
Metropolis Light Transport

UCSD CSE 272
Advanced Image Synthesis

Tzu-Mao Li

Light paths with difficult visibility
• bidirectional path tracing & photon mapping will both fail

Idea: keep sampling in high-contribution regions
by “mutating” light paths
aka Markov Chain Monte Carlo (MCMC) methods

Metropolis light transport [Veach 1997]
1.generate some “seed paths” using bidirectional path tracing, sample them based on their contribution

Metropolis light transport [Veach 1997]
1.generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
2.“mutate” the light path by changing it a little bit

Metropolis light transport [Veach 1997]

reject

1.generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
2.“mutate” the light path by changing it a little bit
3. probabilistically “accept” the new path based on its contribution
 if a path is accepted, make it the new seed path, else stay at the current path

Metropolis light transport [Veach 1997]

accept

1.generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
2.“mutate” the light path by changing it a little bit
3. probabilistically “accept” the new path based on its contribution
 if a path is accepted, make it the new seed path, else stay at the current path

Metropolis light transport [Veach 1997]
1.generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
2.“mutate” the light path by changing it a little bit
3. probabilistically “accept” the new path based on its contribution
 if a path is accepted, make it the new seed path, else stay at the current path

Metropolis light transport [Veach 1997]
1.generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
2.“mutate” the light path by changing it a little bit
3. probabilistically “accept” the new path based on its contribution
 if a path is accepted, make it the new seed path, else stay at the current path
4. “+1” to the pixel correspond to the path (even if rejected), go to 2 until budget is met

Metropolis light transport [Veach 1997]
1.generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
2.“mutate” the light path by changing it a little bit
3. probabilistically “accept” the new path based on its contribution
 if a path is accepted, make it the new seed path, else stay at the current path
4. “+1” to the pixel correspond to the path (even if rejected), go to 2 until budget is met
5. normalize the whole image by the average brightness estimated by bidirectional path tracing

Metropolis light transport [Veach 1997]
1.generate some “seed paths” using bidirectional path tracing, sample them based on their contribution
2.“mutate” the light path by changing it a little bit
3. probabilistically “accept” the new path based on its contribution
 if a path is accepted, make it the new seed path, else stay at the current path
4. “+1” to the pixel correspond to the path (even if rejected), go to 2 until budget is met
5. normalize the whole image by the average brightness estimated by bidirectional path tracing

Why does this work???? 🤯

Mathematical formulation
given the luminance of path contribution (the path can land on any pixel),
want to sample s.t.

f(x̄) ∈ ℝ x̄
x̄ p(x̄) ∝ f(x̄)

Metropolis-Hastings algorithm
given the luminance of path contribution (the path can land on any pixel),
want to sample s.t.

f(x̄) ∈ ℝ x̄
x̄ p(x̄) ∝ f(x̄)

sample n sample n+1

sample n+2

x = x0 // bidirectional path tracing
for i in range(n):
 x’ = mutate(x)
 a = min((f(x’)/f(x)) *
 (p_m(x’->x)/p_m(x->x’)), 1)
 if random() < a:
 x = x’
 record(image, x)

rejected  
sample n+1

Metropolis-Hastings algorithm

Metropolis: lab director
A. Rosenbluth: junior researcher
M. Rosenbluth: junior researcher’s husband
A. Teller: advisor’s wife
E. Teller: advisor

given the luminance of path contribution (the path can land on any pixel),
want to sample s.t.

f(x̄) ∈ ℝ x̄
x̄ p(x̄) ∝ f(x̄)

sample n sample n+1

sample n+2

x = x0 // bidirectional path tracing
for i in range(n):
 x’ = mutate(x)
 a = min((f(x’)/f(x)) *
 (p_m(x’->x)/p_m(x->x’)), 1)
 if random() < a:
 x = x’
 record(image, x)

rejected  
sample n+1

2D image copy example
x = x0
for i in range(n):
 x’ = mutate(x)
 a = min((f(x’)/f(x)) *
 (p_m(x’->x)/p_m(x->x’)), 1)
 if random() < a:
 x = x’
 record(image, x’)

https://www.csie.ntu.edu.tw/~cyy/courses/rendering/16fall/lectures/handouts/chap13_mc.pdf

https://www.csie.ntu.edu.tw/~cyy/courses/rendering/16fall/lectures/handouts/chap13_mc.pdf

Why does Metropolis algorithm work?
• easier to think in the discrete state space: assume our path space lives on an integer domain

• a “path” is, for now, an integer

• we start with some (discrete) PDF , defined by bidirectional path tracing

x

π0(x)

x = x0
for i in range(n):
 x’ = mutate(x)
 a = min((f(x’)/f(x)) *
 (p_m(x’->x)/p_m(x->x’)), 1)
 if random() < a:
 x = x’

 record(image, x’)

Why does Metropolis algorithm work?
• easier to think in the discrete state space: assume our path space lives on an integer domain

• a “path” is, for now, an integer

• we start with some (discrete) PDF , defined by bidirectional path tracing

• each mutation/acceptance changes the PDF:

• , probability to go from i to j

• want to prove that

x

π0(x)

Kπt = πt+1 Kij =

lim
t→∞

πt ∝ f

x = x0
for i in range(n):
 x’ = mutate(x)
 a = min((f(x’)/f(x)) *
 (p_m(x’->x)/p_m(x->x’)), 1)
 if random() < a:
 x = x’

 record(image, x’)

Why does Metropolis algorithm work?
• when t goes to infinity, the mutation update reaches a fixed point

• with assumption that the mutation is “ergodic” — it should have non-zero probability to visit all states

Kπt = πt+1 Kπ = π

x = x0
for i in range(n):
 x’ = mutate(x)
 a = min((f(x’)/f(x)) *
 (p_m(x’->x)/p_m(x->x’)), 1)
 if random() < a:
 x = x’

 record(image, x’)

Why does Metropolis algorithm work?
• when t goes to infinity, the mutation update reaches a fixed point

• with assumption that the mutation is “ergodic” — it should have non-zero probability to visit all states

• Theorem: if a kernel satisfies the detailed balance condition:

•

• then, starting from any distribution , has a unique
fixed point (usually called the stationary distribution)

• exercise: prove it!

Kπt = πt+1 Kπ = π

K

Kijπi = Kjiπj ∀i, j

π0 K
π

x = x0
for i in range(n):
 x’ = mutate(x)
 a = min((f(x’)/f(x)) *
 (p_m(x’->x)/p_m(x->x’)), 1)
 if random() < a:
 x = x’

 record(image, x’)

Why does Metropolis algorithm work?
• goal: design such that a Kij fi = Kji fj

Kij = {
pm(i → j)a(i → j) if i ≠ j
pm(i → i)a(i → i) + ∑j≠i pm(i → j)(1 − a(i → j)) if i = j

x = x0
for i in range(n):
 x’ = mutate(x)
 a = min((f(x’)/f(x)) *
 (p_m(x’->x)/p_m(x->x’)), 1)
 if random() < a:
 x = x’

 record(image, x’)

Why does Metropolis algorithm work?
• goal: design such that a Kij fi = Kji fj

Kij = {
pm(i → j)a(i → j) if i ≠ j
pm(i → i)a(i → i) + ∑j≠i pm(i → j)(1 − a(i → j)) if i = j

x = x0
for i in range(n):
 x’ = mutate(x)
 a = min((f(x’)/f(x)) *
 (p_m(x’->x)/p_m(x->x’)), 1)
 if random() < a:
 x = x’

 record(image, x’)

if ,

K satisfies detailed balance

a (i → j) = min (
fj
fi

pm(j → i)
pm(i → j)

,1)

Why does Metropolis algorithm work?
• goal: design such that a Kij fi = Kji fj

Kij = {
pm(i → j)a(i → j) if i ≠ j
pm(i → i)a(i → i) + ∑j≠i pm(i → j)(1 − a(i → j)) if i = j

x = x0
for i in range(n):
 x’ = mutate(x)
 a = min((f(x’)/f(x)) *
 (p_m(x’->x)/p_m(x->x’)), 1)
 if random() < a:
 x = x’

 record(image, x’)

if ,

K satisfies detailed balance

a (i → j) = min (
fj
fi

pm(j → i)
pm(i → j)

,1)

What should the record function do?
x = x0
for i in range(n):
 x’ = mutate(x)
 a = min((f(x’)/f(x)) *
 (p_m(x’->x)/p_m(x->x’)), 1)
 if random() < a:
 x = x’
 record(image, x)

• since in the limit,

• estimate the constant across image using
bidirectional path tracing (average brightness
of the image)

• add the constant divided by the number of
samples to the corresponding pixel

• Metropolis light transport is recording image
histogram!

π(x) ∝ f
f(x)
π(x)

= constant

Making MLT unbiased
x = x0
for i in range(n):
 x’ = mutate(x)
 a = min((f(x’)/f(x)) *
 (p_m(x’->x)/p_m(x->x’)), 1)
 if random() < a:
 x = x’
 record(image, x)

the sampling distribution
only converges to in the limit,

so naive MLT is biased

πt

f

Making MLT unbiased
x = x0
for i in range(n):
 x’ = mutate(x)
 a = min((f(x’)/f(x)) *
 (p_m(x’->x)/p_m(x->x’)), 1)
 if random() < a:
 x = x’
 record(image, x)

the sampling distribution
only converges to in the limit,

so naive MLT is biased

πt

f

solution: weigh all samples with where

 is BDPT sampling density

f(x0)
p(x0)

p

Making MLT unbiased
• intuition: bidirectional path tracing is unbiased, each mutation is preserving the

unbiasedness using detailed balance

• see Veach’s thesis for proof

Metropolis light transport with a single
Markov chain is unbiased but NOT consistent

• in practice, just average over many Markov chains

Metropolis light transport with a single
Markov chain is unbiased but NOT consistent

• in practice, just average over many Markov chains

MLT with many short Markov chains

MLT is very different from path tracing

quiz: if we only have one pixel,
would MLT be helpful?

x = x0
for i in range(n):
 x’ = mutate(x)
 a = min((f(x’)/f(x)) *
 (p_m(x’->x)/p_m(x->x’)), 1)
 if random() < a:
 x = x’
 record(image, x)

MLT is very different from path tracing

quiz: if we only have one pixel,
would MLT be helpful?

• since in the limit,

• but we have to estimate the constant,
so MLT is not helpful!

π(x) ∝ f
f(x)
π(x)

= constant

x = x0
for i in range(n):
 x’ = mutate(x)

 a = min((f(x’)/f(x)) *
 (p_m(x’->x)/p_m(x->x’)), 1)
 if random() < a:
 x = x’
 record(image, x)

Mutation: Kelemen-style
• simple to implement, less efficient than more sophisticated mutation

• idea: do the mutation in the random number space

u0
u1
u2

⋮

Mutation: Kelemen-style
• randomly choose among two kinds of mutations:

• large steps: forget about the current path, regenerate a path using bidirectional path tracing

• small steps: a Gaussian-like distribution in the random number space

u0
u1
u2

⋮

Mutation: Kelemen-style
• code walkthrough

• https://cs.uwaterloo.ca/~thachisu/smallpssmlt.cpp

https://cs.uwaterloo.ca/~thachisu/smallpssmlt.cpp

Mutation size trade-off
• small mutation size: high accept rate, but introduce correlation between pixels

• large mutation size: better exploration and better noise, but low accept rate

• in practice: adapt mutation size to keep acceptance rate at a constant
(aka adaptive MCMC)

Mutation: Veach-style
• randomly choose among 5 mutation strategies:

• bidirectional mutation (similar to large steps but more complex)

• lens perturbation

• caustic perturbation

• multi-chain perturbation

• lens mutation (complex but not very useful)

Bidirectional mutation

see my code here : >
https://github.com/aekul/yotsuba/blob/master/src/integrators/myintegrators/bidirmutation.cpp

https://github.com/aekul/yotsuba/blob/master/src/integrators/myintegrators/bidirmutation.cpp

Lens perturbation

propagate the change through specular vertices

Caustics perturbation

propagate the change through specular vertices

Multi-chain perturbation

propagate the change through specular vertices
crucial for SDS paths

MLT is good at complex scenes

BDPT MLT

Combination of Veach & Kelemen

Hisanari’s

Better lens/caustics perturbation
with cone fitting

Can we use differentiable rendering
to help MLT?

sample n sample n+1

sample n+2
rejected  
sample n+1 this looks like gradient ascent/Newton’s method!

Motivation: rendering difficult light paths

e.g. multi-bounce glossy light paths combined
with motion blur

narrow contribution regions
can lead to noisy images

The ring example

light

The ring example

light

The ring example

light

Path contribution varies

light

depends on geometry, BRDF, light, etc

vertex 2

vertex 1

lots of light!

Path contribution varies

not  
much light light

depends on geometry, BRDF, light, etc

vertex 2

vertex 1

lots of light!

Path contribution varies

not  
much lightvertex 2

vertex 1
light

lots of light!

depends on geometry, BRDF, light, etc

Visualization of path space contribution

• paths → 2D horizontal locations
• contribution → up direction
• narrow & anisotropic

vertex 2
vertex 1

vertex 1

vertex 2

contribution
zero contrib.

zero contrib.

zero
contrib.

Monte Carlo: inefficient!

zero
contrib.

 positive
contrib.

• don’t know contribution function, can only sample it
• few samples in high contribution region

Metropolis Light Transport [Veach 1997]

sample n sample n+1

sample n+2

idea: stays in high contribution region with Markov chain

Metropolis Light Transport [Veach 1997]
idea: stays in high contribution region with Markov chain

sample n+1 drawn from proposal distribution

proposal  
distribution

sample n+1

Metropolis Light Transport [Veach 1997]
problem:  
proposals with low contribution are
probabilistically rejected

rejected

rejected rejected

rejected

Our goal: anisotropic proposal

proposal  
distribution

• proposal stays in high contribution region

Previous work [Jakob 2012, Kaplanyan 2014]
• specialized for microfacet BRDF & mirror directions
• proposal in special directions

Our goal: anisotropic proposal

proposal  
distribution

• proposal stays in high contribution region
• fully general approach

Challenges & our solutions

2: sample quadratic
(not distributions!)

use 2nd derivatives (Hessian)
→quadratic approximation

1: characterize anisotropy

simulate Hamiltonian dynamics

Gradient informs only one direction

Hessian provides correlation between coordinates

characterize anisotropy in all direction

Automatic differentiation provides gradient + Hessian

• no hand derivation
• metaprogramming approach
• chain rule applied automatically

• in practice, implement with special datatype

ADFloat f(const ADFloat x[2]) {
ADFloat y = sin(x[0]);
ADFloat z = cos(x[1]);
return y * z;

}

e.g. [Griewank and Walther 2008]

Automatic differentiation provides gradient + Hessian

• implement path contribution with automatic
differentiation datatypes

• normal, BRDF, light source
• derivatives w.r.t path vertex coordinates

ADFloat f(const ADFloat x[2]) {
ADFloat y = sin(x[0]);
ADFloat z = cos(x[1]);
return y * z;

}

e.g. [Griewank and Walther 2008]

original contribution
(only known at sample)

Quadratic approximation of contribution
gradient + Hessian (2nd-order Taylor)

around current sample

quadratic approximation  
(known everywhere)

Quadratic approximation of contribution
gradient + Hessian (2nd-order Taylor)

around current sample

Recap

challenge:
sample quadratic

quadratic approximation
at current sample

Quadratics are not distributions!

Can go to +/- infinity

Goal: attract samples to high contribution regions

• idea: flip landscape and simulate gravity
• Hamiltonian Monte Carlo [Duane et al. 1987]

gravity

flipped quadratic
landscape

quadratic
landscape

• flip contribution landscape
• start from current sample with random velocity

Hamiltonian Monte Carlo simulates physics

69

flipped quadratic
landscape

gravity

Random
initial velocity

• flip contribution landscape
• start from current sample with random velocity
• simulate physics under gravity
• particle is pulled to low ground (high contribution)

• proposal is final position

Hamiltonian Monte Carlo simulates physics

70

flipped quadratic
landscape

gravity

flipped quadratic
landscape

gravity

Challenge with traditional Hamiltonian Monte Carlo

expensive numerical simulation!

for Gaussian initial velocity

HMC + quadratic has a closed form

gravity
Gaussian

initial velocity

for Gaussian initial velocity
final positions are Gaussian!

HMC + quadratic has a closed form

gravity

Recap

use 2nd derivatives (Hessian)
to characterize anisotropy
→quadratic approximation

simulate Hamiltonian dynamics
to sample from quadratics

results in closed-form Gaussian

Recap
Given current sample

compute gradient and Hessian

compute anisotropic Gaussian

draw proposal

probabilistically accept

repeat

Results: Bathroom

Bathroom: equal-time (10 mins) comparisons

MMLT
[Hachisuka 2014]

MEMLT
[Jakob 2012]

OURS Reference (2 days)

HSLT
[Kaplanyan 2014,

Hanika 2015]

Bathroom: equal-time (10 mins) comparisons

MMLT
[Hachisuka 2014]

HSLT
[Kaplanyan 2014,

Hanika 2015]

MEMLT
[Jakob 2012]

OURS Reference (2 days)

Extension to time

Our method is general thanks to automatic
differentiation

Cars: equal-time (20 mins) comparisons

MMLT
[Hachisuka 2014]

MEMLT
[Jakob 2012]

OURS Reference (12 hours)

Conclusion

• Good anisotropic proposals for Metropolis
• Hessian from automatic differentiation
• Hamiltonian Monte Carlo
• Closed-form Gaussian
• General, easily extended to time

Hessian might not be necessary!
• use an Adam like algorithm to guide sampling

Open problem with MLT: global exploration
• large steps/bidirectional mutation usually have very low acceptance rate (1-2%)

• lead to uneven convergence & unstable results

Next: specular light path sampling

