Metropolis Light Transport

UCSD CSE 272
Advanced Image Synthesis

Tzu-Mao Li
Light paths with difficult visibility

- bidirectional path tracing & photon mapping will both fail
Idea: keep sampling in high-contribution regions by “mutating” light paths

aka Markov Chain Monte Carlo (MCMC) methods
Metropolis light transport [Veach 1997]

1. generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
Metropolis light transport [Veach 1997]

1. generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
2. “mutate” the light path by changing it a little bit
Metropolis light transport [Veach 1997]

1. generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
2. “mutate” the light path by changing it a little bit
3. probabilistically “accept” the new path based on its contribution
 if a path is accepted, make it the new seed path, else stay at the current path
Metropolis light transport [Veach 1997]

1. generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
2. “mutate” the light path by changing it a little bit
3. probabilistically “accept” the new path based on its contribution
 if a path is accepted, make it the new seed path, else stay at the current path
Metropolis light transport [Veach 1997]

1. generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
2. “mutate” the light path by changing it a little bit
3. probabilistically “accept” the new path based on its contribution
 if a path is accepted, make it the new seed path, else stay at the current path
Metropolis light transport [Veach 1997]

1. generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
2. “mutate” the light path by changing it a little bit
3. probabilistically “accept” the new path based on its contribution
 if a path is accepted, make it the new seed path, else stay at the current path
4. “+1” to the pixel correspond to the path (even if rejected), go to 2 until budget is met
Metropolis light transport [Veach 1997]

1. generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
2. “mutate” the light path by changing it a little bit
3. probabilistically “accept” the new path based on its contribution
 if a path is accepted, make it the new seed path, else stay at the current path
4. “+1” to the pixel correspond to the path (even if rejected), go to 2 until budget is met
5. normalize the whole image by the average brightness estimated by bidirectional path tracing
1. Generate some “seed paths” using bidirectional path tracing, sample them based on their contribution.
2. “Mutate” the light path by changing it a little bit.
3. Probabilistically “accept” the new path based on its contribution.
 - If a path is accepted, make it the new seed path, else stay at the current path.
4. “+1” to the pixel correspond to the path (even if rejected), go to 2 until budget is met.
5. Normalize the whole image by the average brightness estimated by bidirectional path tracing.

Why does this work???? 😐
Mathematical formulation

given the luminance of path contribution $f(\vec{x}) \in \mathbb{R}$ (the path \vec{x} can land on any pixel),
want to sample \vec{x} s.t. $p(\vec{x}) \propto f(\vec{x})$
Metropolis-Hastings algorithm

given the luminance of path contribution \(f(\bar{x}) \in \mathbb{R} \) (the path \(\bar{x} \) can land on any pixel),
want to sample \(\bar{x} \) s.t. \(p(\bar{x}) \propto f(\bar{x}) \)

\[
x = x_0 \quad // \text{bidirectional path tracing}
\]

\[
\begin{align*}
\text{for } i \text{ in range}(n): \\
x' &= \text{mutate}(x) \\
a &= \min((f(x')/f(x)) \ast (p_m(x'->x)/p_m(x->x')), 1) \\
\text{if random()} < a: \\
&\quad x = x' \\
&\quad \text{record(image, x)}
\end{align*}
\]
given the luminance of path contribution $f(\bar{x}) \in \mathbb{R}$ (the path \bar{x} can land on any pixel),
want to sample \bar{x} s.t. $p(\bar{x}) \propto f(\bar{x})$

$x = x_0$ // bidirectional path tracing
for i in range(n):
 $x' = \text{mutate}(x)$
 $a = \min((f(x')/f(x)) \ast (p_m(x'->x)/p_m(x->x')), 1)$
 if random() < a:
 $x = x'$
 record(image, x)
2D image copy example

\[x = x_0 \]

\[\text{for } i \text{ in range}(n): \]
\[\quad x' = \text{mutate}(x) \]
\[\quad a = \min\left(\frac{f(x')}{f(x)} \times \frac{p_m(x' \rightarrow x)}{p_m(x \rightarrow x')}, 1\right) \]
\[\quad \text{if } \text{random}() < a:\]
\[\quad \quad x = x' \]
\[\quad \text{record(image, } x') \]

https://www.csie.ntu.edu.tw/~cyy/courses/rendering/16fall/lectures/handouts/chap13_mc.pdf
Why does Metropolis algorithm work?

- easier to think in the discrete state space: assume our path space lives on an integer domain
- a “path” \(x \) is, for now, an integer
- we start with some (discrete) PDF \(\pi^0(x) \), defined by bidirectional path tracing

\[
x = x_0 \\
for i in range(n):
 x' = mutate(x)
 a = \min((f(x')/f(x)) * (p_m(x'->x)/p_m(x->x'))), 1
 if random() < a:
 x = x'
 record(image, x')
\]
Why does Metropolis algorithm work?

- easier to think in the discrete state space: assume our path space lives on an integer domain

- a "path" x is, for now, an integer

- we start with some (discrete) PDF $\pi^0(x)$, defined by bidirectional path tracing

- each mutation/acceptance changes the PDF:

 $$K\pi^t = \pi^{t+1}, \quad K_{ij} = \text{probability to go from } i \text{ to } j$$

- want to prove that $\lim_{t \to \infty} \pi^t \propto f$

```python
x = x0
for i in range(n):
    x' = mutate(x)
    a = min((f(x')/f(x)) * (p_m(x'->x)/p_m(x->x')), 1)
    if random() < a:
        x = x'
    record(image, x')
```
Why does Metropolis algorithm work?

- when t goes to infinity, the mutation update $K\pi^t = \pi^{t+1}$ reaches a fixed point $K\pi = \pi$

- with assumption that the mutation is “ergodic” — it should have non-zero probability to visit all states

```python
x = x0
for i in range(n):
    x' = mutate(x)
    a = min((f(x')/f(x)) * (p_m(x'-x)/p_m(x-x')), 1)
    if random() < a:
        x = x'
    record(image, x')
```
Why does Metropolis algorithm work?

- when \(t \) goes to infinity, the mutation update \(K \pi^t = \pi^{t+1} \) reaches a fixed point \(K \pi = \pi \)

- with assumption that the mutation is “ergodic” — it should have non-zero probability to visit all states

- Theorem: if a kernel \(K \) satisfies the detailed balance condition:

 \[
 K_{ij} \pi_i = K_{ji} \pi_j \forall i, j
 \]

- then, starting from any distribution \(\pi^0 \), \(K \) has a unique fixed point \(\pi \) (usually called the stationary distribution)

- exercise: prove it!

```
  x = x0
  for i in range(n):
    x' = mutate(x)
    a = min((f(x')/f(x)) * (p_m(x'->x)/p_m(x->x')), 1)
    if random() < a:
      x = x'
    record(image, x')
```
Why does Metropolis algorithm work?

- goal: design \(a \) such that \(K_{ij}f_i = K_{ji}f_j \)

\[
K_{ij} = \begin{cases}
 p_m(i \rightarrow j)a(i \rightarrow j) & \text{if } i \neq j \\
 p_m(i \rightarrow i)a(i \rightarrow i) + \sum_{j \neq i} p_m(i \rightarrow j)(1 - a(i \rightarrow j)) & \text{if } i = j
\end{cases}
\]

\[
x = x_0 \\
\text{for } i \text{ in range}(n): \\
x' = \text{mutate}(x) \\
a = \min((f(x')/f(x)) * (p_m(x'\rightarrow x)/p_m(x\rightarrow x')), 1) \\
\text{if random()} < a: \\
x = x' \\
\text{record(image, x')}
\]
Why does Metropolis algorithm work?

- goal: design a such that $K_{ij}f_i = K_{ji}f_j$

$$K_{ij} = \begin{cases}
 p_m(i \rightarrow j)a(i \rightarrow j) & \text{if } i \neq j \\
 p_m(i \rightarrow i)a(i \rightarrow i) + \sum_{j \neq i} p_m(i \rightarrow j)(1 - a(i \rightarrow j)) & \text{if } i = j
\end{cases}$$

if $a(i \rightarrow j) = \min\left(\frac{f_j p_m(j \rightarrow i)}{f_i p_m(i \rightarrow j)}, 1\right)$, K satisfies detailed balance

```python
x = x0
for i in range(n):
  x' = mutate(x)
  a = \min((f(x')/f(x)) \times (p_m(x'\rightarrow x)/p_m(x\rightarrow x')), 1)
  if random() < a:
    x = x'
  record(image, x')
```
Why does Metropolis algorithm work?

- goal: design a such that $K_{ij}f_i = K_{ji}f_j$

$$K_{ij} = \begin{cases} p_m(i \to j)a(i \to j) \\ p_m(i \to i)a(i \to i) + \sum_{j \neq i} p_m(i \to j)(1 - a(i \to j)) \end{cases}$$

if $a(i \to j) = \min\left(\frac{f_j p_m(j \to i)}{f_i p_m(i \to j)}, 1\right)$,

K satisfies detailed balance

```python
x = x0
for i in range(n):
    x' = mutate(x)
    a = min((f(x')/f(x)) * (p_m(x'->x)/p_m(x->x')), 1)
    if random() < a:
        x = x'
record(image, x')
```
What should the record function do?

\[x = x_0 \]

for \(i \) in range(n):
 \[x' = \text{mutate}(x) \]
 \[a = \min\left(\frac{f(x')}{f(x)} \times \frac{p_m(x' \rightarrow x)}{p_m(x \rightarrow x')}, 1\right) \]
 if random() < a:
 \[x = x' \]
 record(image, x)

- since \(\pi(x) \propto f \) in the limit, \(\frac{f(x)}{\pi(x)} = \text{constant} \)
- estimate the constant across image using bidirectional path tracing (average brightness of the image)
- add the constant divided by the number of samples to the corresponding pixel
- Metropolis light transport is recording image histogram!
Making MLT unbiased

\[x = x_0 \]

for \(i \) in range(\(n \)):
 \[x' = \text{mutate}(x) \]
 \[a = \min((f(x')/f(x)) * (p_m(x' \rightarrow x)/p_m(x \rightarrow x')), 1) \]
 if random() < a:
 \[x = x' \]
 record(image, x)

the sampling distribution \(\pi' \) only converges to \(f \) in the limit, so naive MLT is biased
Making MLT unbiased

\[x = x_0 \]
\[\text{for } i \text{ in range}(n): \]
\[x' = \text{mutate}(x) \]
\[a = \min\left(\frac{f(x')}{f(x)} \times \frac{p_m(x'->x)}{p_m(x->x')}, 1\right) \]
\[\text{if } \text{random()} < a: \]
\[x = x' \]
\[\text{record(image, } x) \]

the sampling distribution \(\pi' \)
only converges to \(f \) in the limit,
so naive MLT is biased

solution: weigh all samples with \(\frac{f(x_0)}{p(x_0)} \)
where
\(p \) is BDPT sampling density
Making MLT unbiased

- intuition: bidirectional path tracing is unbiased, each mutation is preserving the unbiasedness using detailed balance
- see Veach’s thesis for proof

Appendix 11.A Proof of Unbiased Initialization

In this appendix, we show that the estimate

$$I_j = E\left[\frac{1}{N} \sum_{i=1}^{N} W_i h_j(X_i)\right]$$

is unbiased (see Section 11.3.1). To do this, we show that the following weighted equilibrium condition is satisfied at each step of the random walk:

$$\int_{\Omega} w \, p_i(w, \bar{x}) \, dw = f(\bar{x}), \quad (11.14)$$

where p_i is the joint density function of the i-th weighted sample (W_i, X_i). This is a sufficient condition for the above estimate to be unbiased, since

$$E\left[W_i h_j(X_i)\right] = \int_{\Omega} \int_{\Omega} w \, h_j(\bar{x}) \, p_i(w, x) \, dw \, d\mu(\bar{x})$$

$$= \int_{\Omega} h_j(\bar{x}) \, f(\bar{x}) \, d\mu(\bar{x})$$

$$= I_j.$$
Metropolis light transport with a single Markov chain is unbiased but NOT consistent

- in practice, just average over many Markov chains

Five Common Misconceptions about Bias in Light Transport Simulation

3.5. Markov chain algorithms are unbiased and consistent

Misconception: Throughout the literature, it is well recognized that the original Markov chain Monte Carlo method is biased and consistent. The reason is that the distribution of samples converges to the target distribution for infinitely long Markov chains by definition. The difference between the initial distribution and the target distribution is called start-up bias. Veach proposed to eliminate start-up bias in order to make Metropolis light transport (MLT) unbiased. The misconception is that this technique makes MLT unbiased and consistent.
Metropolis light transport with a single Markov chain is unbiased but NOT consistent

• in practice, just average over many Markov chains

Five Common Misconceptions about Bias in Light Transport Simulation

Toshiya Hachisuka
Aarhus University

3.5. Markov chain algorithms are unbiased and consistent

Misconception: Throughout the literature, it is well recognized that the original Markov chain Monte Carlo method is biased and consistent. The reason is that the distribution of samples converges to the target distribution for infinitely long Markov chains by definition. The difference between the initial distribution and the target distribution is called start-up bias. Veach proposed to eliminate start-up bias in order to make Metropolis light transport (MLT) unbiased. The misconception is that this technique makes MLT unbiased and consistent.
MLT is very different from path tracing

\[x = x_0 \]

\[
\text{for } i \text{ in range}(n): \\
 x' = \text{mutate}(x) \\
 a = \min\left(\left(\frac{f(x')}{f(x)} \right) \times \left(\frac{p_m(x' \rightarrow x)}{p_m(x \rightarrow x')} \right), 1 \right) \\
 \text{if } \text{random()} < a: \\
 x = x' \\
 \text{record(image, } x) \\
\]

quiz: if we only have one pixel, would MLT be helpful?
MLT is very different from path tracing

\[x = x_0 \]

for i in range(n):
 \[x' = \text{mutate}(x) \]
 \[a = \min\left(\left(\frac{f(x')}{f(x)} \right) \times \left(\frac{p_m(x'->x)/p_m(x->x')}{1} \right), 1 \right) \]
 if random() < a:
 \[x = x' \]
 record(image, x)

quiz: if we only have one pixel, would MLT be helpful?

- since \(\pi(x) \propto f \) in the limit, \(\frac{f(x)}{\pi(x)} = \text{constant} \)
- but we have to estimate the constant, so MLT is not helpful!
Mutation: Kelemen-style

- simple to implement, less efficient than more sophisticated mutation

- idea: do the mutation in the random number space

\[u_0, u_1, u_2, \ldots \]
Mutation: Kelemen-style

- randomly choose among two kinds of mutations:
 - large steps: forget about the current path, regenerate a path using bidirectional path tracing
 - small steps: a Gaussian-like distribution in the random number space
Mutation: Kelemen-style

• code walkthrough

• https://cs.uwaterloo.ca/~thachisu/smallpssmlt.cpp
Mutation size trade-off

- small mutation size: high accept rate, but introduce correlation between pixels
- large mutation size: better exploration and better noise, but low accept rate
- in practice: adapt mutation size to keep acceptance rate at a constant (aka adaptive MCMC)
Mutation: Veach-style

- randomly choose among 5 mutation strategies:
 - bidirectional mutation (similar to large steps but more complex)
 - lens perturbation
 - caustic perturbation
 - multi-chain perturbation
 - lens mutation (complex but not very useful)
Bidirectional mutation

Figure 11.3: A simple example of a bidirectional mutation. The original path $\bar{x} = x_0x_1x_2x_3$ is modified by deleting the edge x_1x_2 and replacing it with a new vertex z_1. The new vertex is generated by sampling a direction $n x_1$ (according to the BSDF) and casting a ray. This yields a mutated path $\bar{y} = x_0x_1z_1x_2x_3$.

see my code here :>
https://github.com/aekul/yotsuba/blob/master/src/integrators/myintegrators/bidirmutation.cpp
Lens perturbation

propagate the change through specular vertices
Caustics perturbation

propagate the change through specular vertices
Multi-chain perturbation

propagate the change through specular vertices crucial for SDS paths
MLT is good at complex scenes

(a) Bidirectional path tracing with 40 samples per pixel.

(b) Metropolis light transport with 250 mutations per pixel [the same computation time as (a)].

BDPT

MLT

(a) Path tracing with 210 samples per pixel.

(b) Metropolis light transport with 100 mutations per pixel [the same computation time as (a)].
Combination of Veach & Kelemen

Fusing State Spaces for Markov Chain Monte Carlo Rendering

HISANARI OTSU, The University of Tokyo
ANTON S. KAPLANYAN, NVIDIA
JOHANNES HANIK, Karlsruhe Institute of Technology
CARSTEN DACHSBACHER, Karlsruhe Institute of Technology
TOSHIYA HACHISUKA, The University of Tokyo

Charted Metropolis Light Transport

Jacopo Pantaleoni*
NVIDIA

Reversible Jump Metropolis Light Transport using Inverse Mappings

ACM Transactions on Graphics (TOG), 37(1), October 2017
Better lens/caustics perturbation with cone fitting
Can we use differentiable rendering to help MLT?

this looks like gradient ascent/Newton’s method!
Motivation: rendering difficult light paths
e.g. multi-bounce glossy light paths combined with motion blur

narrow contribution regions can lead to noisy images
The ring example
The ring example
The ring example

light
Path contribution varies

depends on geometry, BRDF, light, etc

vertex 1

vertex 2

lots of light!
Path contribution varies

depends on geometry, BRDF, light, etc

vertex 1

vertex 2

not much light

lots of light!
Path contribution varies

depends on geometry, BRDF, light, etc

vertex 1

vertex 2

lots of light!

not much light

light
Visualization of path space contribution

- paths → 2D horizontal locations
- contribution → up direction
- narrow & anisotropic
Monte Carlo: inefficient!

- don’t know contribution function, can only sample it
- few samples in high contribution region

- zero contrib.
- positive contrib.
- zero contrib.
Metropolis Light Transport [Veach 1997]

idea: stays in high contribution region with Markov chain
Metropolis Light Transport [Veach 1997]

idea: stays in high contribution region with Markov chain
sample n+1 drawn from proposal distribution
Metropolis Light Transport [Veach 1997]

problem:
proposals with low contribution are probabilistically rejected
Our goal: anisotropic proposal

• proposal stays in high contribution region
Previous work [Jakob 2012, Kaplanyan 2014]

• specialized for microfacet BRDF & mirror directions
• proposal in special directions
Our goal: anisotropic proposal

- proposal stays in high contribution region
- fully general approach
Challenges & our solutions

1: characterize anisotropy
 use 2nd derivatives (Hessian)
 → quadratic approximation

2: sample quadratic
 (not distributions!)
 simulate Hamiltonian dynamics
Gradient informs only one direction
Hessian provides correlation between coordinates

characterize anisotropy in all direction

\[\frac{\partial^2 f}{\partial u_i \partial u_j} \]
Automatic differentiation provides gradient + Hessian

- no hand derivation
- metaprogramming approach
- chain rule applied automatically
- in practice, implement with special datatype

```cpp
ADFloat f(const ADFloat x[2]) {
    ADFloat y = sin(x[0]);
    ADFloat z = cos(x[1]);
    return y * z;
}
```
e.g. [Griewank and Walther 2008]
Automatic differentiation provides gradient + Hessian

- implement path contribution with automatic differentiation datatypes
- normal, BRDF, light source
- derivatives w.r.t path vertex coordinates

```cpp
ADFloat f(const ADFloat x[2]) {
    ADFloat y = sin(x[0]);
    ADFloat z = cos(x[1]);
    return y * z;
}
```

e.g. [Griewank and Walther 2008]
Quadratic approximation of contribution

gradient + Hessian (2nd-order Taylor) around current sample

original contribution (only known at sample)
Quadratic approximation of contribution

gradient + Hessian (2nd-order Taylor)
around current sample

quadratic approximation
(known everywhere)
Recap

quadratic approximation at current sample

challenge: sample quadratic
Quadratics are not distributions!

Can go to +/- infinity
Goal: attract samples to high contribution regions

- idea: flip landscape and simulate gravity
- *Hamiltonian Monte Carlo* [Duane et al. 1987]
Hamiltonian Monte Carlo simulates physics

- flip contribution landscape
- start from current sample with random velocity
Hamiltonian Monte Carlo simulates physics

- flip contribution landscape
- start from current sample with random velocity
- simulate physics under gravity
- particle is pulled to low ground (high contribution)
- proposal is final position
Challenge with traditional Hamiltonian Monte Carlo

expensive numerical simulation!

flipped quadratic landscape

gravity
HMC + quadratic has a closed form for Gaussian initial velocity.
HMC + quadratic has a closed form for Gaussian initial velocity. Final positions are Gaussian!
Recap

use 2nd derivatives (Hessian) to characterize anisotropy
→ quadratic approximation

simulate Hamiltonian dynamics to sample from quadratics
results in closed-form Gaussian
Recap

Given current sample
compute gradient and Hessian
compute anisotropic Gaussian
draw proposal
probabilistically accept
repeat
Results: Bathroom
Bathroom: equal-time (10 mins) comparisons

- MMLT [Hachisuka 2014]
- MEMLT [Jakob 2012]
- HSLT [Kaplanyan 2014, Hanika 2015]

OURS

Reference (2 days)
Bathroom: equal-time (10 mins) comparisons

MMLT
[Hachisuka 2014]

MEMLT
[Jakob 2012]

HSLT
[Kaplanyan 2014, Hanika 2015]

OURS

Reference (2 days)
Extension to time

Our method is general thanks to automatic differentiation
Cars: equal-time (20 mins) comparisons

- MMLT [Hachisuka 2014]
- MEMLT [Jakob 2012]
- OURS
- Reference (12 hours)
Conclusion

• Good anisotropic proposals for Metropolis
• Hessian from automatic differentiation
• Hamiltonian Monte Carlo
• Closed-form Gaussian
• General, easily extended to time
Hessian might not be necessary!

- use an Adam like algorithm to guide sampling
Open problem with MLT: global exploration

- large steps/bidirectional mutation usually have very low acceptance rate (1-2%)
- lead to uneven convergence & unstable results
Next: specular light path sampling