Metropolis Light Transport

UCSD CSE 272
Advanced Image Synthesis

Tzu-Mao Li

Light paths with difficult visibility

- bidirectional path tracing \& photon mapping will both fail

Idea: keep sampling in high-contribution regions

 by "mutating" light paths

 by "mutating" light paths}

aka Markov Chain Monte Carlo (MCMC) methods

Metropolis light transport [Veach 1997]

1.generate some "seed paths" using bidirectional path tracing, sample them based on their contribution

Metropolis Light Transport
Eric Veach Leonidas J. Guibas
Computer Science Department Stanford University

Metropolis light transport [Veach 1997]

1.generate some "seed paths" using bidirectional path tracing, sample them based on their contribution 2."mutate" the light path by changing it a little bit

Metropolis Light Transport
Eric Veach
Leonidas J. Guibas
Computer Science Department Stanford University

Metropolis light transport [Veach 1997]

1.generate some "seed paths" using bidirectional path tracing, sample them based on their contribution
2."mutate" the light path by changing it a little bit
3. probabilistically "accept" the new path based on its contribution
if a path is accepted, make it the new seed path, else stay at the current path

Metropolis Light Transport
Eric Veach
Leonidas J. Guibas
Computer Science Department Stanford University

Metropolis light transport [Veach 1997]

1.generate some "seed paths" using bidirectional path tracing, sample them based on their contribution
2."mutate" the light path by changing it a little bit
3. probabilistically "accept" the new path based on its contribution
if a path is accepted, make it the new seed path, else stay at the current path

Metropolis Light Transport
Eric Veach
Leonidas J. Guibas
Computer Science Department Stanford University

Metropolis light transport [Veach 1997]

1.generate some "seed paths" using bidirectional path tracing, sample them based on their contribution
2."mutate" the light path by changing it a little bit
3. probabilistically "accept" the new path based on its contribution
if a path is accepted, make it the new seed path, else stay at the current path

Metropolis Light Transport
Eric Veach
Leonidas J. Guibas
Computer Science Department Stanford University

Metropolis light transport [Veach 1997]

1.generate some "seed paths" using bidirectional path tracing, sample them based on their contribution
2."mutate" the light path by changing it a little bit
3. probabilistically "accept" the new path based on its contribution
if a path is accepted, make it the new seed path, else stay at the current path
4. " +1 " to the pixel correspond to the path (even if rejected), go to 2 until budget is met

Metropolis Light Transport
Eric Veach

Metropolis light transport [Veach 1997]

1.generate some "seed paths" using bidirectional path tracing, sample them based on their contribution
2."mutate" the light path by changing it a little bit
3. probabilistically "accept" the new path based on its contribution if a path is accepted, make it the new seed path, else stay at the current path
4. " +1 " to the pixel correspond to the path (even if rejected), go to 2 until budget is met
5. normalize the whole image by the average brightness estimated by bidirectional path tracing

Why does this work????

Mathematical formulation

given the luminance of path contribution $f(\bar{x}) \in \mathbb{R}$ (the path \bar{x} can land on any pixel), want to sample \bar{x} s.t. $p(\bar{x}) \propto f(\bar{x})$

Metropolis-Hastings algorithm

given the luminance of path contribution $f(\bar{x}) \in \mathbb{R}$ (the path \bar{x} can land on any pixel), want to sample \bar{x} s.t. $p(\bar{x}) \propto f(\bar{x})$

```
x = x0 // bidirectional path tracing
for i in range(n):
    x' = mutate(x)
    a = min((f(x')/f(x)) *
        (p_m(x'->x)/p_m(x->x')), 1)
    if random() < a:
        x = x'
    record(image, x)
```


Metropolis-Hastings algorithm

given the luminance of path contribution $f(\bar{x}) \in \mathbb{R}$ (the path \bar{x} can land on any pixel), want to sample \bar{x} s.t. $p(\bar{x}) \propto f(\bar{x})$

```
x = x0 // bidirectional path tracing
for i in range(n):
    x' = mutate(x)
    a = min((f(x')/f(x)) *
        (p_m(x'->x)/p_m(x->x')), 1)
    if random() < a:
        x = x'
    record(image, x)
```


Metropolis: lab director
A. Rosenbluth: junior researcher
M. Rosenbluth: junior researcher's husband
A. Teller: advisor's wife
E. Teller: advisor

Equation of State Calculations by Fast Computing Machines
nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, and Augusta H. Teller, Los Alamos Scientific Laboratory, Los Alamos, New Mexico
and

2D image copy example

Why does Metropolis algorithm work?

- easier to think in the discrete state space: assume our path space lives on an integer domain
- a "path" x is, for now, an integer
- we start with some (discrete) PDF $\pi^{0}(x)$, defined by bidirectional path tracing

$$
\begin{aligned}
& x=x 0 \\
& \text { for } i \operatorname{in} \operatorname{range}(n): \\
& x^{\prime}=\operatorname{mutate}(x) \\
& a=\min \left(\left(f\left(x^{\prime}\right) / f(x)\right) *\right. \\
& \left.\quad\left(p _m\left(x^{\prime}->x\right) / p _m\left(x->x^{\prime}\right)\right), 1\right) \\
& \text { if random(})<a: \\
& \quad x=x^{\prime} \\
& \text { record(image, } \left.x^{\prime}\right)
\end{aligned}
$$

Why does Metropolis algorithm work?

- easier to think in the discrete state space: assume our path space lives on an integer domain
- a "path" x is, for now, an integer
- we start with some (discrete) PDF $\pi^{0}(x)$, defined by bidirectional path tracing
- each mutation/acceptance changes the PDF:

$$
\begin{aligned}
& x=x 0 \\
& \text { for } i \text { in range }(n): \\
& x^{\prime}=\operatorname{mutate}(x) \\
& a=\min \left(\left(f\left(x^{\prime}\right) / f(x)\right) *\right. \\
& \left.\left(p _m\left(x^{\prime}->x\right) / p _m\left(x->x^{\prime}\right)\right), 1\right) \\
& \text { if random() }<a: \\
& \quad x=x^{\prime} \\
& \text { record(image, } \left.x^{\prime}\right)
\end{aligned}
$$

- want to prove that $\lim _{t \rightarrow \infty} \pi^{t} \propto f$

Why does Metropolis algorithm work?

- when t goes to infinity, the mutation update $K \pi^{t}=\pi^{t+1}$ reaches a fixed point $K \pi=\pi$
- with assumption that the mutation is "ergodic" - it should have non-zero probability to visit all states

$$
\begin{aligned}
& x=x 0 \\
& \text { for } i \operatorname{in} \operatorname{range}(n): \\
& x^{\prime}=\operatorname{mutate}(x) \\
& a=\min \left(\left(f\left(x^{\prime}\right) / f(x)\right) *\right. \\
& \left.\quad\left(p _m\left(x^{\prime}->x\right) / p _m\left(x->x^{\prime}\right)\right), 1\right) \\
& \text { if random(})<a: \\
& \quad x=x^{\prime} \\
& \text { record(image, } \left.x^{\prime}\right)
\end{aligned}
$$

Why does Metropolis algorithm work?

- when t goes to infinity, the mutation update $K \pi^{t}=\pi^{t+1}$ reaches a fixed point $K \pi=\pi$
- with assumption that the mutation is "ergodic" - it should have non-zero probability to visit all states
- Theorem: if a kernel K satisfies the detailed balance condition:
- $K_{i j} \pi_{i}=K_{j i} \pi_{j} \forall i, j$
- then, starting from any distribution π^{0}, K has a unique fixed point π (usually called the stationary distribution)

```
x = x0
for i in range(n):
    x' = mutate(x)
    a = min((f(x')/f(x)) *
    (p_m(x'->x)/p_m(x->x')), 1)
    if random() < a:
        x = x'
    record(image, x')
```

- exercise: prove it!

Why does Metropolis algorithm work?

- goal: design a such that $K_{i j} f_{i}=K_{j i} f_{j}$

$$
K_{i j}= \begin{cases}p_{\mathrm{m}}(i \rightarrow j) a(i \rightarrow j) & \text { if } i \neq j \\ p_{\mathrm{m}}{ }^{(i \rightarrow i) a(i \rightarrow i)+\sum_{j \neq i} p_{\mathrm{m}}(i \rightarrow j)(1-a(i \rightarrow j))} & \text { if } i=j\end{cases}
$$

$$
\begin{aligned}
& x=x 0 \\
& \text { for } i \text { in range }(n): \\
& x^{\prime}=\operatorname{mutate}(x) \\
& a=\min \left(\left(f\left(x^{\prime}\right) / f(x)\right) *\right. \\
& \left.\left(p _m\left(x^{\prime}->x\right) / p _m\left(x->x^{\prime}\right)\right), 1\right) \\
& \text { if random() }<a: \\
& \quad x=x^{\prime} \\
& \text { record(image, } \left.x^{\prime}\right)
\end{aligned}
$$

Why does Metropolis algorithm work?

- goal: design a such that $K_{i j} f_{i}=K_{j i} f_{j}$

$$
\begin{aligned}
& K_{i j}= \begin{cases}p_{\mathrm{m}}(i \rightarrow j) a(i \rightarrow j) & \text { if } i \neq j \\
p_{\mathrm{m}}{ }^{(i \rightarrow i) a(i \rightarrow i)+\sum_{j \neq i} p_{\mathrm{m}}(i \rightarrow j)(1-a(i \rightarrow j))} & \text { if } i=j\end{cases} \\
& \text { if } a(i \rightarrow j)=\min \left(\frac{f_{j}}{f_{i}} \frac{p_{m}(j \rightarrow i)}{p_{m}(i \rightarrow j)}, 1\right) \text {, } \\
& K \text { satisfies detailed balance } \\
& \mathrm{x}=\mathrm{x} 0 \\
& \text { for } i \text { in range }(n) \text { : } \\
& x^{\prime}=\text { mutate (x) } \\
& \left.a=\min \left(\left(f\left(x^{\prime}\right) / f(x)\right) *{ }_{\left(p _m\right.}\left(x^{\prime}->x\right) / p _m\left(x->x^{\prime}\right)\right), 1\right) \\
& \text { if random() < a: } \\
& \mathrm{x}=\mathrm{x} \text { ' } \\
& \text { record(image, x') }
\end{aligned}
$$

Why does Metropolis algorithm work?

- goal: design a such that $K_{i j} f_{i}=K_{j i} f_{j}$

$$
K_{i j}= \begin{cases}p_{\mathrm{m}}(i \rightarrow j) a(i \rightarrow j) & \text { if } i \neq j \\ p_{\mathrm{m}}{ }^{(i \rightarrow i) a(i \rightarrow i)+\sum_{j \neq i} p_{\mathrm{m}}(i \rightarrow j)(1-a(i \rightarrow j))} & \text { if } i=j\end{cases}
$$

if $a(i \rightarrow j)=\min \left(\frac{f_{j}}{f_{i}} \frac{p_{m}(j \rightarrow i)}{p_{m}(i \rightarrow j)}, 1\right)$,
K satisfies detailed balance

$$
x=x 0
$$

$$
\text { for } i \text { in range }(n) \text { : }
$$

$$
x=x \prime
$$

record(image, x')

What should the record function do?

```
x = x0
for i in range(n):
    x' = mutate(x)
    a = min((f(x')/f(x)) *
        (p_m(x'->x)/p_m(x->x')), 1)
    if random() < a:
        x = x'
    record(image, x)
```

- since $\pi(x) \propto f$ in the limit, $\frac{f(x)}{\pi(x)}=$ constant
- estimate the constant across image using bidirectional path tracing (average brightness of the image)
- add the constant divided by the number of samples to the corresponding pixel
- Metropolis light transport is recording image histogram!

Making MLT unbiased

```
x = x0
for i in range(n):
    x' = mutate(x)
    a = min((f(x')/f(x)) *
        (p_m(x'->x)/p_m(x-> '')), 1)
    if random() < a:
        x = x'
    record(image, x)
```

the sampling distribution π^{t} only converges to f in the limit, so naive MLT is biased

Making MLT unbiased

```
x = x0
for i in range(n):
    x' = mutate(x)
    a = min((f(x')/f(x)) *
        (p_m(x'->x)/p_m(x->x')), 1)
    if random() < a:
        x = x'
    record(image, x)
```

the sampling distribution π^{t} only converges to f in the limit, so naive MLT is biased
solution: weigh all samples with $\frac{f\left(x_{0}\right)}{p\left(x_{0}\right)}$ where p is BDPT sampling density

Making MLT unbiased

- intuition: bidirectional path tracing is unbiased, each mutation is preserving the unbiasedness using detailed balance
- see Veach's thesis for proof

Appendix 11.A Proof of Unbiased Initialization
In this appendix, we show that the estimate

$$
I_{j}=E\left[\frac{1}{N} \sum_{i=1}^{N} W_{i} h_{j}\left(\bar{X}_{i}\right)\right]
$$

is unbiased (see Section 11.3.1). To do this, we show that the followingweighted equilibrium condition is satisfied at each step of the random walk:

$$
\begin{equation*}
\int_{\mathbb{R}} w p_{i}(w, \bar{x}) d w=f(\bar{x}) \tag{11.14}
\end{equation*}
$$

where p_{i} is the joint density function of the i-th weighted sample $\left(W_{i}, \bar{X}_{i}\right)$. This is a sufficient condition for the above estimate to be unbiased, since

$$
\begin{aligned}
E\left[W_{i} h_{j}\left(\bar{X}_{i}\right)\right] & =\int_{\Omega} \int_{\mathbb{R}} w h_{j}(\bar{x}) p_{i}(w, \bar{x}) d w d \mu(\bar{x}) \\
& =\int_{\Omega} h_{j}(\bar{x}) f(\bar{x}) d \mu(\bar{x}) \\
& =I_{j}
\end{aligned}
$$

Metropolis light transport with a single Markov chain is unbiased but NOT consistent

- in practice, just average over many Markov chains

Five Common Misconceptions about Bias in Light Transport Simulation

3.5. Markov chain algorithms are unbiased and consistent

Misconception: Throughout the literature, it is well recognized that the original Markov chain Monte Carlo method is biased and consistent. The reason is that the distribution of samples converges to the target distribution for infinitely long Markov chains by definition. The difference between the initial distribution and the target distribution is called start-up bias. Veach proposed to eliminate start-up bias in order to make Metropolis light transport (MLT) unbiased. The misconception is that this technique makes MLT unbiased and consistent.

Metropolis light transport with a single Markov chain is unbiased but NOT consistent

- in practice, just average over many Markov chains

Five Common Misconceptions about Bias in Light Transport Simulation

Toshiya Hachisuka
Aarhus University

MLT with many short Markov chains

Energy Redistribution Path Tracing

David Cline Justin Talbot Parris Egbert*
Brigham Young University

3.5. Markov chain algorithms are unbiased and consistent

Misconception: Throughout the literature, it is well recognized that the original Markov chain Monte Carlo method is biased and consistent. The reason is that the distribution of samples converges to the target distribution for infinitely long Markov chains by definition. The difference between the initial distribution and the target distribution is called start-up bias. Veach proposed to eliminate start-up bias in order to make Metropolis light transport (MLT) unbiased. The misconception is that this technique makes MLT unbiased and consistent.

MLT is very different from path tracing

```
x = x0
for i in range(n):
    x' = mutate(x)
    a = min((f(x')/f(x)) *
    if random() < a:
        x = x'
    record(image, x)
```

quiz: if we only have one pixel, would MLT be helpful?

MLT is very different from path tracing

 if random() < a:
 x = x'
 record(image, x)
    ```
```

```
x = x0
```

```
x = x0
for i in range(n):
for i in range(n):
    x' = mutate(x)
    x' = mutate(x)
    a = min((f(x')/f(x))**
```

 a = min((f(x')/f(x))**
    ```
quiz: if we only have one pixel, would MLT be helpful?
- since \(\pi(x) \propto f\) in the limit, \(\frac{f(x)}{\pi(x)}=\) constant
- but we have to estimate the constant, so MLT is not helpful!

\section*{Mutation: Kelemen-style}
- simple to implement, less efficient than more sophisticated mutation
- idea: do the mutation in the random number space


Simple and Robust Mutation Strategy for Metropolis Light Transport Algorithm

\section*{Mutation: Kelemen-style}
- randomly choose among two kinds of mutations:
- large steps: forget about the current path, regenerate a path using bidirectional path tracing
- small steps: a Gaussian-like distribution in the random number space


\section*{Mutation: Kelemen-style}
- code walkthrough
- https://cs.uwaterloo.ca/~thachisu/smallpssmlt.cpp

\section*{Mutation size trade-off}
- small mutation size: high accept rate, but introduce correlation between pixels
- large mutation size: better exploration and better noise, but low accept rate
- in practice: adapt mutation size to keep acceptance rate at a constant (aka adaptive MCMC)

(a) \(\sigma^{2}=0.028\)
(b) \(\sigma^{2}=0.007\)
(c) \(\sigma^{2}=0.001\) accept rate \(28.96 \%\) accept rate \(54.02 \%\)

\section*{Mutation: Veach-style}
- randomly choose among 5 mutation strategies:
- bidirectional mutation (similar to large steps but more complex)
- lens perturbation
- caustic perturbation
- multi-chain perturbation
- lens mutation (complex but not very useful)

\section*{Bidirectional mutation}


Figure 11.3: A simple example of a bidirectional mutation. The original path \(\bar{x}=\) \(\mathrm{x}_{0} \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3}\) is modified by deleting the edge \(\mathrm{x}_{1} \mathrm{x}_{2}\) and replacing it with a new vertex \(\mathrm{z}_{1}\). The new vertex is generated by sampling a direction atx \({ }_{1}\) (according to the BSDF) and casting a ray. This yields a mutated path \(\bar{y}=\mathbf{x}_{0} \mathbf{x}_{1} \mathbf{z}_{1} \mathbf{x}_{2} \mathbf{x}_{3}\).
see my code here : >
https://github.com/aekul/yotsuba/blob/master/src/integrators/myintegrators/bidirmutation.cpp

\section*{Lens perturbation}

propagate the change through specular vertices

\section*{Caustics perturbation}

propagate the change through specular vertices

\section*{Multi-chain perturbation}

propagate the change through specular vertices crucial for SDS paths

\section*{MLT is good at complex scenes}

(a) Bidirectional path tracing with 40 samples per pixel


BDPT
MLT

\section*{Combination of Veach \& Kelemen}

\section*{Fusing State Spaces for Markov Chain Monte Carlo Rendering}

HISANARI OTSU, The University of Tokyo ANTON S. KAPLANYAN, NVIDIA

JOHANNES HANIKA, Karlsruhe Institute of Technology CARSTEN DACHSBACHER, Karlsruhe Institute of Technology TOSHIYA HACHISUKA, The University of Tokyo


\section*{Charted Metropolis Light Transport}

Jacopo Pantaleoni*
NVIDIA

Reversible Jump Metropolis Light Transport using Inverse Mappings
Benedikt Bitterli Wenzel Jakob Jan Novák Woiciech Jarosz


\section*{Better lens/ caustics perturbation with cone fitting}



Geometry-Aware Metropolis Light Transport

HISANARI OTSU, Karlsruhe Institute of Technology and The University of Tokyo JOHANNES HANIKA, Karlsruhe Institute of Technology TOSHIYA HACHISUKA, The University of Tokyo CARSTEN DACHSBACHER, Karlsruhe Institute of Technology

\title{
Can we use differentiable rendering to help MLT?
}

this looks like gradient ascent/Newton's method!

Anisotropic Gaussian Mutations for Metropolis Light Transport through Hessian-Hamiltonian Dynamics

\section*{Tzu-Mao Li}

Frédo Durand MIT CSAIL

\section*{Motivation: rendering difficult light paths}
e.g. multi-bounce glossy light paths combined with motion blur

narrow contribution regions can lead to noisy images

The ring example

- light -

The ring example

- light -

The ring example


\section*{Path contribution varies}
depends on geometry, BRDF, light, etc


\section*{Path contribution varies}
depends on geometry, BRDF, light, etc


\section*{Path contribution varies}
depends on geometry, BRDF, light, etc


\section*{Visualization of path space contribution}
- paths \(\rightarrow\) 2D horizontal locations
- contribution \(\rightarrow\) up direction
- narrow \& anisotropic


\section*{Monte Carlo: inefficient!}
- don't know contribution function, can only sample it
- few samples in high contribution region


\section*{Metropolis Light Transport [Veach 1997]}
idea: stays in high contribution region with Markov chain


\section*{Metropolis Light Transport [Veach 1997]}
idea: stays in high contribution region with Markov chain sample n+1 drawn from proposal distribution
sample \(\mathrm{n}+1\)
proposal distribution

\section*{Metropolis Light Transport [Veach 1997]}
problem:
proposals with low contribution are probabilistically rejected

\section*{rejected}

\section*{Our goal: anisotropic proposal}
- proposal stays in high contribution region


\section*{Previous work [Jakob 2012, Kaplanyan 2014]}
- specialized for microfacet BRDF \& mirror directions
- proposal in special directions

\section*{Our goal: anisotropic proposal}
- proposal stays in high contribution region
- fully general approach

\section*{proposal distribution}

\section*{Challenges \& our solutions}


1: characterize anisotropy
\(\rightarrow\) use 2nd derivatives (Hessian) \(\rightarrow\) quadratic approximation

2: sample quadratic (not distributions!)
simulate Hamiltonian dynamics

\section*{Gradient informs only one direction}


\(\partial u_{i}\)

\section*{Hessian provides correlation between coordinates}
characterize anisotropy in all direction


\section*{Automatic differentiation provides gradient + Hessian}
- no hand derivation
- metaprogramming approach
- chain rule applied automatically
- in practice, implement with special datatype

e.g. [Griewank and Walther 2008]

\section*{Automatic differentiation provides gradient + Hessian}
- implement path contribution with automatic differentiation datatypes
- normal, BRDF, light source
- derivatives w.r.t path vertex coordinates

e.g. [Griewank and Walther 2008]

\section*{Quadratic approximation of contribution}

\section*{gradient + Hessian (2nd-order Taylor) \\ around current sample}


\title{
Quadratic approximation of contribution
}

\section*{gradient + Hessian (2nd-order Taylor) \\ around current sample}

quadratic approximation (known everywhere)

\section*{Recap}

\title{
quadratic approximation
} at current sample
challenge: sample quadratic

\section*{Quadratics are not distributions!}


\section*{Goal: attract samples to high contribution regions}
- idea: flip landscape and simulate gravity
- Hamiltonian Monte Carlo [Duane et al. 1987]

quadratic landscape

gravity
flipped quadratic landscape

\section*{Hamiltonian Monte Carlo simulates physics}
- flip contribution landscape
- start from current sample with random velocity Random
initial velocity
flipped quadratic landscape

\section*{gravity \\ }

\section*{Hamiltonian Monte Carlo simulates physics}
- flip contribution landscape
- start from current sample with random velocity
- simulate physics under gravity
- particle is pulled to low ground (high contribution)
- proposal is final position
flipped quadratic landscape


\section*{Challenge with traditional Hamiltonian Monte Carlo}

\section*{expensive numerical simulation!}
flipped quadratic landscape

\author{
gravity
}

1

\section*{HMC + quadratic has a closed form}
for Gaussian initial velocity


\section*{HMC + quadratic has a closed form}
for Gaussian initial velocity
final positions are Gaussian!

\section*{gravity}

1

\section*{Recap}
use 2nd derivatives (Hessian) to characterize anisotropy
\(\rightarrow\) quadratic approximation
simulate Hamiltonian dynamics to sample from quadratics
results in closed-form Gaussian

\section*{Recap}

Given current sample compute gradient and Hessian compute anisotropic Gaussian draw proposal probabilistically accept repeat


\section*{Results: Bathroom}


\section*{Bathroom: equal-time ( 10 mins ) comparisons}


MMLT
[Hachisuka 2014]



MEMLT
[Jakob 2012]



HSLT
[Kaplanyan 2014, Hanika 2015]


Reference (2 days)

\section*{Bathroom: equal-time ( 10 mins ) comparisons}


MMLT
[Hachisuka 2014]



MEMLT
[Jakob 2012]



HSLT
[Kaplanyan 2014, Hanika 2015]


Reference (2 days)

\section*{Extension to time}

Our method is general thanks to automatic differentiation


\section*{Cars: equal-time ( 20 mins) comparisons}

[Hachisuka 2014]


OURS


MEMLT
[Jakob 2012]


\section*{Conclusion}
- Good anisotropic proposals for Metropolis
- Hessian from automatic differentiation
- Hamiltonian Monte Carlo
- Closed-form Gaussian
- General, easily extended to time

\section*{Hessian might not be necessary!}
- use an Adam like algorithm to guide sampling

\section*{Langevin Monte Carlo Rendering with Gradient-based Adaptation \\ SIGGRAPH 2020}

\author{
Fujun Luan Shuang Zhao \\ Cornell University University of California, Irvine Cornell University Carnegie Mellon University
}


\section*{Open problem with MLT: global exploration}
- large steps / bidirectional mutation usually have very low acceptance rate ( \(1-2 \%\) )
- lead to uneven convergence \& unstable results


Next: specular light path sampling
```

