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Light paths with difficult visibility

e bidirectional path tracing & photon mapping will both fail



[dea: keep sampling in high-contribution regions
by “mutating” light paths

aka Markov Chain Monte Carlo (MCMC) methods
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Metropolis light transport [Veach 1997]

1.generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
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Metropolis light transport [Veach 1997]

1.generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
2.“mutate” the light path by changing it a little bit
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Metropolis light transport [Veach 1997]

1.generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
2.“mutate” the light path by changing it a little bit
3. probabilistically “accept” the new path based on its contribution

if a path is accepted, make it the new seed path, else stay at the current path
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1.generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
2.“mutate” the light path by changing it a little bi

Metropolis light transport [Veach 1997]

D1t
3. probabilistically “accept” the new path basec
if a path is accepted, make it the new seed pa:

| on its contribution

h, else stay at the current path
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Metropolis light transport [Veach 1997]

1.generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
2.“mutate” the light path by changing it a little bit
3. probabilistically “accept” the new path based on its contribution

if a path is accepted, make it the new seed path, else stay at the current path
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Metropolis light transport [Veach 1997]

1.generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
2.“mutate” the light path by changing it a little bit
3. probabilistically “accept” the new path based on its contribution
if a path is accepted, make it the new seed path, else stay at the current path
4. “+1” to the pixel correspond to the path (even if rejected), go to 2 until budget is met
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Metropolis light transport [Veach 1997]

1.generate some “seed paths” using bidirectional path tracing, sample them based on their contribution

2.“mutate” the light path by changing it a little bit
3. probabilistically “accept” the new path based on its contribution
if a path is accepted, make it the new seed path, else stay at the current path
4. “+1” to the pixel correspond to the path (even if rejected), go to 2 until budget is met
5. normalize the whole image by the average brightness estimated by bidirectional path tracing
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Why does this work???? &



Mathematical formulation

given the luminance of path contribution f(X) € R (the path X can land on any pixel),
want to sample X s.t. p(X) x f(X)
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Metropolis-Hastings algorithm

given the luminance of path contribution f(x) € R (the path X can land on any pixel),
want to sample X s.t. p(X) x f(X)

X = X0
for 1 1n range(n): rejected

y sample n+1

X' = mutate(x) ®

a = m1n((f(X’)/f(X)) * sample n
(p_m(x’->x)/p_m(x->x")), 1)

1T random() < a:

X = X
record(image, Xx)

./ sample n+2

o

sample n+1

Equation of State Calculations by Fast Computing Machines

NicHoLAS METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AucustAa H. TELLER,
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AND

EpwARD TELLER,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)



Metropolis-Hastings algorithm

given the luminance of path contribution f(x) € R (the path X can land on any pixel),
want to sample X s.t. p(X) x f(X)

X = X0
for 1 1n range(n): rejected

y sample n+1

X' = mutate(x) ®

a =mn((f(xX’)/f(x)) =
(p_m(x" ->x) /p_m(x->x")), 1)
1T random() < a;

X = X
record(image, Xx)

./ sample n+2

Q/J

sample n+1

sample n

Metropolis: lab director
A. Rosenbluth: junior researcher
M. Rosenbluth: junior researcher’s husband

Equation of State Calculations by Fast Computing Machines

NicHorLAs METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AucustTA H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

A. Teller: adVISOI"S Wlfe EpwARD TELLER,* Department of Physics, University of Chicago, Chicago, Illinois
. - (Received March 6, 1953)
E. Teller: advisor
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2D image copy example

X

1 1n range(n):
mutate (x)

minC(f(x’)/f(x)) *

p_m(x’->x)/p_m(x->x")), 1)

1T random() < a:
X = X’

record(image, X’
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1 sample 8 samples 256 samples
per pixel per pixel per pixel

https: / /www.csie.ntu.edu.tw / ~cyy / courses / rendering / 16fall /lectures / handouts/chap13

mc.pdf



https://www.csie.ntu.edu.tw/~cyy/courses/rendering/16fall/lectures/handouts/chap13_mc.pdf

Why does Metropolis algorithm work?

e easier to think in the discrete state space: assume our path space lives on an integer domain
e a “path” x is, for now, an integer

e we start with some (discrete) PDF z'(x), defined by bidirectional path tracing

X = X0
for 1 1n range(n):

X = mutate(x)

a =mn((f(x’)/f(x)) =
(p_m(x’ ->x) /p_m(x->x")), 1)

1T random() < a:

X = X
record(image, Xx’)



Why does Metropolis algorithm work?

e easier to think in the discrete state space: assume our path space lives on an integer domain
e a “path” x is, for now, an integer
e we start with some (discrete) PDF z'(x), defined by bidirectional path tracing

e each mutation/acceptance changes the PDF:  y = x0
for 1 1n range(n):

o Kn'= """, K, = probability to go fromitoj X' = mutate(x)
a = min((f(x)/f(x)) *
| (p_m(x’ ->x) /p_m(x->x")), 1)
o want to prove that lim 7z’ « f if random() < a:

[—
> X = X’

record(image, Xx’)



Why does Metropolis algorithm work?

1

e when t goes to infinity, the mutation update Kz’ = zn'™" reaches a fixed point Kz = «

e with assumption that the mutation is “ergodic” — it should have non-zero probability to visit all states

X = X0
for 1 1n range(n):

X = mutate(x)

a =mn((f(x’)/f(x)) =
(p_m(x’ ->x) /p_m(x->x")), 1)

1T random() < a:

X = X
record(image, Xx’)



Why does Metropolis algorithm work?

1

e when t goes to infinity, the mutation update Kz’ = zn'™" reaches a fixed point Kz = «

e with assumption that the mutation is “ergodic” — it should have non-zero probability to visit all states
e Theorem: if a kernel K satisfies the detailed balance condition:

Ky =Ky i.j X = X0
for 1 1n range(n):

: PR : 0 ‘
o then, starting from any distribution 7°, K has a unique x’ = mutate(x)

fixed point 7 (usually called the stationary distribution) 5 _ nin ((F(xX?)/F(x)) *
(p_m(x" ->x)/p_m(x->x")), 1)
* exercise: prove it! 1T random() < a:

X = X
record(image, Xx’)



Why does Metropolis algorithm work?

o goal: design a such that K;f; = K, f;

o Jpmli=pai =) i #
77 pml = Dati = )+ X, pm( > N —al = j) ifi=]
X = X0
for 1 1n range(n):
X’ = mutate(x)

a =mn((fx)/f(x)) *
(p_m(x’ ->x) /p_m(x->x")), 1)
1T random() < a:
X = X’
record(image, Xx’)



Why does Metropolis algorithm work?

o goal: design a such that K;f; = K, f;

o _ [pmli=pati=) if i #
7\ pmi = Dali = D+ X, pmli = (1 —ali = ) ifi=)
x = X0
for 1 1n range(n):
if a (i —>J) min fpm(] ” l) X" = mutate(x)
fpm(l _)]) a = m-ln(E-F(X,(){-F(X%} i ( !)) 1)
_m(x’->x)/p_m(x->x")),
K satisfies detailed balance if randomlz) < a: i

X = X’
record(image, Xx’)



Why does Metropolis algorithm work?

o goal: design a such that K;f; = K, f;

o Jpmli=pai =) i #
77 pml = Dati = )+ X, pm( > N —al = j) ifi=]
X = X0
for 1 1n range(n):
X’ = mutate(x)

a = mn((f(x’)/f(x)) *

(p_m(x’"->x) /p_m(x->x")), 1)
K SatiSﬁeS detailed balance 1f randoml:()) < a- :

X = X’
record(image, Xx’)



What should the record function do?

= X
);or‘ ;.(01. h range(n): , since z(x)  fin the limit, f(( )) = constant
: (X
X’ = mutate(x)
a = min( E;% ())({ fii% }pxm (x->x")), 1) ° estimate the constant across image using
if random() < a: B | bidirectional path tracing (average brightness
X = X'’ of the image)

record(image, X)

e add the constant divided by the number of
samples to the corresponding pixel

e Metropolis light transport is recording image
histogram!



Making MLT unbiased

X = X0

for i in range(n): the sampling distribution 7’
x’ = mutate(x) only converges to fin the limit,
a =mn((f(x’)/f(x)) = so naive MLT is biased

(p_m(x’ ->x) /p_m(x->x")), 1)
1T random() < a:

X = X
record(image, X)



Making MLT unbiased

X = X0

for i in range(n): the sampling distribution 7’
x’ = mutate(x) only converges to fin the limit,
a =mn((f(x’)/f(x)) = so naive MLT is biased

(p_m(x’ ->x) /p_m(x->x")), 1)
1T random() < a:

X =X

. X
record(image, Xx) solution: weigh all samples with /%) where

p(xop)
p is BDPT sampling density




Making MLT unbiased

e intuition: bidirectional path tracing is unbiased, each mutation is preserving the
unbiasedness using detailed balance

e see Veach’s thesis for proof

Appendix 11.A Proof of Unbiased Initialization

In this appendix, we show that the estimate

N
jj — [F Iz:l Wi ]'?.]'(4\,' )]

1s unbiased (see Section 11.3.1). To do this, we show that the followingweighted equilibrium con-

dition 1s satisfied at each step of the random walk:
/ wpi(w,z)dw = f(x), (11.14)
JR

where p; 1s the joint density function of the:-th weighted sample (W;. X;). This is a sufficient con-

dition for the above estimate to be unbiased, since
E [H‘} h;i(X; )] = / / w hj(x) pi(w, x) dw dp(z)
: JO JR ‘
hi(x) f(x)dp(x)

J )

=



Metropolis light transport with a single
Markov chain is unbiased but NOT consistent

* in practice, just average over many Markov chains

Five Common Misconceptions about Bias in Light Transport Simulation

Toshiya Hachisuka 3.5. Markov chain algorithms are unbiased and consistent

Aarhus University

Misconception: Throughout the literature, it 1s well recog-
nized that the original Markov chain Monte Carlo method
1s biased and consistent. The reason 1s that the distribution
of samples converges to the target distribution for infinitely
long Markov chains by definition. The difference between the
initial distribution and the target distribution is called start-up
bias. Veach proposed to eliminate start-up bias in order to
make Metropolis light transport (MLT) unbiased. The mis-
conception 1s that this technique makes MLT unbiased and
consistent.



Metropolis light transport with a single
Markov chain is unbiased but NOT consistent

* in practice, just average over many Markov chains

Five Common Misconceptions about Bias in Light Transport Simulation

Toshiya Hachisuka 3.5. Markov chain algorithms are unbiased and consistent

Aarhus University

Misconception: Throughout the literature, it 1s well recog-
nized that the original Markov chain Monte Carlo method
1s biased and consistent. The reason 1s that the distribution
of samples converges to the target distribution for infinitely
long Markov chains by definition. The difference between the
initial distribution and the target distribution is called start-up
Energy Redistribution Path Tracing bias. Veach proposed to eliminate start-up bias in order to

make Metropolis light transport (MLT) unbiased. The mis-

conception 1s that this technique makes MLT unbiased and
Brigham Young University consistent.

MLT with many short Markov chains

David Cline Justin Talbot Parris Egbert *



MLT is very different from path tracing

X = X0
fo; , 1._1 :,lug,:gi)((; ): quiz: if we only have one pixel,
a = min((FOC)/FOQ) * would MLT be helpful?

(p_m(x’ ->x) /p_m(x->x")), 1)
1t random() < a:
X = X’
record(i1mage, x)



MLT is very different from path tracing

X = X0
fo; , 1._1 :,lug,:gi)((; ): quiz: if we only have one pixel,
a = min((F(x)/FOQ) * would MLT be helpful?

(p_m(x’" ->x) /p_m(x->x")), 1)
1T random() < a:

X = X . . . S
record(image, x) , since 7(x) « fin the limit, D constant

e but we have to estimate the constant,
so MLT is not helpful!



Mutation: Kelemen-style

e simple to implement, less efficient than more sophisticated mutation

e idea: do the mutation in the random number space

U
281

E— (A Simple and Robust Mutation Strategy for Metropolis Light
MZ / Transport Algorithm
Py Csaba Kelemen and Laszl6 Szirmay-Kalos
) Department of Control Engineering and Information Technology, Technical University of Budapest

Budapest, Magyar Tudosok krt. 2, H-1117, HUNGARY
) Email: szirmay@iit.bme.hu



Mutation: Kelemen-style

e randomly choose among two kinds of mutations:
e large steps: forget about the current path, regenerate a path using bidirectional path tracing

e small steps: a Gaussian-like distribution in the random number space




Mutation: Kelemen-style

e code walkthrough

o https://cs.uwaterloo.ca/~thachisu/smallpssmlt.cpp



https://cs.uwaterloo.ca/~thachisu/smallpssmlt.cpp

Mutation size trade-off

e small mutation size: high accept rate, but introduce correlation between pixels
* large mutation size: better exploration and better noise, but low accept rate

* in practice: adapt mutation size to keep acceptance rate at a constant
(aka adaptive MCMC)

(a) o2 = 0.028 (b) 0% = 0.007 (¢) 02 = 0.001
accept rate 28.96% accept rate 54.02% accept rate 82.11%



Mutation: Veach-style

e randomly choose among 5 mutation strategies:
e bidirectional mutation (similar to large steps but more complex)
* lens perturbation
* caustic perturbation
e multi-chain perturbation

e lens mutation (complex but not very useful)



Bidirectional mutation

\

/
\\O, Z) % new subpath
-

old subpath

Figure 11.3: A simple example of a bidirectional mutation. The original pathax =
XX 1XoX3 1s modified by deleting the edge x; X, and replacing 1t with a new vertexz;. The
new vertex 1s generated by sampling a direction atx; (according to the BSDF) and casting
aray. This yields a mutated pathy = xgX1z;X2X3.

see my code here : >
https:/ / github.com /aekul /yotsuba/blob /master/src/integrators / myintegrators /bidirmutation.cpp



https://github.com/aekul/yotsuba/blob/master/src/integrators/myintegrators/bidirmutation.cpp

Lens perturbation

" “:.O; propagate the change through specular vertices




Caustics perturbation

\\ \ / /—
Dt
5 propagate the change through specular vertices




Multi-chain perturbation

propagate the change through specular vertices
crucial for SDS paths




MLT is good at complex scenes

~—

(a) Bidirectional path tracing with 40 samples per pixel.

A =

-

4 : ~ PN
- BRRR S, 35 HAR SN o e (b) Metropolis light transport with 100 mutations per pixel [the same computation time as (a)].

WS ANIATN

(b) Metropolis light transport with 250 mutations per pixel [the same computation time as (a)].



Combination of Veach & Kelemen

Fusing State Spaces for Markov Chain Monte Carlo Rendering

HISANARI OTSU, The University of Tokyo
ANTON S. KAPLANYAN, NVIDIA

JOHANNES HANIKA, Karlsruhe Institute of Technology Charted Metropolis nght Transport
CARSTEN DACHSBACHER, Karlsruhe Institute of Technology
TOSHIYA HACHISUKA, The University of Tokyo Jacopo Pantaleoni*

NVIDIA

Reversible Jump Metropolis Light Transport using
Inverse Mappings

Benedikt Bitterli Wenzel Jakob Jan Novék Wojciech Jarosz

ACM Transactions on Graphics (TOG), 37(1), October 2017

A
™ X3
= Q (fixed)
small ste
>
u; =0,

Hisanari’s



Better lens/ caustics perturbation
with cone fitting

(a) (b)

Geometry-Aware Metropolis Light Transport

HISANARI OTSU, Karlsruhe Institute of Technology and The University of Tokyo
JOHANNES HANIKA, Karlsruhe Institute of Technology

TOSHIYA HACHISUKA, The University of Tokyo

CARSTEN DACHSBACHER, Karlsruhe Institute of Technology



Can we use differentiable rendering
to help MLT?

rejected

sample ng ) sample n+2
-~
»

sample n+1

this looks like gradient ascent/Newton’s method!

sample n

Anisotropic Gaussian Mutations for Metropolis Light Transport
through Hessian-Hamiltonian Dynamics
Tzu-Mao Li Jaakko Lehtinen Ravi Ramamoorthi Wenzel Jakob Frédo Durand

MIT CSAIL Aalto University University of California, San Diego ETH Ziirich MIT CSAIL
NVIDIA



Motivation: rendering difficult light paths

e.g. multi-bounce glossy light paths combined
with motion blur

narrow contribution regions
can lead to noisy images




The ring example

light




The ring example

light




The ring example




Path contribution varies

depends on geometry, BRDF, light, etc

N /

— hght —
/ N\




Path contribution varies

depends on geometry, BRDF, light, etc

not N g
much light . essswes light

/ N




Path contribution varies

depends on geometry, BRDF, light, etc

N /

— hght —
/ N\

1 Not
! much light




Visualization of path space contribution

» paths — 2D horizontal locations
» contribution — up direction
* narrow & anisotropic

zero contrib.
contribution

vertex 1\ e | |
o Zero contrib.

vertex 2 .

vertex 2



Monte Carlo: inefficient!

» don’t know contribution function, can only sample it
» few samples in high contribution region

Zero
contrib.

contrib.



Metropolis Light Transport [Veach 1997]

idea: stays in high contribution region with Markov chain

sample n+2

sample n sample n+1



Metropolis Light Transport [Veach 1997]

idea: stays in high contribution region with Markov chain
sample n+1 drawn from proposal distribution

sample n+1

&
¢ proposal

distribution



Metropolis Light Transport [Veach 1997]

problem:
proposals with low contribution are
probabilistically rejected

rejectegl, 2

®
@

o
7
rejected rejectea

rejected



Our goal: anisotropic proposal

» proposal stays in high contribution region

proposal
distribution



Previous work [Jakob 2012, Kaplanyan 2014]

» specialized for microfacet BRDF & mirror directions
» proposal in special directions




Our goal: anisotropic proposal

» proposal stays in high contribution region
» fully general approach

proposal
distribution



Challenges & our solutions

1: characterize anisotropy

-P use 2nd derivatives (Hessian)
—quadratic approximation

2. sample quadratic
(not distributions!)

=P simulate Hamiltonian dynamics




Gradient informs only one direction




Hesslian provides correlation between coordinates

characterize anisotropy In all direction

o




Automatic differentiation provides gradient + Hessian

* N0 hand derivation
* metaprogramming approach
» chain rule applied automatically
» In practice, implement with special datatype

ADFloat f¢( ADFloat x[2]) {
ADFloat y = sin(x[0]);
ADFloat z cos(x[1]);

y * Z;
¥

e.g. [Griewank and Walther 2008]




Automatic differentiation provides gradient + Hessian

» Implement path contribution with automatic
differentiation datatypes

- normal, BRDF, light source
» derivatives w.r.t path vertex coordinates

ADFloat f¢( ADFloat x[2]) {
ADFloat y = sin(x[0]);
ADFloat z cos(x[1]);

y © 4,

¥
e.g. [Griewank and Walther 2008]



Quadratic approximation of contribution

gradient + Hessian (2nd-order Taylor)
around current sample

original contribution
(only known at sample)



Quadratic approximation of contribution

gradient + Hessian (2nd-order Taylor)
around current sample

guadratic approximation
(known everywhere)



Recap

guadratic approximation
at current sample

challenge:
sample quadratic




Quadratics are not distributions!

/

Can go to +/- infinity




Goal: attract samples to high contribution regions

» Idea.: flip landscape and simulate gravity
« Hamiltonian Monte Carlo [Duane et al. 1987]

graV|ty

quadratic flipped quadratic
landscape landscape



Hamiltonian Monte Carlo simulates physics

» flip contribution landscape
- start from current sample with random velocity

Random
Initial velocity

gravity

flipped quadratic
landscape

69



Hamiltonian Monte Carlo simulates physics

» flip contribution landscape
- start from current sample with random velocity
» simulate physics under gravity
» particle is pulled to low ground (high contribution)
» proposal is final position

gravity

flipped quadratic
landscape



Challenge with traditional Hamiltonian Monte Carlo

expensive numerical simulation!

flipped quadratic
landscape

gravity

l




HMC + quadratic has a closed form

for Gaussian initial velocity

(Gaussian
initial velocity

gravity

l




HMC + quadratic has a closed form

for Gaussian initial velocity
final positions are Gaussian!

gravity

l




Recap

use 2nd derivatives (Hessian)
to characterize anisotropy
—quadratic approximation

simulate Hamiltonian dynamics
to sample from quadratics

results in closed-form Gaussian



Recap

Given current sample

compute gradient and Hess1an
compute anisotropic Gaussian
draw proposal
probabilistically accept
repeat



Results: Bathroom




Bathroom: equal-time (10 mins) comparisons

[Kaplanyan 2014,
Hanika 2015]

Reference (2 days)



Bathroom: equal-time (10 mins) comparisons

MMLT MEMLT HSLT
Hachisuka 2014 [Jakob 201 2] [Kaplanyan 2014,

Hanika 2015]}

Reference (2 days)



Extension to time

Our method is general thanks to automatic
differentiation




Cars: equal-time (20 mins) comparisons

MMLT MEMLT
Hachisuka 2014 [Jakob 2012]

Reference (12 hours)



Conclusion

» (Good anisotropic proposals for Metropolis
» Hessian from automatic differentiation
» Hamiltonian Monte Carlo
» Closed-form Gaussian
» General, easily extended to time




Hessian might not be necessary!

e use an Adam like algorithm to guide sampling

Langevin Monte Carlo Rendering with

Gradient-based Adaptation
SIGGRAPH 2020

Fujun Luan Shuang Zhao Kavita Bala loannis Gkioulekas
Cornell University University of California, Irvine Cornell University Carnegie Mellon University




global exploration

th MLT

tional mutation usually have very low acceptance rate (1-2%)

1

Open problem w

idirec

e large steps/b

* lead to uneven convergence & unstable results




Next: specular light path sampling

half-vector equal
to surface normal




