P>
— (Xz,j) . o .
i W, ( X, j) trick 2: minimize upper bound of the variance

Var [X] = E |X*| - E[X]" < E |[X?]



Can we do better than Veach?

what if the samples are correlated?

trick 1: assuming X, ; and X, ; are uncorrelated

(%)
4+ i Z 2] W, (Xz,j) trick 2: minimize upper bound of the variance

Var [X] = E |X*| - E[X]" < E |[X?]

|




Correlation occurs in bidirectional path tracing
when camera subpaths are shared by a light subpath

correlation!




Correlation-aware MIS

e no satisfactory solution yet, only heuristics exist

Correlation-Aware Multiple Importance Sampling for

Probabilistic Connections for Bidirectional Path Tracing Bidirectional Rendering Algorithms
Stefan Popov 1 Ravi Ramamoorthi 2 Fredo Durand > George Drettakis 1
IInria 2 UC San Diego 3 MIT CSAIL

1

Pascal Grittmann Iliyan Georgiev2 Philipp Slusallek!'

!Saarland University, Germany 2 Autodesk, United Kingdom SDFKI, Germany

. add a “correlation factor” c
minimize a very loose upper bound

Vi< X, VI + X VIR () — L) (%)
€S, €S, — — -
Yk Ck(X)nyp (X)



Correlation-aware MIS

Grittmann et al.’s

(a) Balance heuristic (b) Curs— (c) Reference

BDPT w/ splitting

0.76 (1.00x)

|. - -...-' ..':*-"'b

l’_ l.l'l" .

0.47 (0.6 x) relMSE

-----

0.44 (01x) relMSE

Correlation-Aware Multiple Importance Sampling for
Bidirectional Rendering Algorithms

Pascal Grittmann' Iliyan Georgiev2 Philipp Slusallek !

!Saarland University, Germany 2 Autodesk, United Kingdom 3DFKI, Germany



Continuous MIS

* instead of a finite amount of distributions, we can consider uncountably many distributions

Path-space filtering Spectral wavelength sampling Photon planes

Keller et al. [2014] Wllkle et a1[2014] Py ¢ o 4 Dengetal [2019]
v e sl i e s sl e ] 0.033

]['
(F)mis = 2w

/o
(F)eMmis = %WO)

0.153 0.028
SMIS (Ours) SMIS (Ours)

Continuous Multiple Importance Sampling

REX WEST, The University of Tokyo, Japan

ILIYAN GEORGIEV, Autodesk, United Kingdom
ADRIEN GRUSON, McGill University, Canada
TOSHIYA HACHISUKA, The University of Tokyo, Japan



MIS is tfrequently used in Bayesian inference

Adaptive Multiple Importance Sampling

JEAN-MARIE CORNUET
Centre de Biologie et Gestion des Populations

INRA, Montpellier Implicitly adaptive importance sampling

JEAN-MICHEL MARIN
Institut de Mathématiques et Modélisation de Montpellier,

(UMR CNRS 5149), Université Montpellier 2 . 1 . 1 oo . 1 ) 1
Topi Paananen'@® - Juho Piironen’ @ - Paul-Christian Burkner'@® - Aki Vehtari

ANTONIETTA MIRA
Department of Economics, University of Lugano, Switzerland

CHRISTIAN P. ROBERT
Université Paris Dauphine, CEREMADE,
IUF, and CREST, Paris

Generalized Multiple Importance o . _ .
A layered multiple importance sampling scheme for focused optimal Bayesian

Sampllng experimental design”
Victor Elvira'*, Luca Martino?, David Luengo®, and Ménica F. _ § ;
Bugallo* Chi Feng™ and Youssef M. Marzouk

LUniversity of Edinburgh (United Kingdom), 2Universidad Rey Juan Carlos (Spain),
3Universidad Politécnica de Madrid (Spain), “Stony Brook University (USA)



Next: many-lights sampling

Light Tree

- Clusters

| Individual
J Lights

Three Lightcuts

Lightcuts: A Scalable Approach to lllumination

Bruce Walter  Sebastian Fernandez =~ Adam Arbree = Kavita Bala  Michael Donikian  Donald P. Greenberg
Program of Computer Graphics, Cornell University*



