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Light paths with difficult visibility
• bidirectional path tracing & photon mapping will both fail



Idea: keep sampling in high-contribution regions 
by “mutating” light paths
aka Markov Chain Monte Carlo (MCMC) methods



Metropolis light transport [Veach 1997]
1.generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
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Metropolis light transport [Veach 1997]
1.generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
2.“mutate” the light path by changing it a little bit
3. probabilistically “accept” the new path based on its contribution
    if a path is accepted, make it the new seed path, else stay at the current path
4. “+1” to the pixel correspond to the path (even if rejected), go to 2 until budget is met
5. normalize the whole image by the average brightness estimated by bidirectional path tracing

Why does this work???? 🤯



Mathematical formulation
given the luminance of path contribution  (the path  can land on any pixel),
want to sample  s.t. 

f(x̄) ∈ ℝ x̄
x̄ p(x̄) ∝ f(x̄)



Metropolis-Hastings algorithm
given the luminance of path contribution  (the path  can land on any pixel),
want to sample  s.t. 

f(x̄) ∈ ℝ x̄
x̄ p(x̄) ∝ f(x̄)

sample n sample n+1

sample n+2

x = x0 // bidirectional path tracing 
for i in range(n): 
  x’ = mutate(x) 
  a = min((f(x’)/f(x)) * 
          (p_m(x’->x)/p_m(x->x’)), 1) 
  if random() < a: 
    x = x’ 
  record(image, x)

rejected  
sample n+1



Metropolis-Hastings algorithm

Metropolis: lab director
A. Rosenbluth: junior researcher
M. Rosenbluth: junior researcher’s husband
A. Teller: advisor’s wife
E. Teller: advisor

given the luminance of path contribution  (the path  can land on any pixel),
want to sample  s.t. 

f(x̄) ∈ ℝ x̄
x̄ p(x̄) ∝ f(x̄)

sample n sample n+1

sample n+2

x = x0 // bidirectional path tracing 
for i in range(n): 
  x’ = mutate(x) 
  a = min((f(x’)/f(x)) * 
          (p_m(x’->x)/p_m(x->x’)), 1) 
  if random() < a: 
    x = x’ 
  record(image, x)

rejected  
sample n+1



2D image copy example
x = x0 
for i in range(n): 
  x’ = mutate(x) 
  a = min((f(x’)/f(x)) * 
          (p_m(x’->x)/p_m(x->x’)), 1) 
  if random() < a: 
    x = x’ 
  record(image, x’)

https://www.csie.ntu.edu.tw/~cyy/courses/rendering/16fall/lectures/handouts/chap13_mc.pdf

https://www.csie.ntu.edu.tw/~cyy/courses/rendering/16fall/lectures/handouts/chap13_mc.pdf


Why does Metropolis algorithm work?
• easier to think in the discrete state space: assume our path space lives on an integer domain

• a “path”  is, for now, an integer

• we start with some (discrete) PDF , defined by bidirectional path tracing
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Why does Metropolis algorithm work?
• easier to think in the discrete state space: assume our path space lives on an integer domain

• a “path”  is, for now, an integer

• we start with some (discrete) PDF , defined by bidirectional path tracing

• each mutation/acceptance changes the PDF:

• , probability to go from i to j

• want to prove that 

x

π0(x)

Kπt = πt+1 Kij =

lim
t→∞
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Why does Metropolis algorithm work?
• when t goes to infinity, the mutation update  reaches a fixed point  

• with assumption that the mutation is “ergodic” — it should have non-zero probability to visit all states

• Theorem: if a kernel  satisfies the detailed balance condition:

•

• then, starting from any distribution ,  has a unique 
fixed point  (usually called the stationary distribution)

• exercise: prove it!

Kπt = πt+1 Kπ = π

K

Kijπi = Kjiπj ∀i, j

π0 K
π
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Why does Metropolis algorithm work?
• goal: design  such that a Kij fi = Kji fj
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What should the record function do?
x = x0 
for i in range(n): 
  x’ = mutate(x) 
  a = min((f(x’)/f(x)) * 
          (p_m(x’->x)/p_m(x->x’)), 1) 
  if random() < a: 
    x = x’ 
  record(image, x)

• since  in the limit, 

• estimate the constant across image using 
bidirectional path tracing (average brightness 
of the image)

• add the constant divided by the number of 
samples to the corresponding pixel

• Metropolis light transport is recording image 
histogram!

π(x) ∝ f
f(x)
π(x)

= constant



Making MLT unbiased
x = x0 
for i in range(n): 
  x’ = mutate(x) 
  a = min((f(x’)/f(x)) * 
          (p_m(x’->x)/p_m(x->x’)), 1) 
  if random() < a: 
    x = x’ 
  record(image, x)

the sampling distribution   
only converges to  in the limit,  

so naive MLT is biased

πt

f



Making MLT unbiased
x = x0 
for i in range(n): 
  x’ = mutate(x) 
  a = min((f(x’)/f(x)) * 
          (p_m(x’->x)/p_m(x->x’)), 1) 
  if random() < a: 
    x = x’ 
  record(image, x)

the sampling distribution   
only converges to  in the limit,  

so naive MLT is biased

πt

f

solution: weigh all samples with  where 

 is BDPT sampling density

f(x0)
p(x0)

p



Making MLT unbiased
• intuition: bidirectional path tracing is unbiased, each mutation is preserving the 

unbiasedness using detailed balance

• see Veach’s thesis for proof



Metropolis light transport with a single 
Markov chain is unbiased but NOT consistent

• in practice, just average over many Markov chains



Metropolis light transport with a single 
Markov chain is unbiased but NOT consistent

• in practice, just average over many Markov chains

MLT with many short Markov chains



MLT is very different from path tracing

quiz: if we only have one pixel,  
would MLT be helpful?

x = x0 
for i in range(n): 
  x’ = mutate(x) 
  a = min((f(x’)/f(x)) * 
          (p_m(x’->x)/p_m(x->x’)), 1) 
  if random() < a: 
    x = x’ 
  record(image, x)



MLT is very different from path tracing

quiz: if we only have one pixel,  
would MLT be helpful?

• since  in the limit, 

• but we have to estimate the constant, 
so MLT is not helpful!

π(x) ∝ f
f(x)
π(x)

= constant

x = x0 
for i in range(n): 
  x’ = mutate(x) 

  a = min((f(x’)/f(x)) * 
          (p_m(x’->x)/p_m(x->x’)), 1) 
  if random() < a: 
    x = x’ 
  record(image, x)



Mutation: Kelemen-style
• simple to implement, less efficient than more sophisticated mutation

• idea: do the mutation in the random number space

u0
u1
u2

⋮



Mutation: Kelemen-style
• randomly choose among two kinds of mutations:

• large steps: forget about the current path, regenerate a path using bidirectional path tracing

• small steps: a Gaussian-like distribution in the random number space

u0
u1
u2

⋮



Mutation: Kelemen-style
• code walkthrough

• https://cs.uwaterloo.ca/~thachisu/smallpssmlt.cpp

https://cs.uwaterloo.ca/~thachisu/smallpssmlt.cpp


Mutation size trade-off
• small mutation size: high accept rate, but introduce correlation between pixels

• large mutation size: better exploration and better noise, but low accept rate

• in practice: adapt mutation size to keep acceptance rate at a constant  
(aka adaptive MCMC)



Mutation: Veach-style
• randomly choose among 5 mutation strategies:

• bidirectional mutation (similar to large steps but more complex)

• lens perturbation

• caustic perturbation

• multi-chain perturbation

• lens mutation (complex but not very useful)



Bidirectional mutation

see my code here : >
https://github.com/aekul/yotsuba/blob/master/src/integrators/myintegrators/bidirmutation.cpp

https://github.com/aekul/yotsuba/blob/master/src/integrators/myintegrators/bidirmutation.cpp


Lens perturbation

propagate the change through specular vertices



Caustics perturbation

propagate the change through specular vertices



Multi-chain perturbation

propagate the change through specular vertices
crucial for SDS paths



MLT is good at complex scenes

BDPT MLT



Combination of Veach & Kelemen

Hisanari’s



Better lens/caustics perturbation 
with cone fitting



Can we use differentiable rendering 
to help MLT?

sample n sample n+1

sample n+2
rejected  
sample n+1 this looks like gradient ascent/Newton’s method!



Motivation: rendering difficult light paths

e.g. multi-bounce glossy light paths combined 
with motion blur

narrow contribution regions
can lead to noisy images



The ring example

light
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Path contribution varies

light

depends on geometry, BRDF, light, etc

vertex 2

vertex 1

lots of light!
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Path contribution varies

not  
much lightvertex 2

vertex 1
light

lots of light!

depends on geometry, BRDF, light, etc



Visualization of path space contribution

• paths → 2D horizontal locations
• contribution → up direction
• narrow & anisotropic

vertex 2
vertex 1

vertex 1

vertex 2

contribution
zero contrib.

zero contrib.



zero 
contrib.

Monte Carlo: inefficient!

zero 
contrib.

     positive
contrib.

• don’t know contribution function, can only sample it
• few samples in high contribution region



Metropolis Light Transport [Veach 1997]

sample n sample n+1

sample n+2

idea: stays in high contribution region with Markov chain



Metropolis Light Transport [Veach 1997]
idea: stays in high contribution region with Markov chain

sample n+1 drawn from proposal distribution

proposal  
distribution

sample n+1



Metropolis Light Transport [Veach 1997]
problem:  
proposals with low contribution are 
probabilistically rejected

rejected 

rejected rejected 

rejected 



Our goal: anisotropic proposal

proposal  
distribution

• proposal stays in high contribution region



Previous work [Jakob 2012, Kaplanyan 2014]
• specialized for microfacet BRDF & mirror directions
• proposal in special directions



Our goal: anisotropic proposal

proposal  
distribution

• proposal stays in high contribution region
• fully general approach



Challenges & our solutions

2: sample quadratic 
(not distributions!)

use 2nd derivatives (Hessian)
→quadratic approximation

1: characterize anisotropy

simulate Hamiltonian dynamics



Gradient informs only one direction



Hessian provides correlation between coordinates

characterize anisotropy in all direction



Automatic differentiation provides gradient + Hessian

• no hand derivation
• metaprogramming approach
• chain rule applied automatically

• in practice, implement with special datatype

ADFloat f(const ADFloat x[2]) { 
ADFloat y = sin(x[0]); 
ADFloat z = cos(x[1]); 
return y * z; 

}

e.g. [Griewank and Walther 2008]



Automatic differentiation provides gradient + Hessian

• implement path contribution with automatic 
differentiation datatypes

• normal, BRDF, light source
• derivatives w.r.t path vertex coordinates

ADFloat f(const ADFloat x[2]) { 
ADFloat y = sin(x[0]); 
ADFloat z = cos(x[1]); 
return y * z; 

}

e.g. [Griewank and Walther 2008]



original contribution 
(only known at sample)

Quadratic approximation of contribution
gradient + Hessian (2nd-order Taylor)

around current sample



quadratic approximation  
(known everywhere)

Quadratic approximation of contribution
gradient + Hessian (2nd-order Taylor)

around current sample



Recap

challenge:  
sample quadratic

quadratic approximation
at current sample



Quadratics are not distributions!

Can go to +/- infinity



Goal: attract samples to high contribution regions

• idea: flip landscape and simulate gravity
• Hamiltonian Monte Carlo [Duane et al. 1987] 

gravity

flipped quadratic 
landscape

quadratic 
landscape



• flip contribution landscape
• start from current sample with random velocity

Hamiltonian Monte Carlo simulates physics

69

flipped quadratic 
landscape

gravity

Random
initial velocity



• flip contribution landscape
• start from current sample with random velocity
• simulate physics under gravity
• particle is pulled to low ground (high contribution)

• proposal is final position

Hamiltonian Monte Carlo simulates physics

70

flipped quadratic 
landscape

gravity



flipped quadratic 
landscape

gravity

Challenge with traditional Hamiltonian Monte Carlo

expensive numerical simulation! 



for Gaussian initial velocity

HMC + quadratic has a closed form

gravity
Gaussian

initial velocity



for Gaussian initial velocity 
final positions are Gaussian!

HMC + quadratic has a closed form

gravity



Recap

use 2nd derivatives (Hessian)
to characterize anisotropy
→quadratic approximation

simulate Hamiltonian dynamics
to sample from quadratics

results in closed-form Gaussian



Recap
Given current sample 

compute gradient and Hessian 

compute anisotropic Gaussian 

draw proposal 

probabilistically accept 

repeat



Results: Bathroom



Bathroom: equal-time (10 mins) comparisons

MMLT 
[Hachisuka 2014]

MEMLT
[Jakob 2012]

OURS Reference (2 days)

HSLT
[Kaplanyan 2014,

Hanika 2015]



Bathroom: equal-time (10 mins) comparisons

MMLT 
[Hachisuka 2014]

HSLT
[Kaplanyan 2014,

Hanika 2015]

MEMLT
[Jakob 2012]

OURS Reference (2 days)



Extension to time

Our method is general thanks to automatic 
differentiation



Cars: equal-time (20 mins) comparisons

MMLT 
[Hachisuka 2014]

MEMLT
[Jakob 2012]

OURS Reference (12 hours)



Conclusion

• Good anisotropic proposals for Metropolis
• Hessian from automatic differentiation
• Hamiltonian Monte Carlo
• Closed-form Gaussian
• General, easily extended to time



Hessian might not be necessary!
• use an Adam like algorithm to guide sampling



Open problem with MLT: global exploration
• large steps/bidirectional mutation usually have very low acceptance rate (1-2%)

• lead to uneven convergence & unstable results



Next: specular light path sampling


