Rendering specular light paths

UCSD CSE 272
Advanced Image Synthesis

Tzu-Mao Li

Back to SDS light paths

Photon mapping fails when light source is very far away

Can we directly find this light path?

Idea: find light paths by solving a non-linear equation

diffuse
point light

Illumination from Curved Reflectors

Idea: find light paths by solving a non-linear equation

diffuse
point light

Illumination from Curved Reflectors

Idea: find light paths by solving a non-linear equation

- solve x_{2} using Newton's method: start from an initial guess, iteratively improve

$$
C\left(x_{2}\right)=0
$$

Idea: find light paths by solving a non-linear equation

- solve x_{2} using Newton's method: start from an initial guess, iteratively improve

$$
C\left(x_{2}+\Delta x_{2}\right) \approx C\left(x_{2}\right)+J_{C}\left(x_{2}\right) \Delta x_{2}=0
$$

$$
C\left(x_{2}\right)=0
$$

$$
\Delta x_{2}=-J_{C}\left(x_{2}\right)^{-1} C\left(x_{2}\right)
$$

Idea: find light paths by solving a non-linear equation

- solve x_{2} using Newton's method: expand constraint C using first-order Taylor expansion

$$
C\left(x_{2}^{\prime}+\Delta x_{2}\right) \approx C\left(x_{2}^{\prime}\right)+J_{C}\left(x_{2}^{\prime}\right) \Delta x_{2}=0
$$

$$
\Delta x_{2}=-J_{C}\left(x_{2}^{\prime}\right)^{-1} C\left(x_{2}^{\prime}\right)
$$

$$
\begin{aligned}
& \text { start from an initial guess x_2' } \\
& \text { while }\left\|C\left(x_{2}^{\prime}\right)\right\|>\epsilon \text { : } \\
& \mathrm{x}^{\prime} 2^{\prime}=\mathrm{x}, 2^{\prime}-J_{C}\left(x_{2}^{\prime}\right)^{-1} C\left(x_{2}^{\prime}\right) \\
& \mathrm{x} _2=\mathrm{x} \text {-2 }{ }^{\text {' }}
\end{aligned}
$$

$$
C\left(x_{2}\right)=0
$$

A single triangle case without shading normal

- n is fixed, find a point x_{2} on the plane s.t. the constraint is satisfied
- unique solution exists

A single triangle case with shading normal

- n interpolates $n_{a^{\prime}} n_{b^{\prime}} n_{c}$ based on the position of x_{2}
- may have zero, one, or multiple solutions

Easily generalizable to multiple specular surfaces

$$
\begin{aligned}
& \text { given } x_{1} \text { and } x_{5} \\
& \text { find } x_{2}, x_{3}, x_{4} \text { s.t. } \\
& \frac{-\omega_{1}+\omega_{3}}{\left\|-\omega_{1}+\omega_{3}\right\|}=n_{2} \\
& \frac{-\omega_{2}+\omega_{4}}{\left\|-\omega_{2}+\omega_{4}\right\|}=n_{3} \\
& \frac{-\omega_{3}+\omega_{5}}{\left\|-\omega_{3}+\omega_{5}\right\|}=n_{4} \\
& C\left(x_{2}, x_{3}, x_{4}\right)=0
\end{aligned}
$$

Theory and Application of Specular Path Perturbation

Challenge: incorporate Newton's method in a Monte Carlo renderer

- how do we generate initial guesses?
- how do we handle a large number of triangles?
- what is the probability density?

$$
\begin{aligned}
& \text { start from an initial guess x_2' } \\
& \text { while }\left\|C\left(x_{2}^{\prime}\right)\right\|>\epsilon: \\
& \quad \mathrm{x} _2,=\mathrm{x}^{\prime} 2^{\prime}-J_{C}\left(x_{2}^{\prime}\right)^{-1} C\left(x_{2}^{\prime}\right) \\
& \mathrm{x} 2=\mathrm{x}-2^{\prime} \\
& p\left(x_{2}\right)=?
\end{aligned}
$$

Three strategies to incorporate Newton's method into a renderer

use new data structure to enumerate roots
Single Scattering in Refractive Media with Triangle Mesh Boundaries

Path Cuts: Efficient Rendering of Pure Specular Light Transport
BEIBEI WANG, School of Computer Science and Engineering, Nanjing University of Science and Technolog
MILOS̃ HAŠAN, Adobe Research
LING-QI YAN, University of California, Santa Barbara

Manifold Exploration: A Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport

Wenzel Jakob
Con

Specular Manifold Sampling for Rendering High-Frequency Caustics and Glints
TIZIAN ZELTNER, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
WENZEL JAKOB, Ecole Polytechniquue Fedederale de Lausanne (EPFL), Switzerland

randomized initialization using Monte Carlo sampling

Three strategies to incorporate Newton's method into a renderer

Manifold Exploration: A Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport

$$
\text { Wenzel Jakob } \quad \text { Steve Marschner }
$$

Cornell University

Metropolis light transport

Specular Manifold Sampling for Rendering High-Frequency Caustics and Glints
TIZIAN ZELTNER, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
ILIYAN GEORGIEV, Autodssk, United Kingdom
WENZEL JKKOB, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland
BEIBEI WANG, School of Computer Science and Engineering, Nanjing University of Science and Technology MILOS̃ HAŠAN, Adobe Research
LING-QI YAN, University of California, Santa Barbara

randomized initialization using Monte Carlo sampling

Idea: enumerate roots using a data structure

- observation: most triangles contain no solution given x_{1} and x_{3}

note: there are only countably many roots if the scene is made of triangle meshes

Hierarchical pruning using a 6D tree

- skip the whole subtree if it is impossible that half-vector would be the same as the normal

Single Scattering in Refractive Media with Triangle Mesh Boundaries
\qquad Bruce Walter
Cornell University INRIA - LJK
x_{1}
all possible n

all possible x_{2}

Hierarchical pruning generalizes to multiple bounces

Path Cuts: Efficient Rendering of Pure Specular Light Transport
BEIBEI WANG, School of Computer Science and Engineering, Nanjing University of Science and Technology

Optional: subdivide triangles

with shading normals for more accurate results

- can subdivide until the constraint is provably convex

In practice, triangle subdivision is usually not worth it

- subdivision can find a few more paths, but usually gives visually similar results

w/o Interval Netwon (TT) w/ Interval Netwon (TT)

Glint count: 1036,
Time: 0.62 s

Glint count: 1052,
Time: 23 h

Fancy animations

Fancy images

Path Cuts: Efficient Rendering of Pure Specular Light Transport
BEIBEI WANG, School of Computer Science and Engineering, Nanjing University of Science and Technology MILOŠ HAŠAN, Adobe Research
LING-QI YAN, University of California, Santa Barbara

Fancy images

Path tracing (TTTT) Time: $7.92 \mathrm{~h}, \mathrm{spp}: 64 \mathrm{~K}$

Path Cuts: Efficient Rendering of Pure Specular Light Transport
BEIBEI WANG, School of Computer Science and Engineering, Nanjing University of Science and Technology MILOŠ HAŠAN, Adobe Research LING-QI YAN, University of California, Santa Barbara

Fancy images

Path Cuts: Efficient Rendering of Pure Specular Light Transport
BEIBEI WANG, School of Computer Science and Engineering, Nanjing University of Science and Technology MILOŠ HAŠAN, Adobe Research
LING-QI YAN, University of California, Santa Barbara

Three strategies to incorporate Newton's method into a renderer

use new data structure to enumerate roots
Single Scattering in Refractive Media with Triangle Mesh Boundaries

Path Cuts: Efficient Rendering of Pure Specular Light Transport
BEIBEI WANG, School of Computer Science and Engineering, Nanjing University of Science and Technolog, IILOŠ HAŠAN, Adobe Research
LING-QI YAN, University of California, Santa Barbara

Manifold Exploration: A Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport

Wenzel Jakob

Cornell University

Metropolis light transport

Specular Manifold Sampling for Rendering High-Frequency Caustics and Glints
TIZIAN ZELTNER, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
WENZEL JAKOB, Ecole Polytechniique Eededrale de Le Lausanne (EPFL), Switzerland

randomized initialization using Monte Carlo sampling

Let's solve a slightly relaxed problem

diffuse
pinhole camera
mirror (specular)

small area light

Manifold exploration with Metropolis sampling

- use bidirectional path tracing to find an initial path

Manifold exploration with Metropolis sampling

- mutate the camera subpath until a diffuse hit

Manifold exploration with Metropolis sampling

- given x_{3}^{\prime} and x_{5}, perturb x_{4} using Newton's method to satisfy the constraint

Manifold exploration with Metropolis sampling

- works for arbitrary number of specular vertices

Satisfying detailed balance

- in Metropolis, we only need to compute the ratio of PDFs, making PDF calculation much easier

Extension to glossy surfaces

- probabilistically determine whether a surface is specular or not based on roughness
- use the sampled micro-normal as the specular normal

Extension to volumetric light transport

- Henyey-Greenstein with high g can be seen as near-specular phase functions

Metropolis light transport in Mitsuba

- first open source implementation of Veach-style MLT 15 years after Veach's publication!

8. Plugin reference		8.10. Integrators
8.10.11. Path Space Metropolis Light Transport (mlt)		
Parameter	Type	Description
maxDepth	integer	Specifies the longest path depth in the generated output image (where -1 corresponds to ∞). A value of 1 will only render directly visible light sources. 2 will lead to singlebounce (direct-only) illumination, and so on. (Default: -1)
directSamples	integer	By default, the implementation renders direct illumination component separately using the direct plugin, which uses low-discrepancy number sequences for superior performance (in other words, it is not handled by MLT). This parameter specifies the number of samples allocated to that method. To force MLT to be responsible for the direct illumination component as well, set this to -1 . (Default: 16)
luminanceSamples	integer	MLT-type algorithms create output images that are only relative. The algorithm can e.g. determine that a certain pixel is approximately twice as bright as another one, but the absolute scale is unknown. To recover it, this plugin computes the average luminance arriving at the sensor by generating a number of samples. (Default: 100000 samples)
twoStage	boolean	Use two-stage MLT? See pssmlt for details. (Default: false)
bidirectional ${ }^{2}$ Mutation, [lens,multiChain, caustic, manifold] κ Perturbation	boolean	These parameters can be used to pick the individual mutation and perturbation strategies that will be used to explore path space. By default, the original set by Veach and Guibas is enabled (i.e. everything except the manifold perturbation). It is possible to extend this integrator with additional custom perturbations strategies if needed.
lambda	float	Jump size of the manifold perturbation (Default 50)

(a) Lens perturbation

(c) Multi-chain perturbation

(b) Caustic perturbation

(d) Manifold perturbation

Fancy images

(a) MLT
(b) ERPT

(c) PSSMLT
(d) MEPT

Fancy images

(c) PSSMLT
(d) MEPT

Fancy images

(a) MLT

(b) ERPT

(c) PSSMLT

(d) MEPT

Three strategies to incorporate Newton's method into a renderer

use new data structure to enumerate roots
Single Scattering in Refractive Media with Triangle Mesh Boundaries

Path Cuts: Efficient Rendering of Pure Specular Light Transport
BEIBEI WANG, School of Computer Science and Engineering, Nanjing University of Science and Technolog
MILOS̃ HAŠAN, Adobe Research
LING-QI YAN, University of California, Santa Barbara

Manifold Exploration: A Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport
Wenzel Jakob
Cornall Unir

Metropolis light transport

Specular Manifold Sampling for Rendering High-Frequency Caustics and Glints

TIZIAN ZELTNER, École Polytechnique Fedérale de Lausanne (EPFL), Switzerland
ILIYAN GEORGIEV, Autodesk, United Kingdom
WENZEL JAKOB, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland

randomized initialization using Monte Carlo sampling

Back to point lights

diffuse
pinhole camera

Manifold exploration with normal Monte Carlo sampling

- do normal path tracing before we hit the light

point light

Manifold exploration with normal Monte Carlo sampling

- connect to the light source - quiz: what is the contribution of this light path?

Manifold exploration with normal Monte Carlo sampling

- connect to the light source - contribution is zero since we are on a specular surface

Manifold exploration with normal Monte Carlo sampling

- perturb x_{4} to satisfy the specular constraint

Manifold exploration with normal Monte Carlo sampling

- perturb x_{4} to satisfy the specular constraint
- what is the PDF of the path $x_{1} x_{2} x_{3} x_{4}^{\prime} x_{5}$? diffuse

PDF of a specular path is an integral

- the probability density of sampling $x_{1} x_{2} x_{3} x_{4}^{\prime} x_{5}$ is the sum of all probability densities of path that will perturb to it

$$
p\left(x^{\prime}\right)=\int p(x) p\left(x^{\prime} \mid x\right) \mathrm{d} x
$$

PDF of a specular path is an integral

- the probability density of sampling $x_{1} x_{2} x_{3} x_{4}^{\prime} x_{5}$ is the sum of all probability densities of path that will perturb to it

$$
p\left(x^{\prime}\right)=\int p(x) p\left(x^{\prime} \mid x\right) \mathrm{d} x
$$

Evaluating contribution

- need to use Monte Carlo sampling to estimate the PDF $p\left(x^{\prime}\right)$ itself

$$
\frac{f\left(x^{\prime}\right)}{p\left(x^{\prime}\right)}=\frac{f\left(x^{\prime}\right)}{\int p(x) p\left(x^{\prime} \mid x\right) \mathrm{d} x}
$$

$$
p\left(x^{\prime}\right)=\int p(x) p\left(x^{\prime} \mid x\right) \mathrm{d} x
$$

Unbiased evaluation of reciprocal of integral

- same as the unbiased photon mapping paper

$$
\frac{1}{\int f(x) \mathrm{d} x}=\frac{1}{1-F}=1+F+F^{2}+\cdots
$$

can estimate using Russian roulette

Pseudocode

```
ALGORITHM 2: Unbiased specular manifold sampling
    Input: Shading point \(\mathbf{x}_{1}\) and emitter position \(\mathbf{x}_{3}\) with density \(p\left(\mathbf{x}_{3}\right)\)
    Output: Estimate of radiance traveling from \(x_{3}\) to \(\mathbf{x}_{1}\)
    \(1 \mathrm{X}_{2} \leftarrow\) sample a specular vertex as initial position
    \(\mathbf{x}_{2}^{*} \leftarrow\) manifold_walk \(\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)\)
    \(3\left\langle 1 / p_{k}\right\rangle \leftarrow 1 \quad \triangleright\) Estimate inverse probability of sampling \(\mathbf{x}_{2}^{*}\)
    while true do
        \(\mathbf{x}_{2} \leftarrow\) sample specular vertex as above
        \(\mathbf{x}_{2}^{\prime} \leftarrow\) manifold_walk \(\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)\)
        if \(\left\|\mathbf{x}_{2}^{\prime}-\mathbf{x}_{2}^{*}\right\|<\varepsilon\) then
            break
        \(\left\langle 1 / p_{k}\right\rangle \leftarrow\left\langle 1 / p_{k}\right\rangle+1\)
    return \(f_{s}\left(\mathbf{x}_{2}^{*}\right) \cdot G\left(\mathbf{x}_{1} \leftrightarrow \mathbf{x}_{2} \leftrightarrow \mathbf{x}_{3}\right) \cdot\left\langle 1 / p_{k}\right\rangle \cdot L_{e}\left(\mathbf{x}_{3}\right) / p\left(\mathbf{x}_{3}\right)\)
```


Fancy images

Fancy images

Manifold exploration is used in practice

Manifold Next Event Estimation

Manifold exploration is used in practice

Plausible Iris Caustics and Limbal Arc Rendering

Connection to physical simulation

- Lagrangian mechanics $/$ Hamilton's least action principle $=$ finding shortest paths towards target
- a generalization of Fermat's principle
- specular light path rendering is a physical trajectory finding problem!

Next: multiple importance sampling++

$$
\sum w_{i} \frac{f_{i}}{p_{i}}
$$

