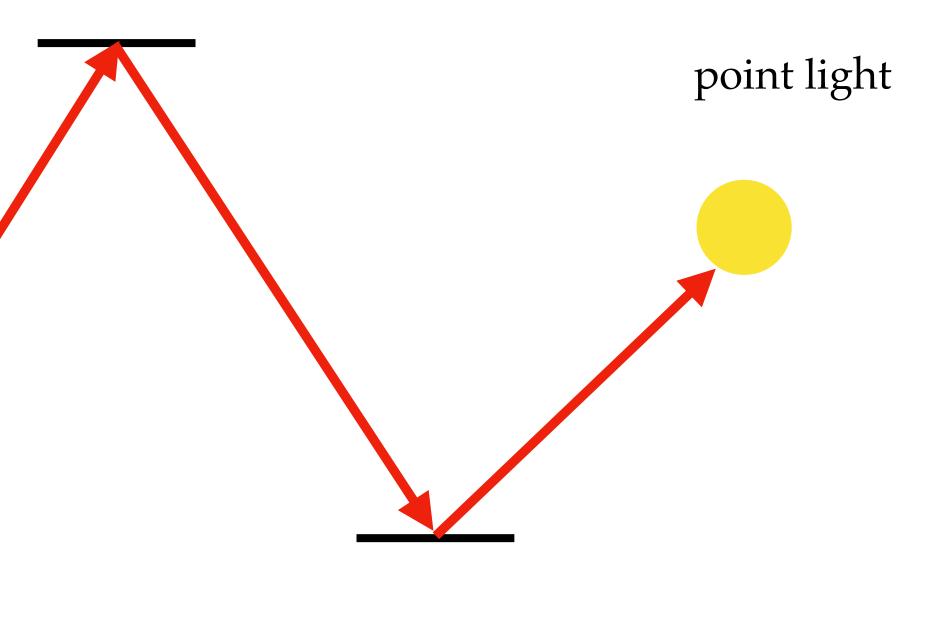
UCSD CSE 272 Advanced Image Synthesis

Tzu-Mao Li

SDS light paths

pinhole camera

mirror (specular) diffuse

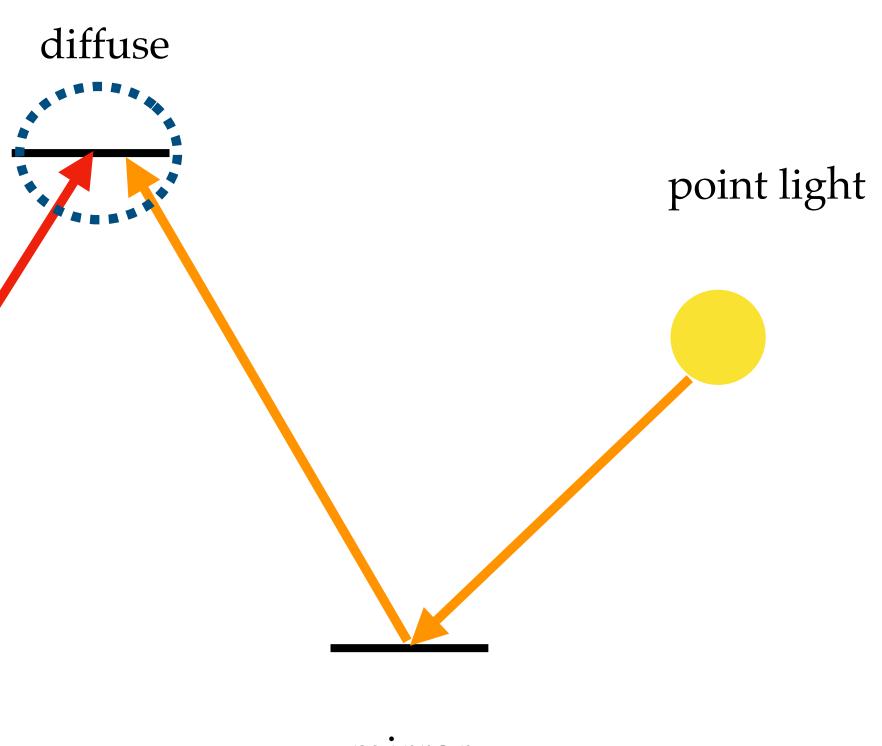


mirror (specular)

pinhole camera

mirror (specular)

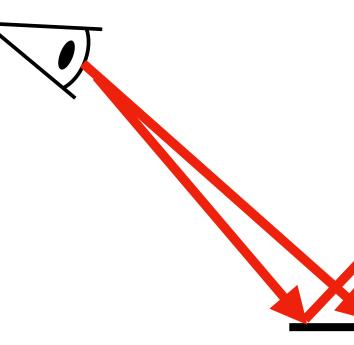
Idea 1: allow "near miss"



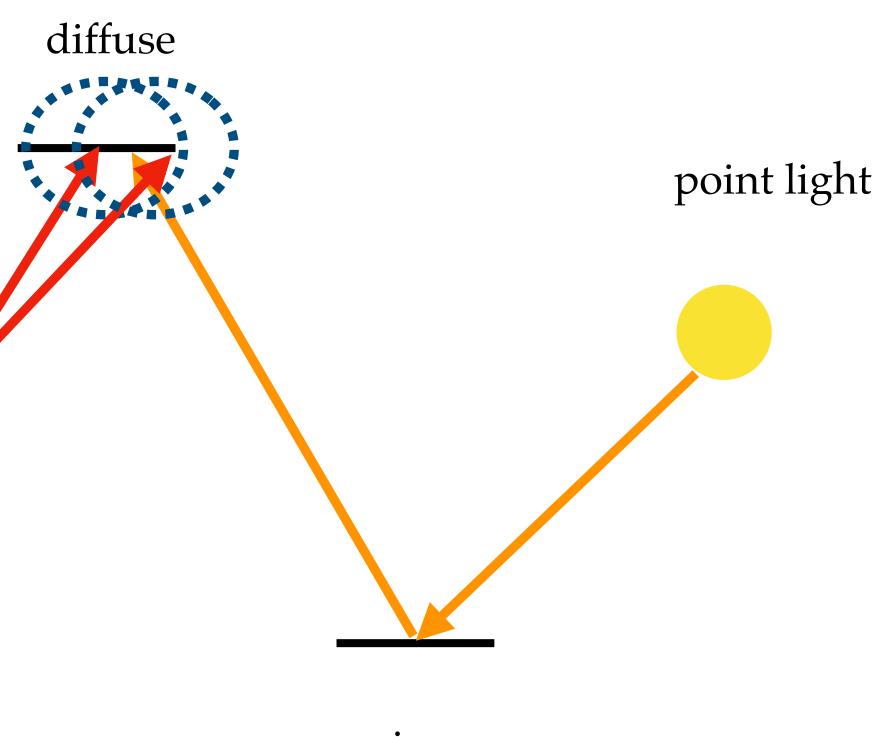
mirror (specular)

Idea 2: share light subpaths among different pixels

pinhole camera

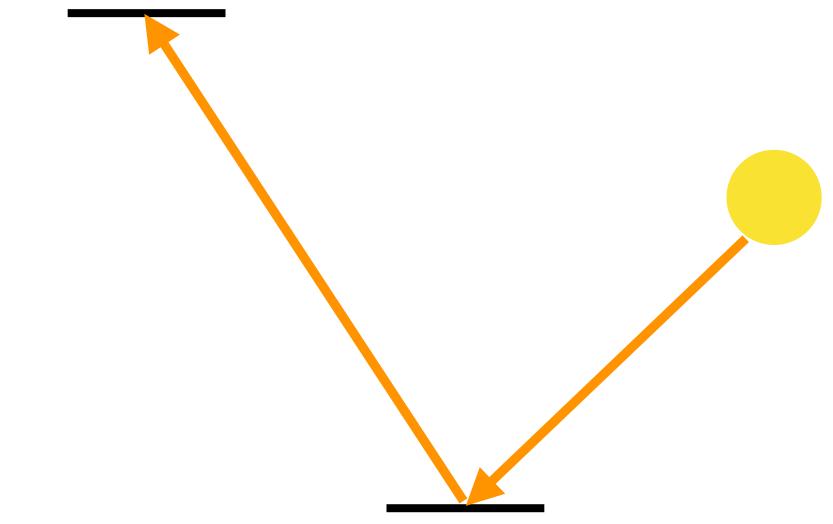


mirror (specular)

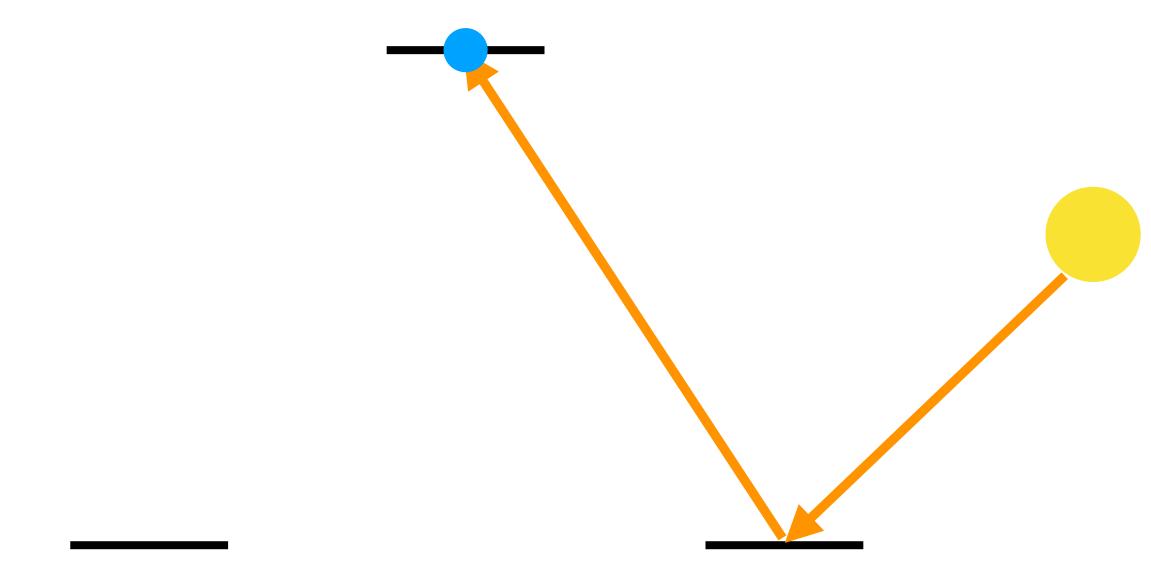


mirror (specular)

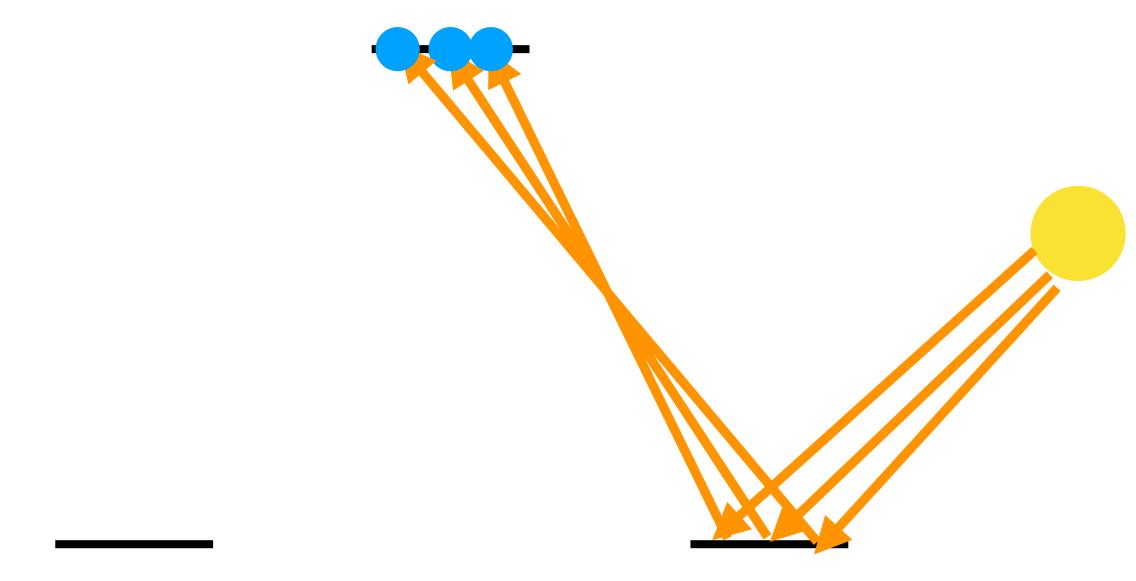
1. trace random light subpaths



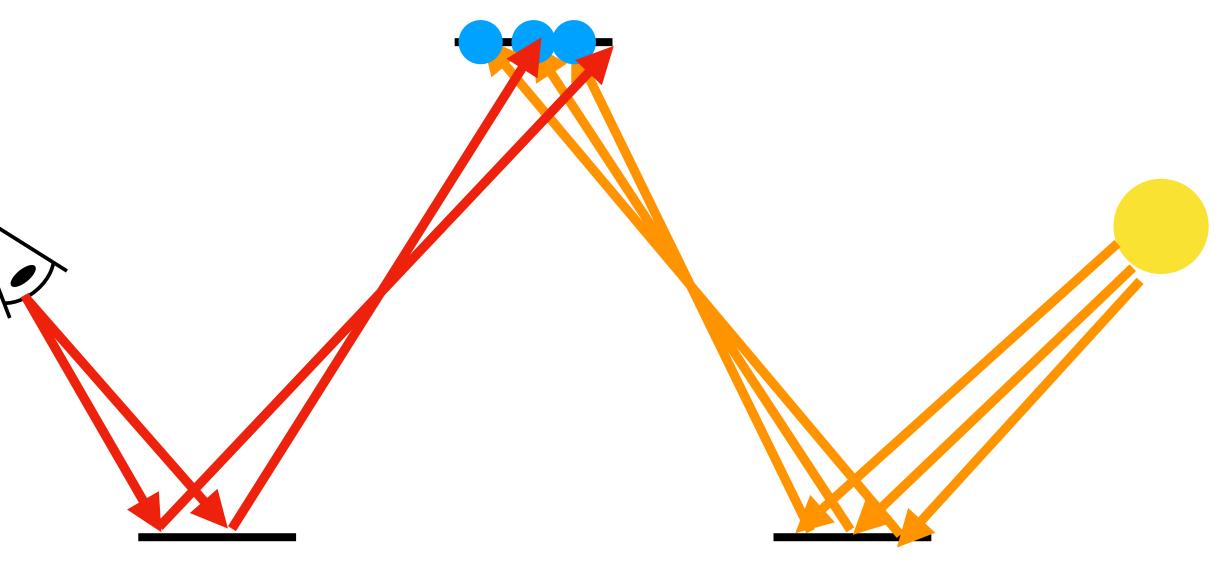
- 1. trace random light subpaths
- 2. store **photons** on diffuse surfaces



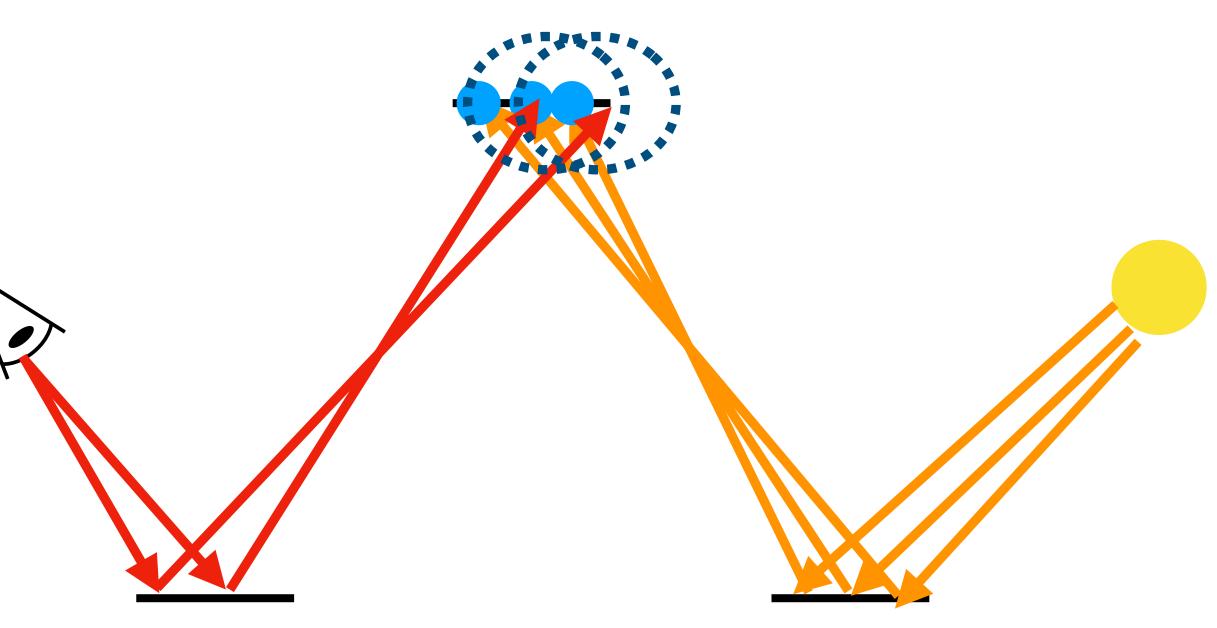
- 1. trace random light subpaths
- 2. store **photons** on diffuse surfaces



- 1. trace random light subpaths
- 2. store **photons** on diffuse surfaces
- 3. trace random camera subpaths



- 1. trace random light subpaths
- 2. store **photons** on diffuse surfaces
- 3. trace random camera subpaths
- 4. reconstruct path contribution from photons

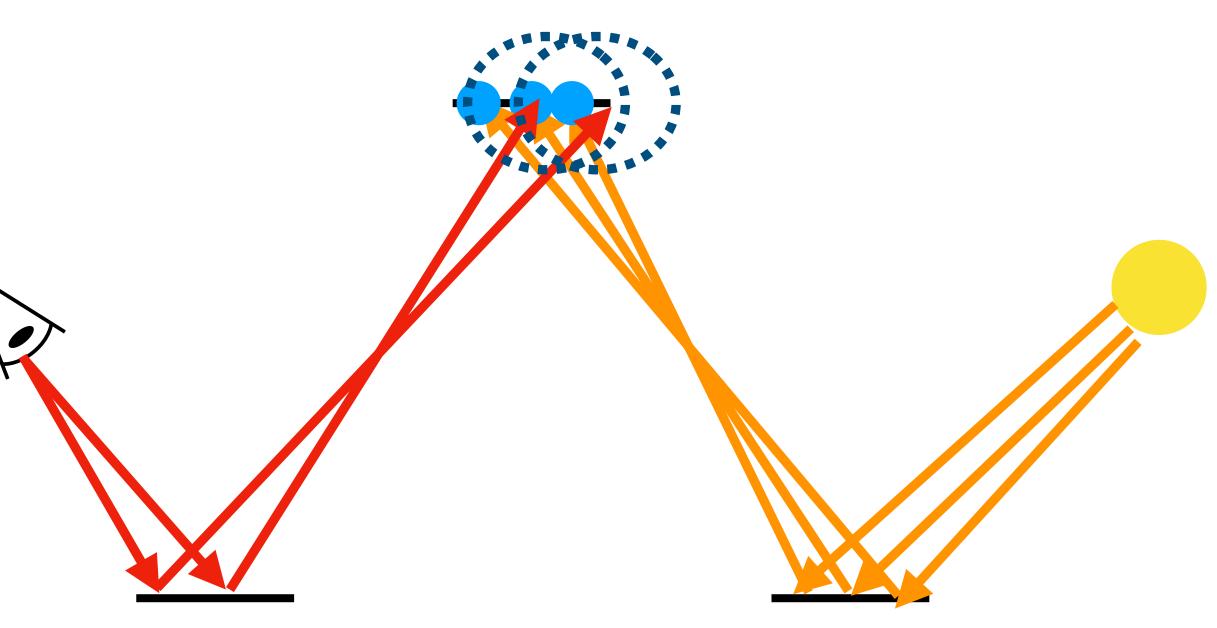


- 1. trace random light subpaths
- 2. store **photons** on diffuse surfaces
- 3. trace random camera subpaths
- 4. reconstruct path contribution from photons

Bidirectional Photon Mapping

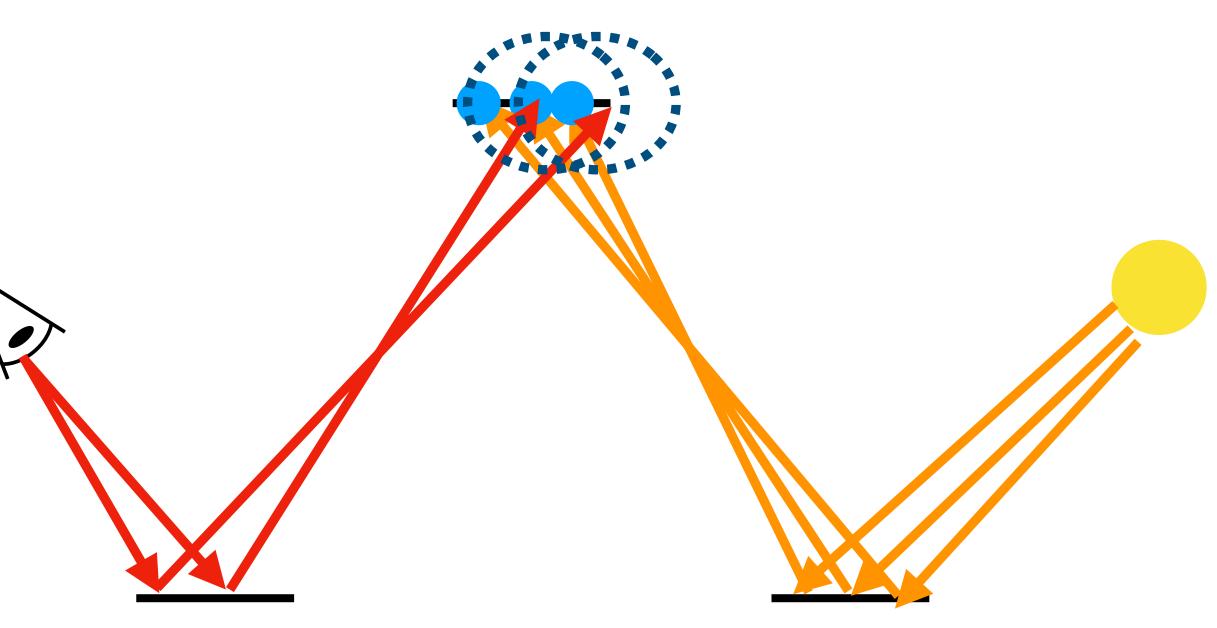
Jiří Vorba Supervised by: Jaroslav Křivánek

Charles University, Prague



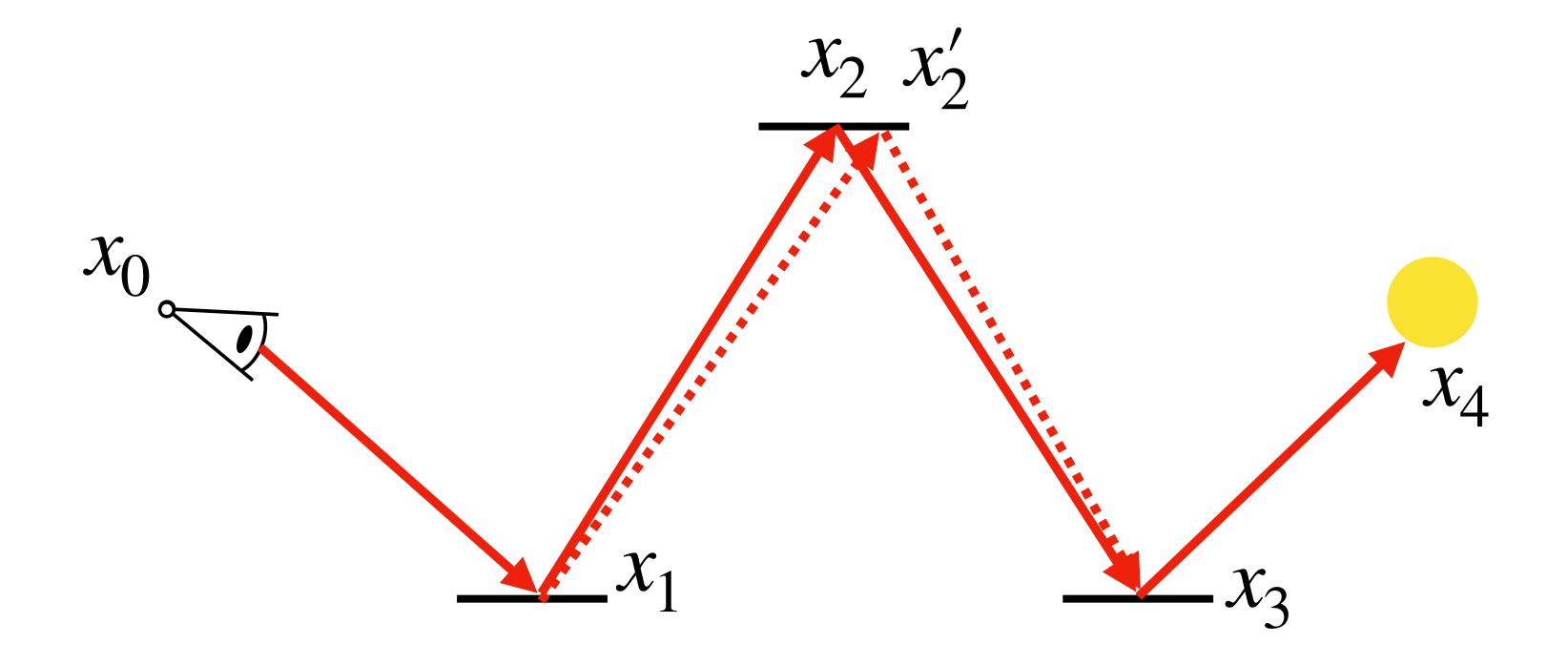
- 1. trace random light subpaths
- 2. store **photons** on diffuse surfaces
- 3. trace random camera subpaths

4. reconstruct path contribution from photons



Math formulation: blurring path contribution

Jight paths $f(\bar{x})d\bar{x}$



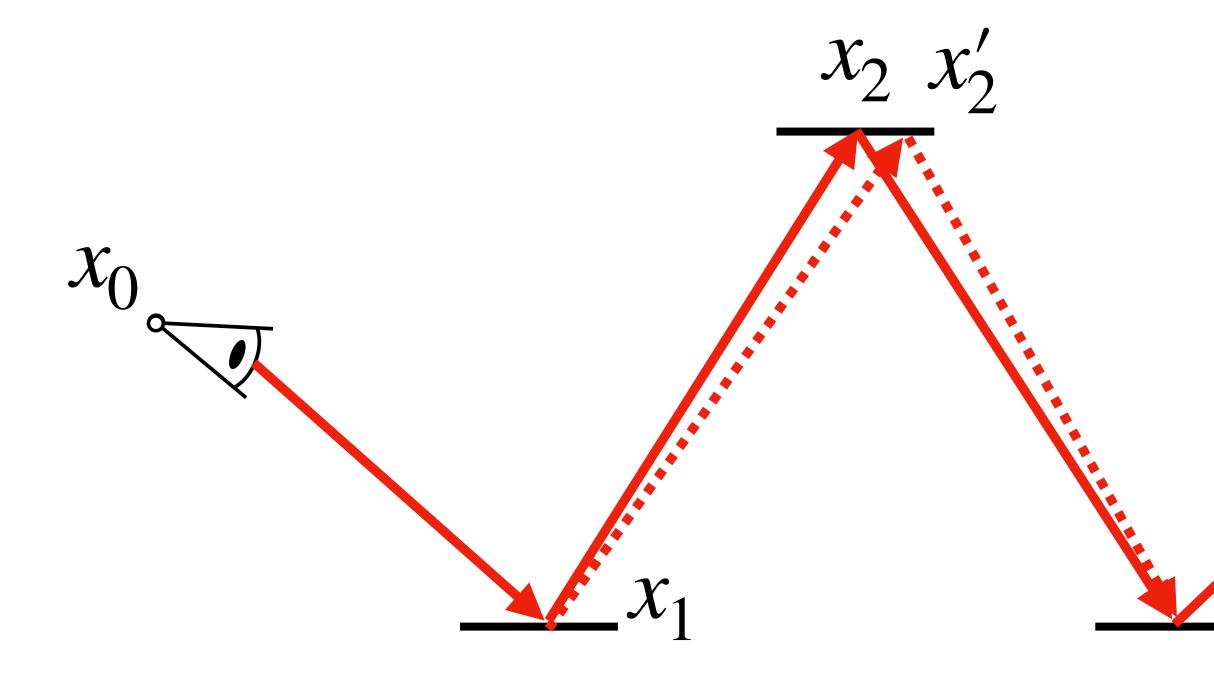
$\int_{\text{surface}} \int_{\text{light paths}} k(x_2, x'_2) f(\bar{x}') d\bar{x} dx'_2$

k: convolution kernel

e.g. a disk kernel $\frac{1}{\pi r^2}$

Math formulation: blurring path contribution

Jight paths $f(\bar{x})d\bar{x}$



$\int_{\text{surface}} \int_{\text{light paths}} k(x_2, x'_2) f(\bar{x}') d\bar{x} dx'_2$

k: convolution kernel

e.g. a disk kernel $\frac{1}{\pi r^2}$

Light Transport Simulation with Vertex Connection and Merging

Iliyan Georgiev^{*}

Jaroslav Křivánek[†] Charles University, Prague

Tomaś Davidovič[‡] Saarland University Intel VCI, Saarbrücken

A Path Space Extension for Robust Light Transport Simulation

Toshiya Hachisuka^{1,3} ¹Aarhus University

Jacopo Pantaleoni² ²NVIDIA Research

Henrik Wann Jensen³ ³UC San Diego

Sidetrack: blurring an integrand does *not* necessarily change its integral!

recall: integration = taking DC in frequency domain

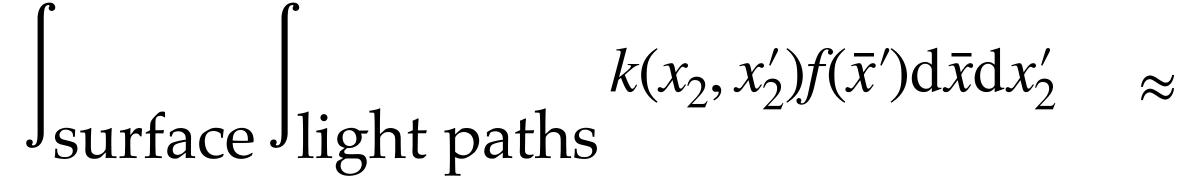
 $f(x)dx = \hat{f}(0)$

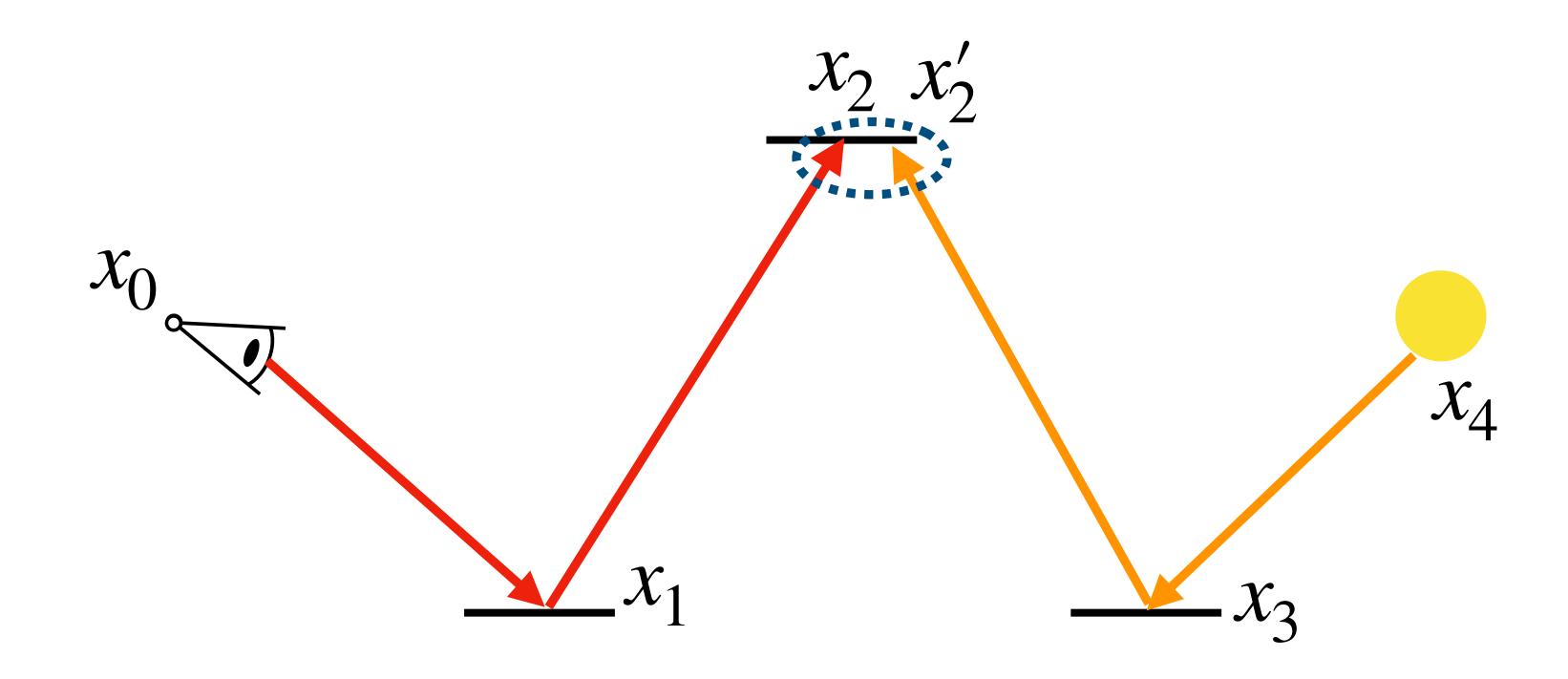
blurring = multiply the DCs in frequency domain

$$\iint k(x, y)f(x)dxdy = \hat{f}(0)\hat{k}(0)$$

as long as $\hat{k}(0) = 1$, the integral is preserved!

Photon mapping: estimating the blurring integral using camera subpaths & light subpaths

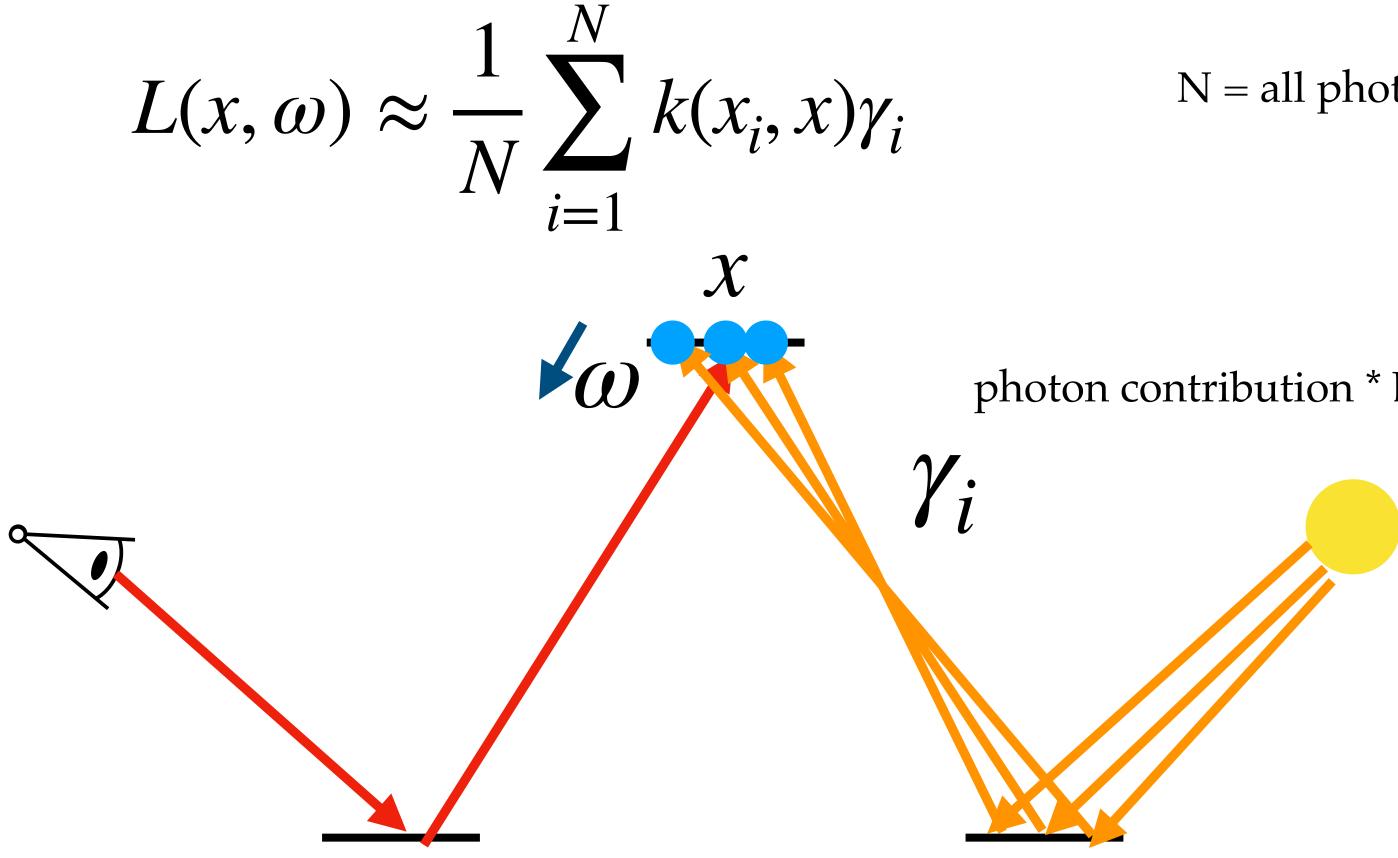




$$\approx \frac{k(x_2, x_2')f(\bar{x}')}{p(x_0 \to x_1 \to x_2)p(x_4 \to x_3 \to x_2')}$$

Density estimation interpretation of photon mapping

• reconstructing radiance at position x using randomly sampled photons at position x_i



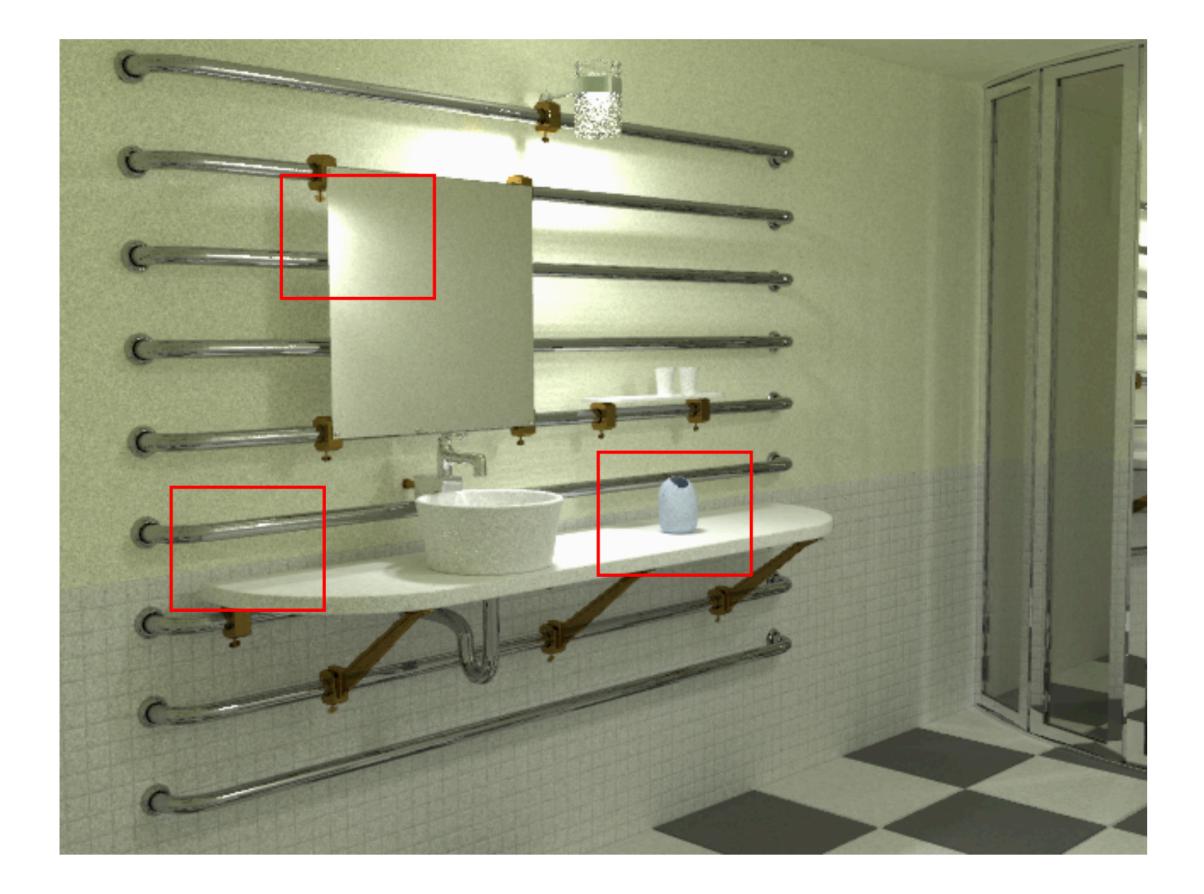
important: N = all photons, not just photon nearby to x!

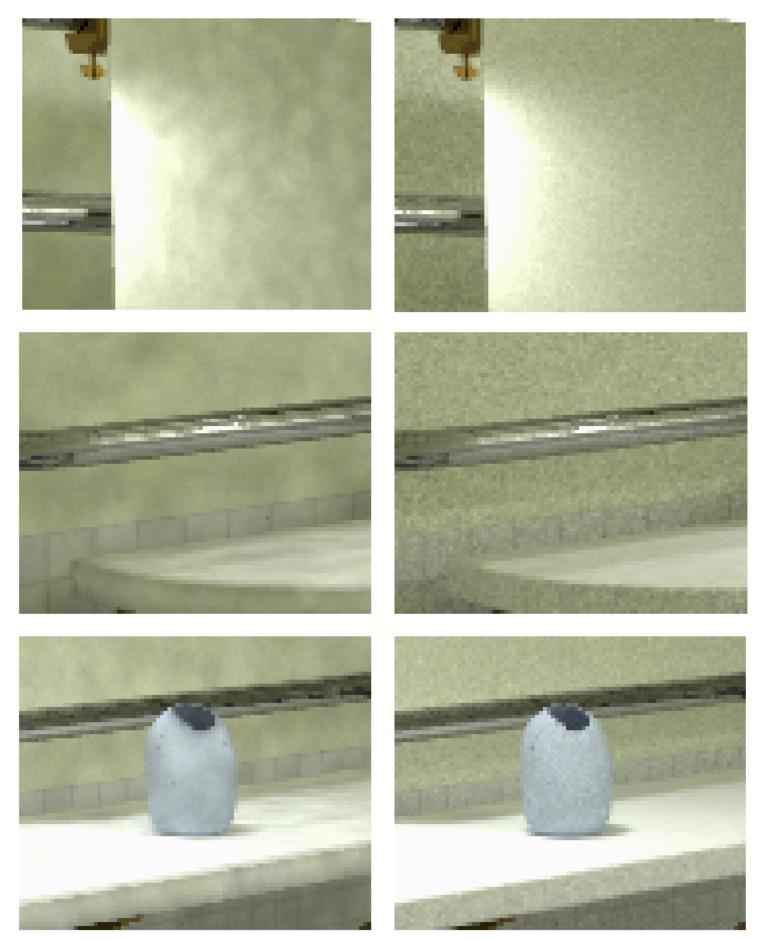
> Monographs on Statistics and Applied Probability 26

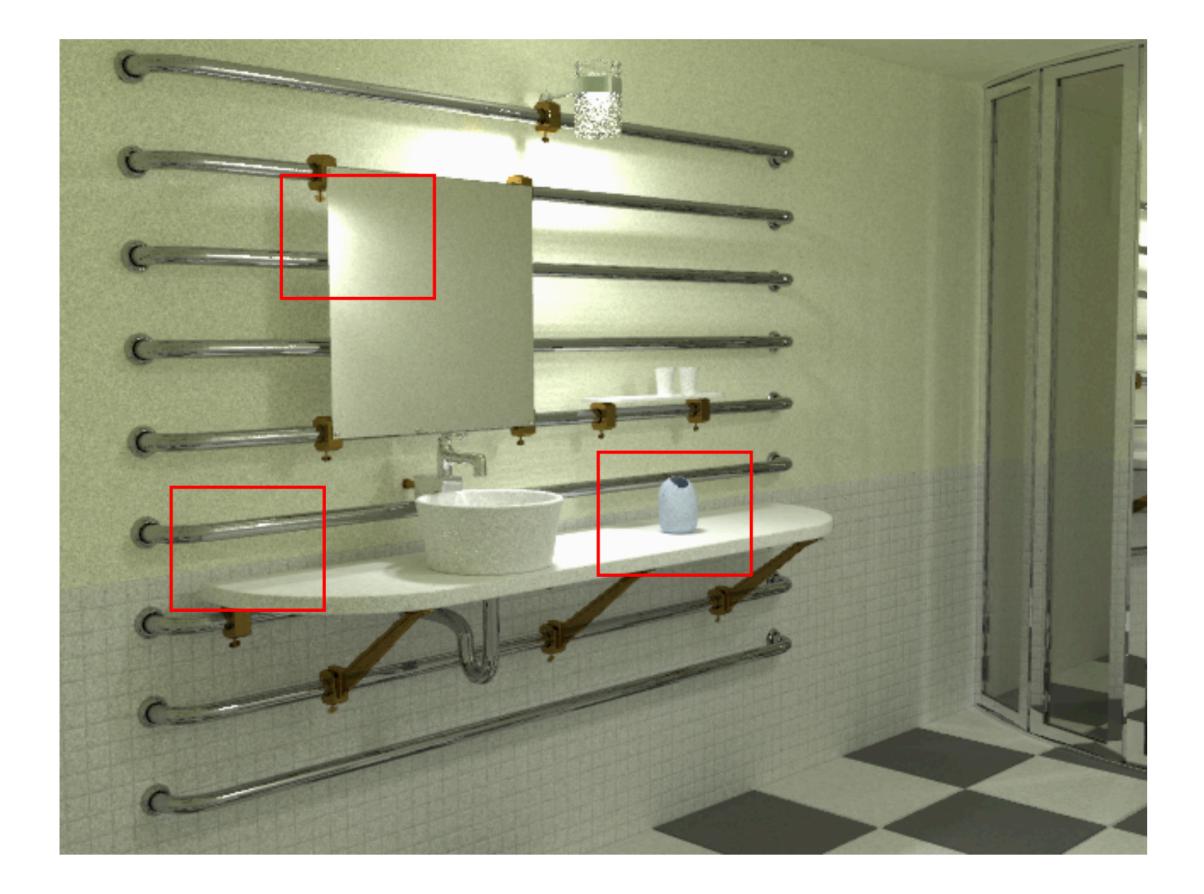
photon contribution * BSDF(x)

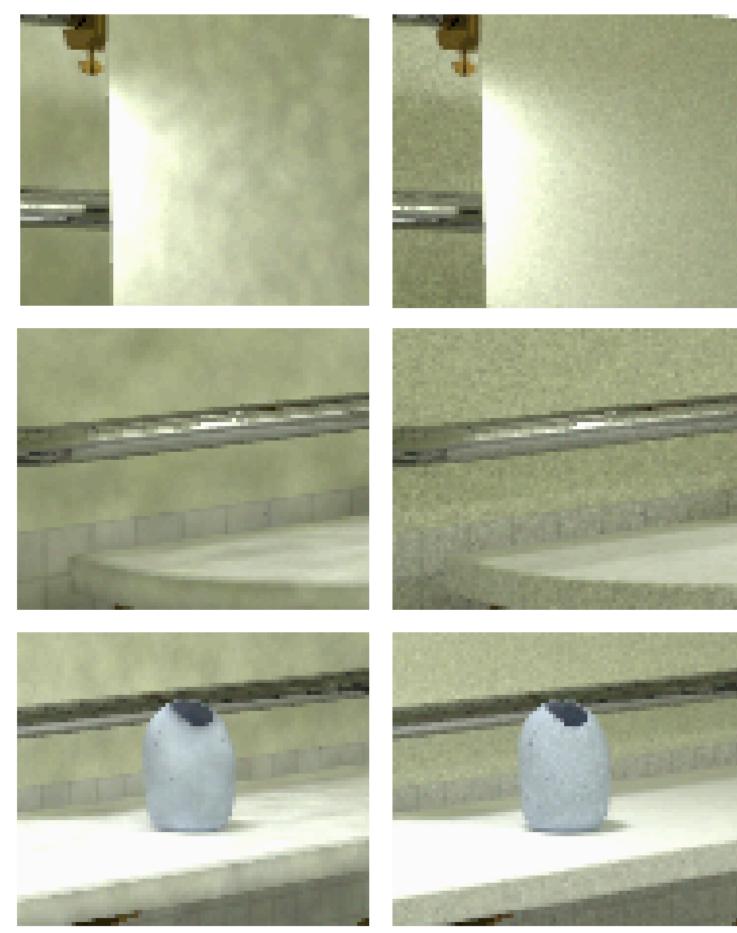
Density Estimation for Statistics and Data Analysis

B.W. Silverman



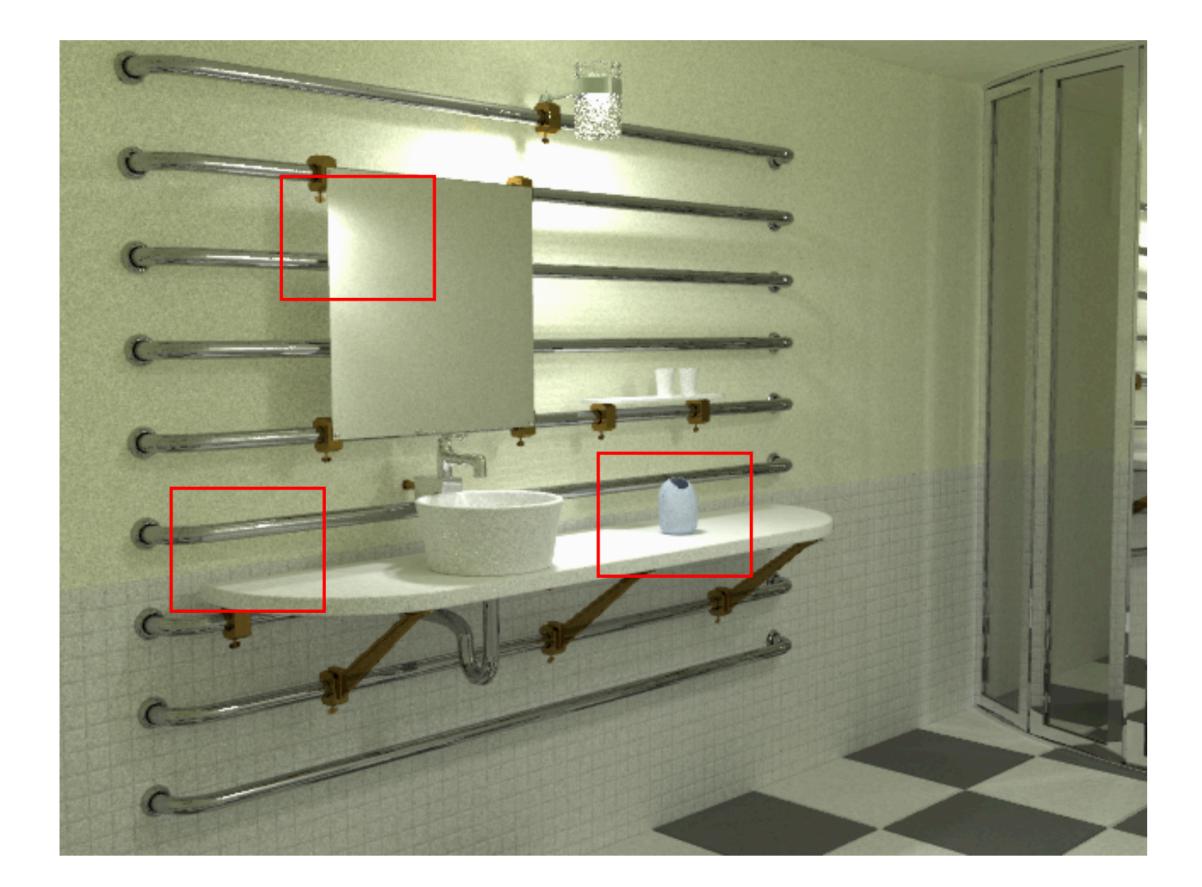




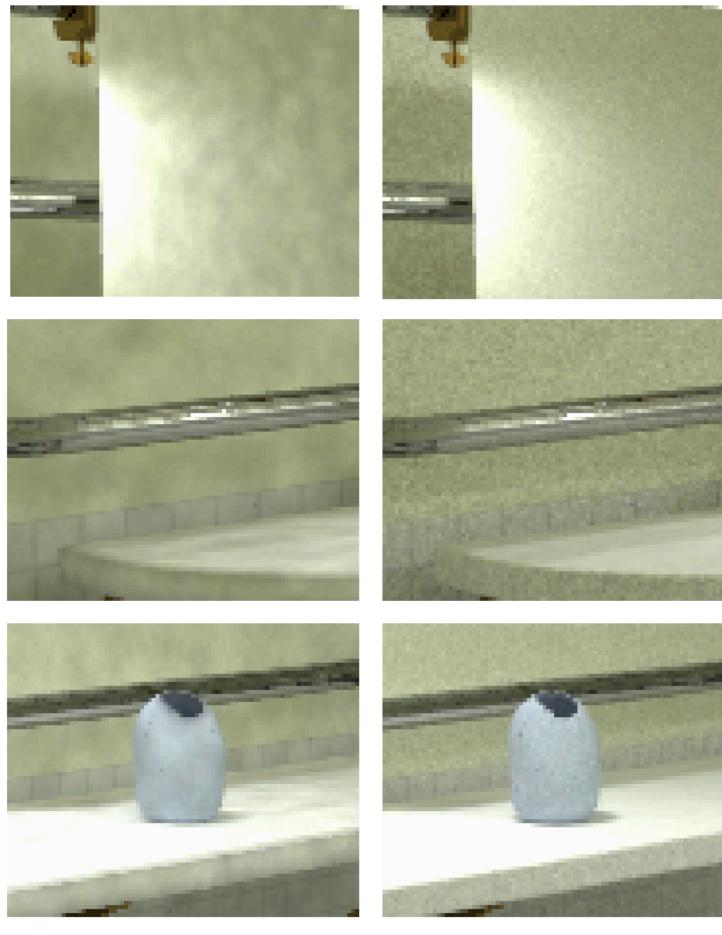


large radius high bias, low variance

small radius low bias, higher variance



how do we analyze the effect of the interpolation radius?



large radius high bias, low variance

small radius low bias, higher variance

$$L(x,\omega) \approx \frac{1}{N} \sum_{i=1}^{N} \frac{1}{r^2} k\left(\frac{x_i - x}{r}\right) \gamma_i$$

normalize kernel s.t. x' - xis constrained to a unit circle

$$\frac{1}{r^2} \int k(t) dt = 1 \qquad \int tk(t) dt = 0$$

Progressive Photon Mapping: A Probabilistic Approach

Claude Knaus and Matthias Zwicker University of Bern, Switzerland

bias

$$L(x,\omega) \approx \frac{1}{N} \sum_{i=1}^{N} \frac{1}{r^2} k\left(\frac{x_i - x}{r}\right) \gamma_i$$

normalize kernel s.t. x' - xis constrained to a unit circle

$$\frac{1}{r^2} \int k(t) dt = 1 \qquad \int tk(t) dt = 0$$

$$= E\left[\frac{1}{N}\sum_{i=1}^{N}\frac{1}{r^2}k\left(\frac{x_i-x}{r}\right)\gamma_i\right] - L(x,\omega)$$

bias

$$L(x,\omega) \approx \frac{1}{N} \sum_{i=1}^{N} \frac{1}{r^2} k\left(\frac{x_i - x}{r}\right) \gamma_i$$

normalize kernel s.t. x' - xis constrained to a unit circle

$$\frac{1}{r^2} \int k(t) dt = 1 \qquad \int tk(t) dt = 0$$

$$= E\left[\frac{1}{r^2}k\left(\frac{X-x}{r}\right)\right] E[\gamma] - L(x,\omega)$$

bias

$$L(x,\omega) \approx \frac{1}{N} \sum_{i=1}^{N} \frac{1}{r^2} k\left(\frac{x_i - x}{r}\right) \gamma_i$$

normalize kernel s.t. x' - xis constrained to a unit circle

$$\frac{1}{r^2} \int k(t) dt = 1 \qquad \int tk(t) dt = 0$$

p(X): PDF of a photon landing at location X

$$= E\left[\frac{1}{r^2}k\left(\frac{X-x}{r}\right)\right]E[\gamma] - L(x,\omega)$$

$$E\left[\frac{1}{r^2}k\left(\frac{X-x}{r}\right)\right] = \frac{1}{r^2}\int k\left(\frac{X-x}{r}\right)p(X)dX$$

bias

$$L(x,\omega) \approx \frac{1}{N} \sum_{i=1}^{N} \frac{1}{r^2} k\left(\frac{x_i - x}{r}\right) \gamma_i$$

normalize kernel s.t. x' - xis constrained to a unit circle

$$\frac{1}{r^2} \int k(t) dt = 1 \qquad \int tk(t) dt = 0$$

p(X): PDF of a photon landing at location X

$$= E\left[\frac{1}{r^2}k\left(\frac{X-x}{r}\right)\right] E[\gamma] - L(x,\omega)$$

$$E\left[\frac{1}{r^2}k\left(\frac{X-x}{r}\right)\right] = \frac{1}{r^2}\int k(t)p(x+rt)dt \qquad t = \frac{X-x}{r}$$

bias

$$L(x,\omega) \approx \frac{1}{N} \sum_{i=1}^{N} \frac{1}{r^2} k\left(\frac{x_i - x}{r}\right) \gamma_i \qquad E$$

normalize kernel s.t. x' - xis constrained to a unit circle

$$\frac{1}{r^2} \int k(t) dt = 1 \qquad \int tk(t) dt = 0$$

p(X): PDF of a photon landing at location X

$$= E\left[\frac{1}{r^2}k\left(\frac{X-x}{r}\right)\right]E[\gamma] - L(x,\omega)$$

$$\left[\frac{1}{r^2}k\left(\frac{X-x}{r}\right)\right] = \frac{1}{r^2}\int k(t)p(x+rt)dt \qquad t = \frac{X-x}{r}$$

 $p(x + rt) \approx p(x) + rt \nabla p(x) + r^2 t^T H_p(x)t$

bias

$$L(x,\omega) \approx \frac{1}{N} \sum_{i=1}^{N} \frac{1}{r^2} k\left(\frac{x_i - x}{r}\right) \gamma_i \qquad E\left[\frac{1}{r^2} k\left(\frac{X - x}{r}\right)\right] = \frac{1}{r^2} \int k(t) p(x + rt) dt \qquad t = \frac{X - x}{r}$$

normalize kernel s.t. x' - xis constrained to a unit circle

$$\frac{1}{r^2} \int k(t) dt = 1 \qquad \int tk(t) dt = 0 \qquad \qquad \int k(t) p(x+rt) dt \approx p(x) + r^2 \cdot \int t^T H_p(x) t dt$$

$$p(X): \text{PDF of a photon landing at location } X$$

$$= E\left[\frac{1}{r^2}k\left(\frac{X-x}{r}\right)\right]E[\gamma] - L(x,\omega)$$

 $p(x + rt) \approx p(x) + rt \nabla p(x) + r^2 t^T H_p(x)t$

bias

$$L(x,\omega) \approx \frac{1}{N} \sum_{i=1}^{N} \frac{1}{r^2} k\left(\frac{x_i - x}{r}\right) \gamma_i$$

normalize kernel s.t. x' - xis constrained to a unit circle

$$\frac{1}{r^2} \int k(t) dt = 1 \qquad \int tk(t) dt = 0$$

p(X): PDF of a photon landing at location X

$$= E\left[\frac{1}{r^2}k\left(\frac{X-x}{r}\right)\right] E[\gamma] - L(x,\omega)$$

$$E\left[\frac{1}{r^2}k\left(\frac{X-x}{r}\right)\right] \approx p(x) + r^2 \cdot \int t^T H_p(x) t dt$$

bias

$$L(x,\omega) \approx \frac{1}{N} \sum_{i=1}^{N} \frac{1}{r^2} k\left(\frac{x_i - x}{r}\right) \gamma_i$$

normalize kernel s.t. x' - xis constrained to a unit circle

$$\frac{1}{r^2} \int k(t) dt = 1 \qquad \int tk(t) dt = 0$$

p(X): PDF of a photon landing at location X

$$= E\left[\frac{1}{r^2}k\left(\frac{X-x}{r}\right)\right] E[\gamma] - L(x,\omega)$$

$$E\left[\frac{1}{r^2}k\left(\frac{X-x}{r}\right)\right] \approx p(x) + r^2 \cdot \int t^T H_p(x) t dt$$

 $L(x, \omega) = E[\gamma]E[\delta(X - x)] = E[\gamma]p(x)$

$$L(x,\omega) \approx \frac{1}{N} \sum_{i=1}^{N} \frac{1}{r^2} k\left(\frac{x_i - x}{r}\right) \gamma_i$$

bias $\approx r^2 E[\gamma] \int t^T H_p(x) t dt$

$$L(x,\omega) \approx \frac{1}{N} \sum_{i=1}^{N} \frac{1}{r^2} k\left(\frac{x_i - x}{r}\right) \gamma_i$$

bias
$$\approx r^2 E[\gamma] \int t^T H_p(x) t dt$$

variance
$$\approx \left(\text{Var}[\gamma] + E[\gamma]^2 \right) \frac{p(x)}{Nr^2} \int k(t)^2 dt$$

$L(x,\omega) \approx \frac{1}{N} \sum_{i=1}^{N} \frac{1}{r^2} k\left(\frac{x_i - x}{r}\right) \gamma_i$ var

Observation:

- variance reduces with N, bias does not
- bias increases with r, but variance reduces with r

bias
$$\approx r^2 E[\gamma] \int t^T H_p(x) t dt$$

iance
$$\approx \left(\operatorname{Var}[\gamma] + E[\gamma]^2 \right) \frac{p(x)}{Nr^2} \int k(t)^2 dt$$

bias $\propto r^2$

Observation:

- variance reduces with N, bias does not
- bias increases with r, but variance reduces with r

variance $\propto \frac{1}{Nr^2}$

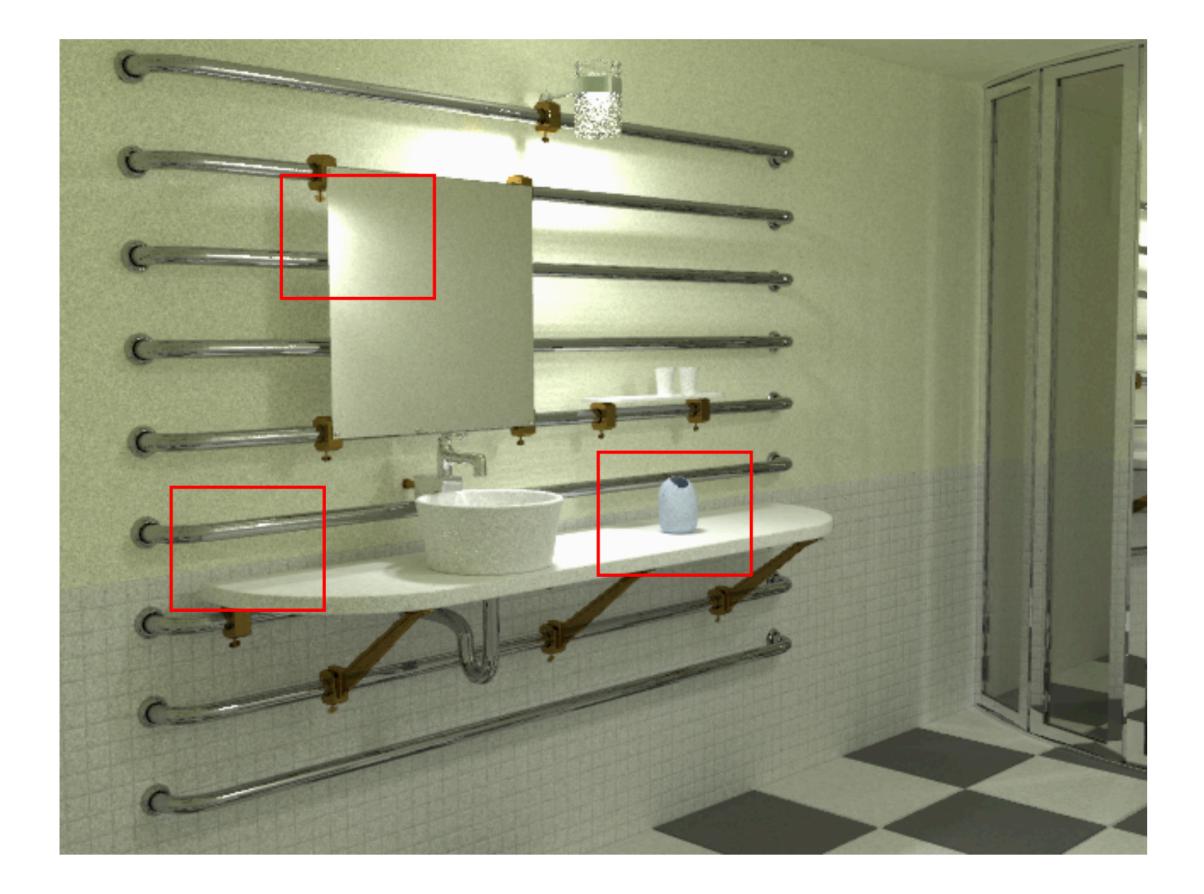
quiz: is photon mapping a consistent estimator?

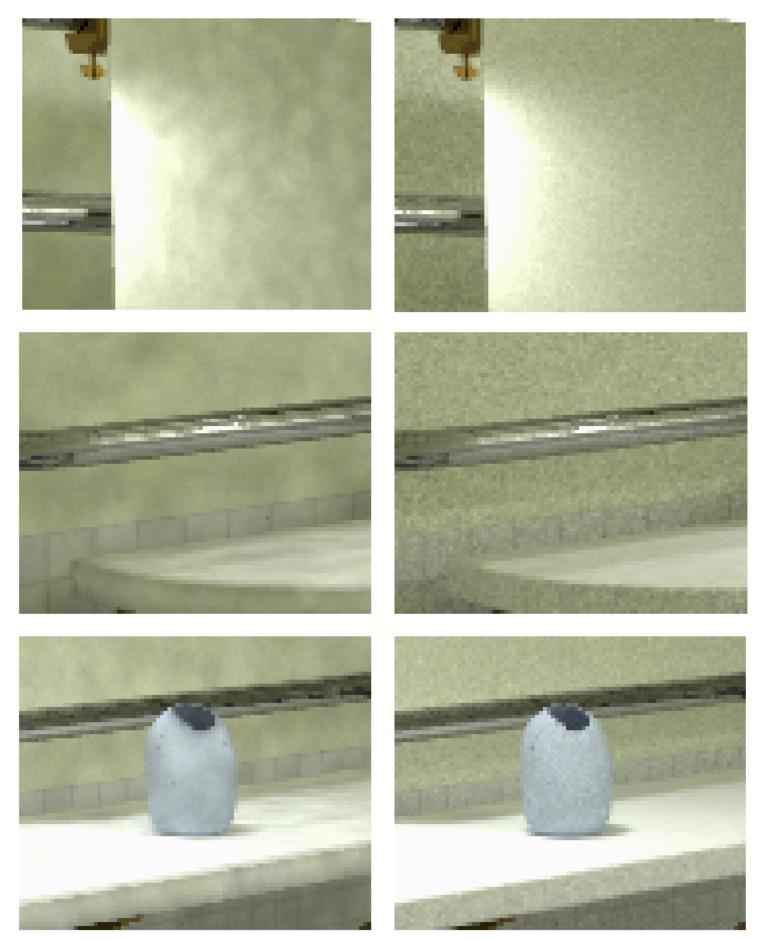
bias $\propto r^2$

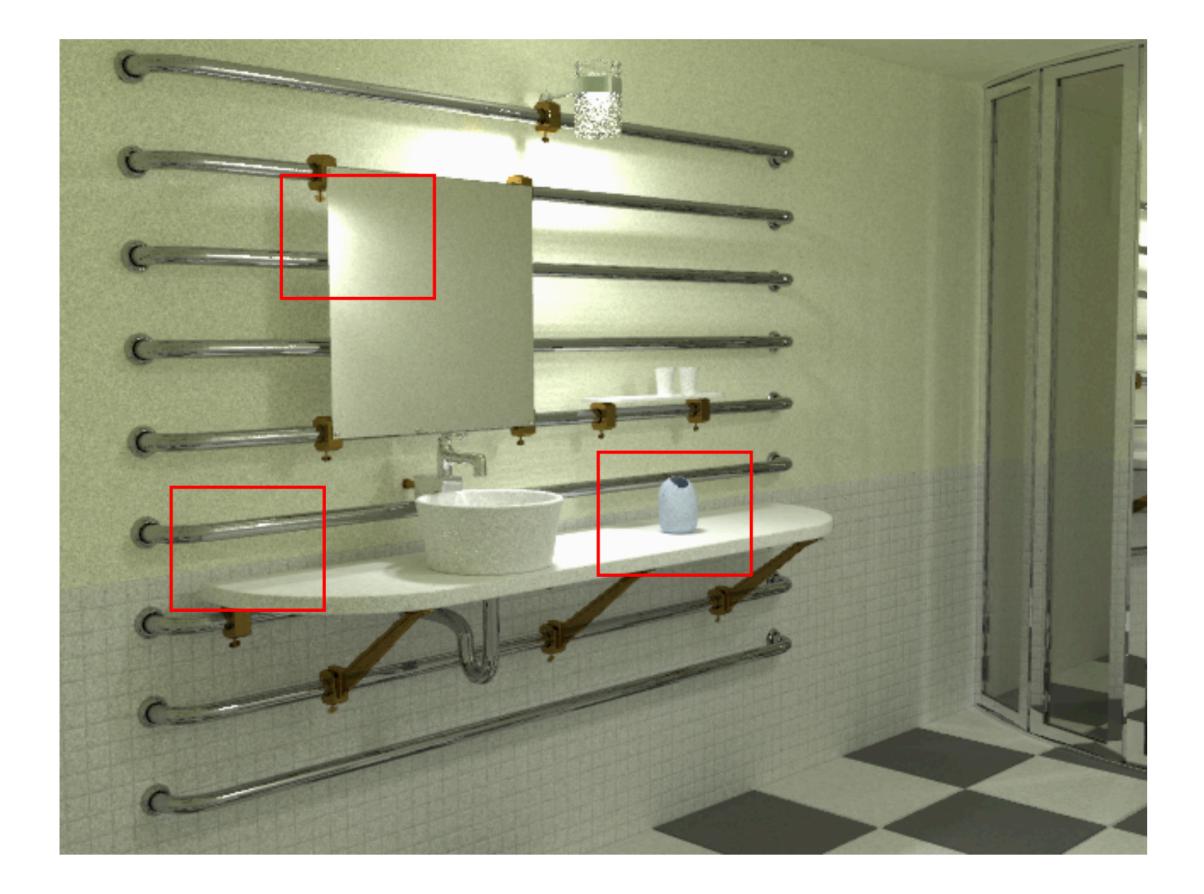
Observation:

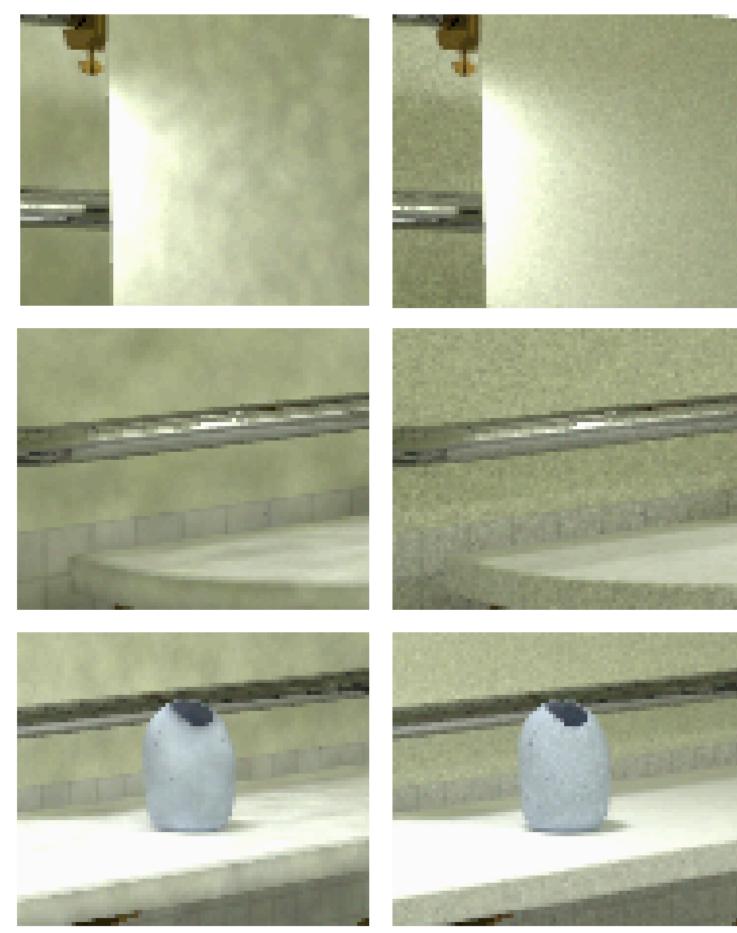
- variance reduces with N, bias does not
- bias increases with r, but variance reduces with r

variance $\propto \frac{1}{Nr^2}$







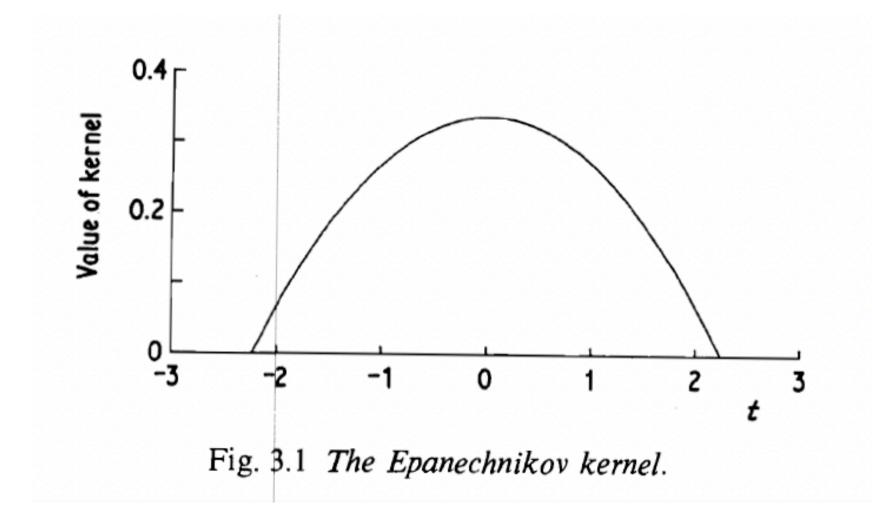


large radius high bias, low variance

small radius low bias, higher variance

Epanechnikov kernel minimizes the variance

$$k(t) = \begin{cases} \frac{3}{4\sqrt{5}} \left(1 - \frac{1}{5}t^2 \right) & -\sqrt{5} \le t \le \sqrt{5} \\ 0 & \text{otherwise} \end{cases}$$



variance
$$\approx \left(\operatorname{Var}[\gamma] + E[\gamma]^2 \right) \frac{p(x)}{Nr^2} \int k(t)^2 dt$$

minimize
$$\int k(t)^2 dt$$

s.t. $\frac{1}{r^2} \int k(t) dt = 1$ $\int tk(t) dt = 0$

Silverman 1986

$$L \approx \frac{1}{N} \sum_{i=1}^{N} \frac{1}{r^2} k\left(\frac{x_i - x}{r}\right) \gamma_i$$

can we eliminate bias when N goes to infinity?

bias $\propto r^2$

variance $\propto \frac{1}{Nr^2}$

Progressive Photon Mapping

Toshiya Hachisuka UC San Diego

Shinji Ogaki The University of Nottingham Henrik Wann Jensen UC San Diego

- key idea: select a sequence *r_i* with gradually reduced radius to remove bias
- can't reduce too fast, can't reduce too slow

$$L \approx \frac{1}{N} \sum_{i=1}^{N} \frac{1}{r_i^2} k\left(\frac{x_i - x}{r_i}\right) \gamma_i$$

bias $\propto r^2$ variance $\propto \frac{1}{Nr^2}$

Progressive Photon Mapping

Toshiya Hachisuka UC San Diego

Shinji Ogaki The University of Nottingham Henrik Wann Jensen UC San Diego

- key idea: select a sequence *r_i* with gradually reduced radius to remove bias
- can't reduce too fast, can't reduce too slow

$$L \approx \frac{1}{N} \sum_{i=1}^{N} \frac{1}{r_i^2} k\left(\frac{x_i - x}{r_i}\right) \gamma_i$$

for each iteration i

bias $\propto r_i^2$

variance $\propto \frac{1}{r^2}$

Progressive Photon Mapping

Toshiya Hachisuka UC San Diego

Shinji Ogaki The University of Nottingham Henrik Wann Jensen UC San Diego

goal: decrease *r* so that bias goes to 0, but variance does not go to infinity

for each iteration i

bias $\propto r_i^2$

variance $\propto \frac{1}{r_i^2}$

goal: decrease *r* so that bias goes to 0, but variance does not go to infinity

idea: set
$$r_i$$
 such that $\frac{r_{i+1}^2}{r_i^2} = \frac{i+\alpha}{i+1}$ ($\alpha \in$

for each iteration i

bias $\propto r_i^2$

 $\in (0,1))$ variance $\propto \frac{1}{r_i^2}$

goal: decrease *r* so that bias goes to 0, but variance does not go to infinity

idea: set
$$r_i$$
 such that $\frac{r_{i+1}^2}{r_i^2} = \frac{i+\alpha}{i+1}$ ($\alpha \in$
Var_{i+1} $i+1$ Bias_{i+1} $i+\alpha$

$$\overline{\text{Var}_i} = \overline{i + \alpha} \qquad \overline{\text{Bias}_i} = \overline{i + 1}$$

photon mapping: on mapping estimator

for each iteration i

bias $\propto r_i^2$

 $\in (0,1))$ variance $\propto \frac{1}{r_i^2}$

goal: decrease *r* so that bias goes to 0, but variance does not go to infinity

idea: set
$$r_i$$
 such that $\frac{r_{i+1}^2}{r_i^2} = \frac{i+\alpha}{i+1}$ ($\alpha \in$

$$\frac{\text{Var}_{i+1}}{\text{Var}_i} = \frac{i+1}{i+\alpha} \qquad \frac{\text{Bias}_{i+1}}{\text{Bias}_i} = \frac{i+\alpha}{i+1}$$

$$\operatorname{Var} = \frac{1}{N^2} \sum_{i} \operatorname{Var}_{i} = O\left(N^{-\alpha}\right) \qquad \text{Bias}$$

shoton mapping: on mapping estimator

for each iteration i

bias $\propto r_i^2$

 $\in (0,1))$ variance $\propto \frac{1}{r_i^2}$

1 $= \frac{1}{N} \sum_{i} \operatorname{Bias}_{i} = O\left(N^{1-\alpha}\right)$

goal: decrease *r* so that bias goes to 0, but variance does not go to infinity

$$\operatorname{Var} = \frac{1}{N^2} \sum_{i} \operatorname{Var}_{i} = O\left(N^{-\alpha}\right)$$

idea: set r_i such that $\frac{r_{i+1}^2}{r_i^2} = \frac{i+\alpha}{i+1}$ ($\alpha \in (0,1)$)

Bias =
$$\frac{1}{N} \sum_{i} \text{Bias}_{i} = O(N^{1-\alpha})$$

goal: decrease *r* so that bias goes to 0, but variance does not go to infinity

$$\operatorname{Var} = \frac{1}{N^2} \sum_{i} \operatorname{Var}_{i} = O\left(N^{-\alpha}\right)$$

quiz: what is the asymptotically optimal α ?

idea: set r_i such that $\frac{r_{i+1}^2}{r_i^2} = \frac{i+\alpha}{i+1}$ ($\alpha \in (0,1)$)

Bias =
$$\frac{1}{N} \sum_{i} \text{Bias}_{i} = O(N^{1-\alpha})$$

goal: decrease *r* so that bias goes to 0, but variance does not go to infinity

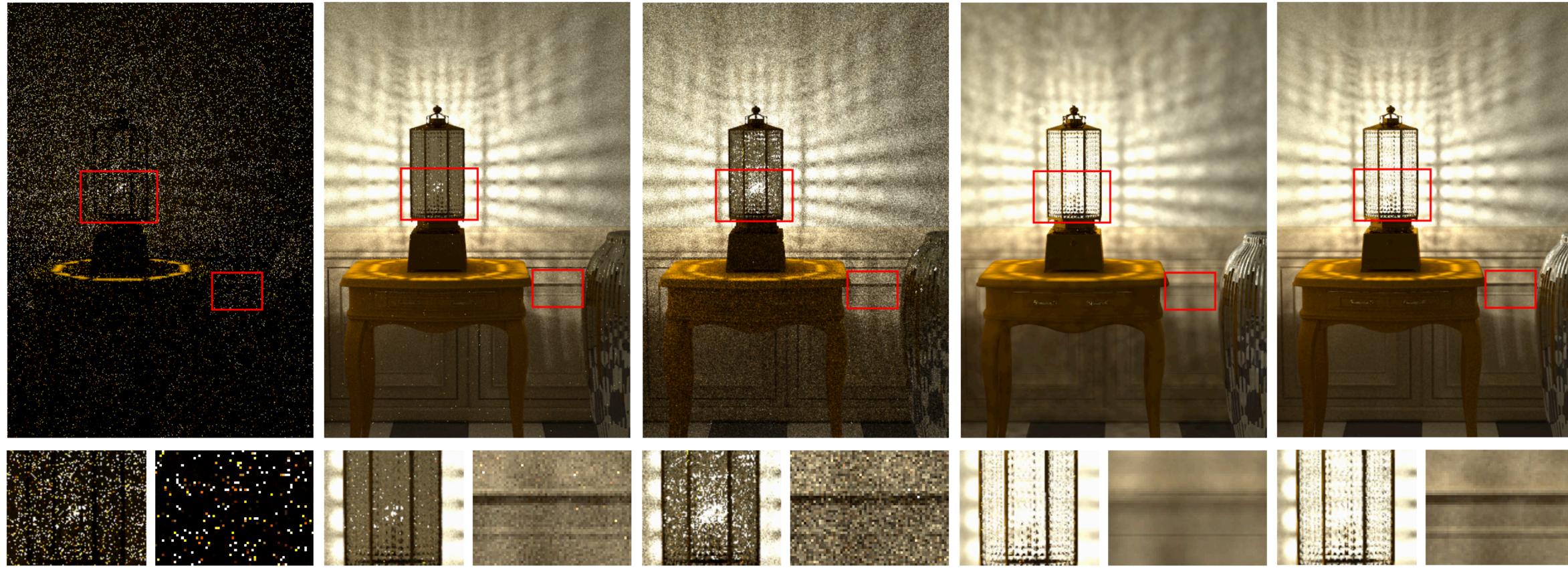
$$\operatorname{Var} = \frac{1}{N^2} \sum_{i} \operatorname{Var}_{i} = O\left(N^{-\alpha}\right)$$

 $\alpha = \frac{2}{2}$ gives optimal mean square error = bias^2 + variance

idea: set r_i such that $\frac{r_{i+1}^2}{r_i^2} = \frac{i+\alpha}{i+1}$ ($\alpha \in (0,1)$)

Bias =
$$\frac{1}{N} \sum_{i} \text{Bias}_{i} = O(N^{1-\alpha})$$

Photon mapping is good at SDS light paths



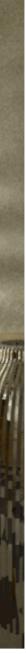
Path tracing

Bidirectional path tracing

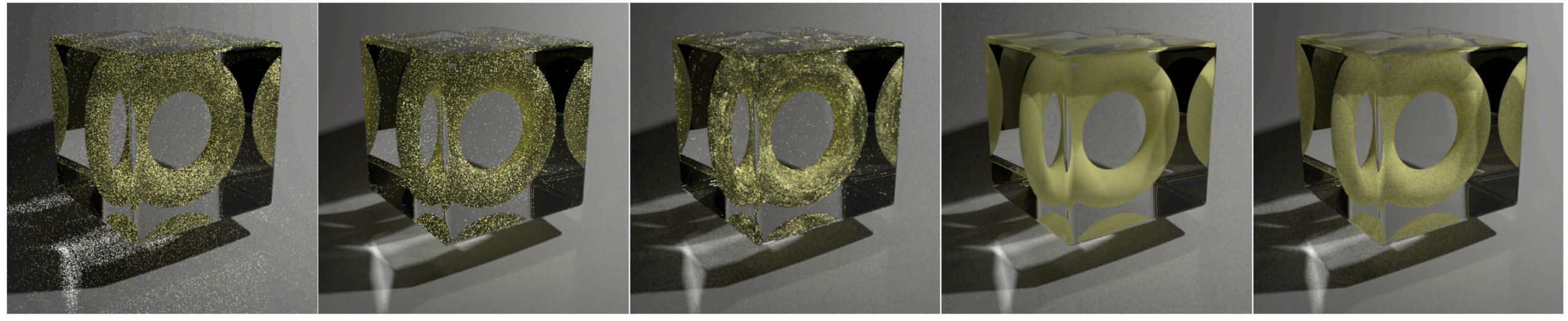
Metropolis light transport

Photon mapping

Progressive photon mapping



Photon mapping is good at SDS light paths



PT

BDPT

MLT

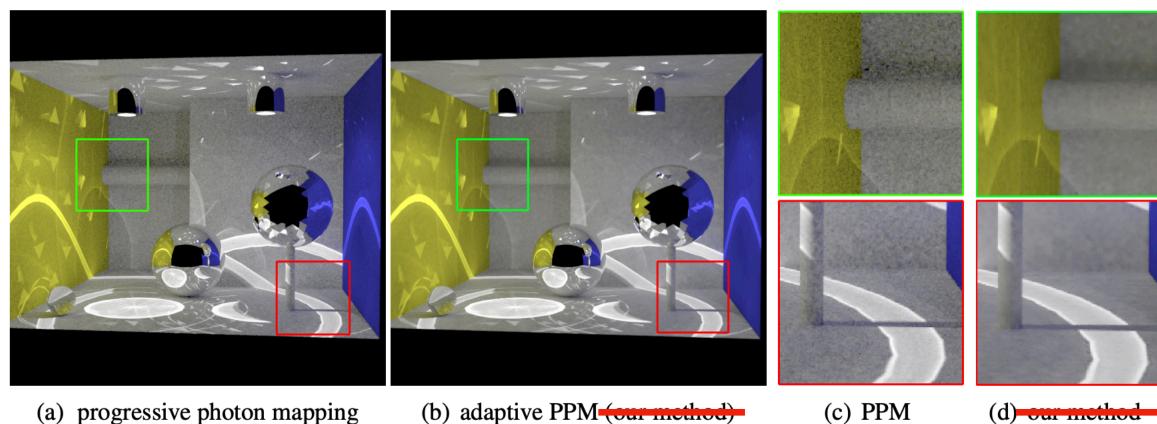
PPM

Reference

Alternative: directly set *r* to minimize mean square error

Adaptive Progressive Photon Mapping

ANTON S. KAPLANYAN and CARSTEN DACHSBACHER Karlsruhe Institute of Technology



Anton's method

bias $\approx r^2 E[\gamma] \left[t^T H_p(x) t dt \right]$

variance $\approx \left(\text{Var}[\gamma] + E[\gamma]^2 \right) \frac{p(x)}{Nr^2} \left[k(t)^2 dt \right]$

mean square error = $bias^2 + variance$

Anton's method

Combining with bidirectional path tracing (VCM/UPS)

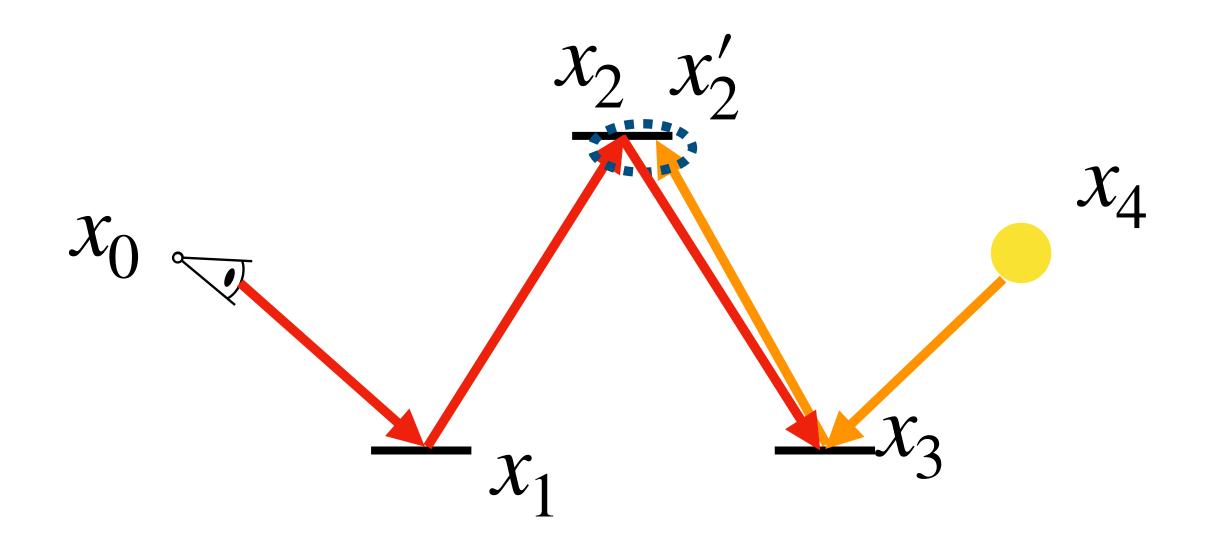
• apply multiple importance sampling

Light Transport Simulation with Vertex Connection and Merging

Iliyan Georgiev* Saarland University Intel VCI, Saarbrücken Jaroslav Křivánek[†] Charles University, Prague Tomaś Davidovič[‡] Saarland University Intel VCI, Saarbrücken Philipp Slusallek[§] Saarland University Intel VCI & DFKI, Saarbrücken

A Path Space Extension for Robust Light Transport Simulation

Toshiya Hachisuka^{1,3} ¹Aarhus University Jacopo Pantaleoni² ²NVIDIA Research Henrik Wann Jensen³ ³UC San Diego



Combining with bidirectional path tracing (VCM/UPS)

- apply multiple importance sampling
- challenge: photon mapping has one more vertex (x'_2 in this case), can't compare PDFs

Light Transport Simulation with Vertex Connection and Merging

Iliyan Georgiev* Saarland University Intel VCI, Saarbrücken

Jaroslav Křivánek[†] Charles University, Prague

Tomaś Davidovič[‡] Saarland University Intel VCI, Saarbrücken

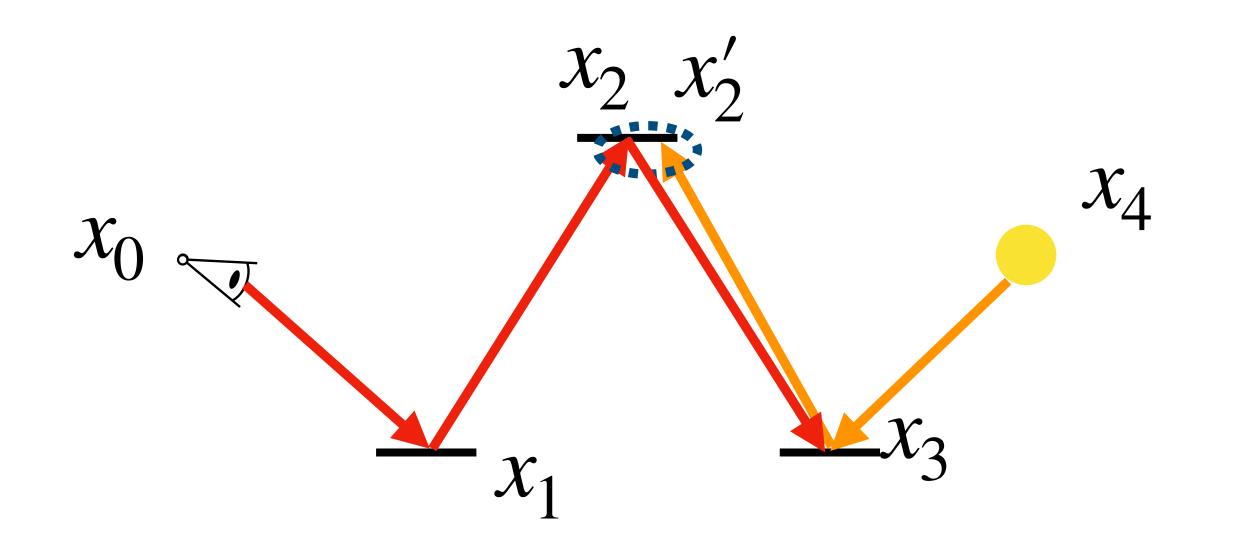
Philipp Slusallek[§] Saarland University Intel VCI & DFKI, Saarbrücken

A Path Space Extension for Robust Light Transport Simulation

Toshiya Hachisuka^{1,3} ¹Aarhus University

Jacopo Pantaleoni² ²NVIDIA Research Henrik Wann Jensen³ ³UC San Diego

path tracing: $x_0x_1x_2x_3x_4$ photon mapping: $x_0x_1x_2x_2'x_3x_4$



Combining with bidirectional path tracing (VCM/UPS)

- apply multiple importance sampling
- challenge: photon mapping has one more vertex (x'_2 in this case), can't compare PDFs
- idea: perturb the bidirectional path tracing vertex to match, approximate perturbation probability as $\frac{1}{\pi r^2}$

Light Transport Simulation with Vertex Connection and Merging

Iliyan Georgiev* Saarland University Intel VCI, Saarbrücken

Jaroslav Křivánek[†] Charles University, Prague

Tomaś Davidovič[‡] Saarland University Intel VCI, Saarbrücken

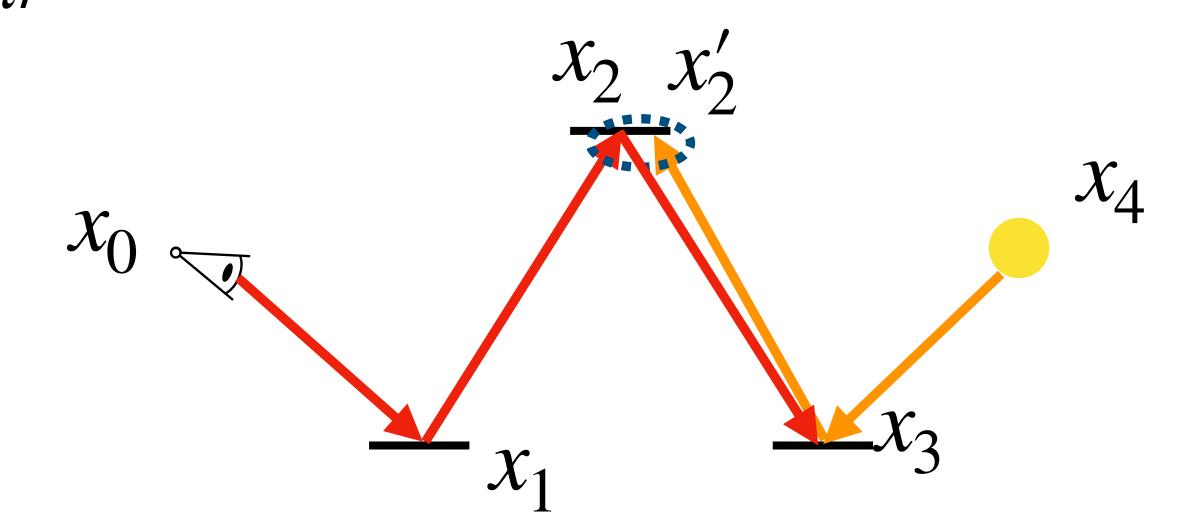
Philipp Slusallek[§] Saarland University Intel VCI & DFKI, Saarbrücken

A Path Space Extension for Robust Light Transport Simulation

Toshiya Hachisuka^{1,3} ¹Aarhus University

Jacopo Pantaleoni² ²NVIDIA Research Henrik Wann Jensen³ ³UC San Diego

path tracing: $x_0x_1x_2x_3x_4$ photon mapping: $x_0x_1x_2x_2'x_3x_4$



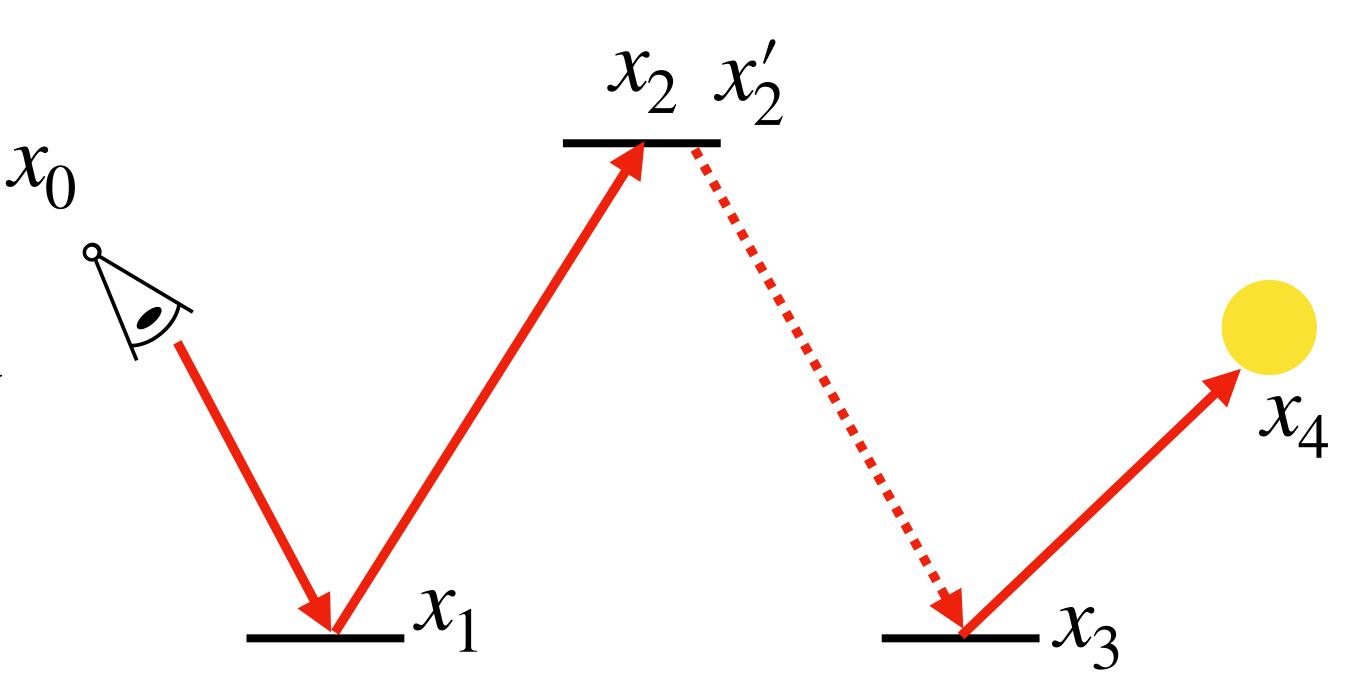
Photon mapping is good at SDS paths BPT is better at non SDS paths

Can we make photon mapping unbiased?

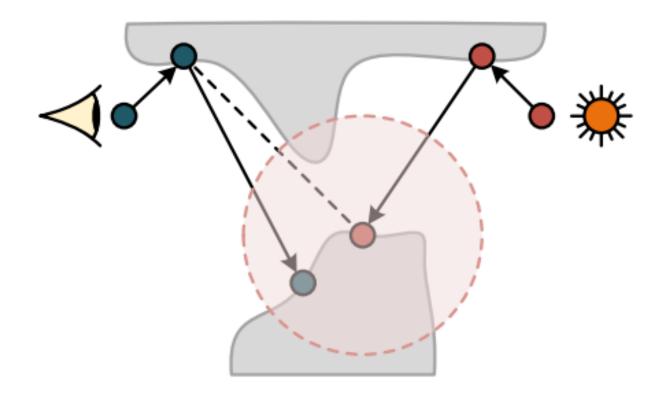
- surprisingly yes!
 - recall: blurring the integrand doesn't change the integral if the kernel is properly normalized
- why is photon mapping biased?
 - it usually uses fake BSDF & visibility
 - kernel is not normalized w.r.t. visibility

Unbiased Photon Gathering for Light Transport Simulation

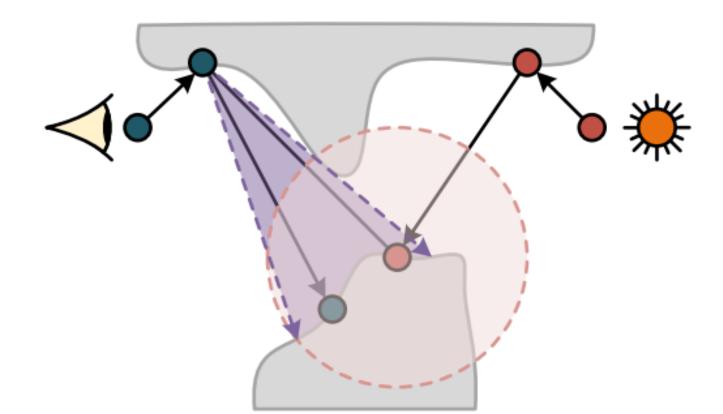
Hao Qin* Xin Sun[†] Qiming Hou^{*‡} Baining Guo[†] Kun Zhou* [†]Microsoft Research Asia * State Key Lab of CAD&CG, Zhejiang University



Unbiased photon mapping: trace rays to the photon to debias



photon mapping

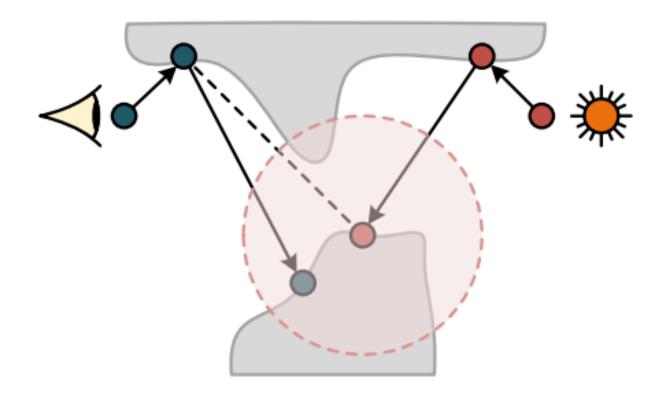


unbiased photon mapping

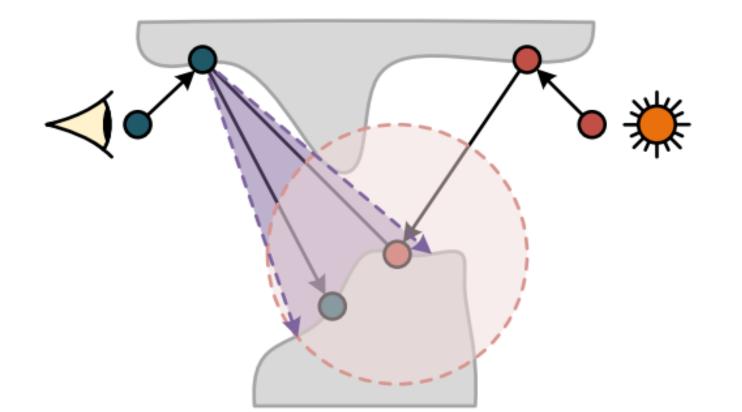
 $\int_{\text{surface light paths}} k(x_2, x'_2) f(\bar{x}') d\bar{x} dx'_2$

 $\approx \frac{k(x_2, x_2')f(\bar{x}')}{p(x_0 \to x_1 \to x_2)p(x_4 \to x_3 \to x_2')\int k(x_2, x_2')dx_2'}$

Unbiased photon mapping: trace rays to the photon to debias



photon mapping



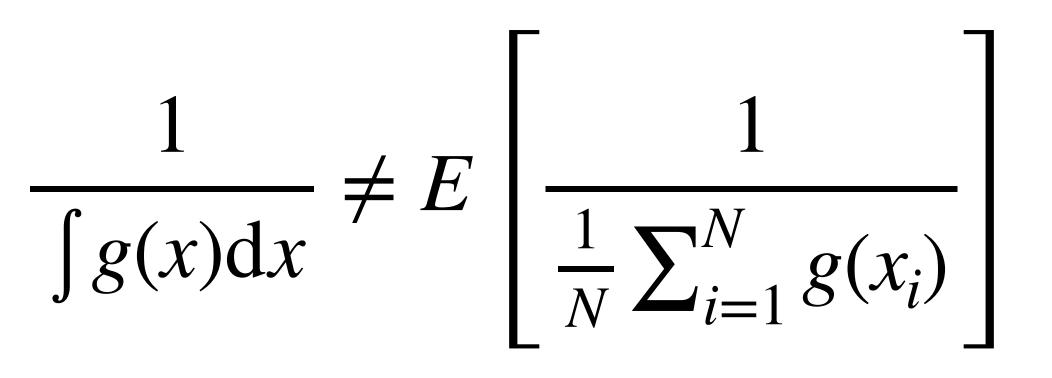
unbiased photon mapping

 $\int_{\text{surface}} \int_{\text{light paths}} k(x_2, x_2') f(\bar{x}') d\bar{x} dx_2'$ $\approx \frac{k(x_2, x_2') f(\bar{x}')}{p(x_0 \to x_1 \to x_2) p(x_4 \to x_3 \to x_2')} \int k(x_2, x_2') dx_2'$

challenge: taking reciprocal of a Monte Carlo estimator leads to bias!

Unbiased estimation of a reciprocal integral

similar to the problem we faced when estimating transmittance



Unbiased estimation of a reciprocal integral

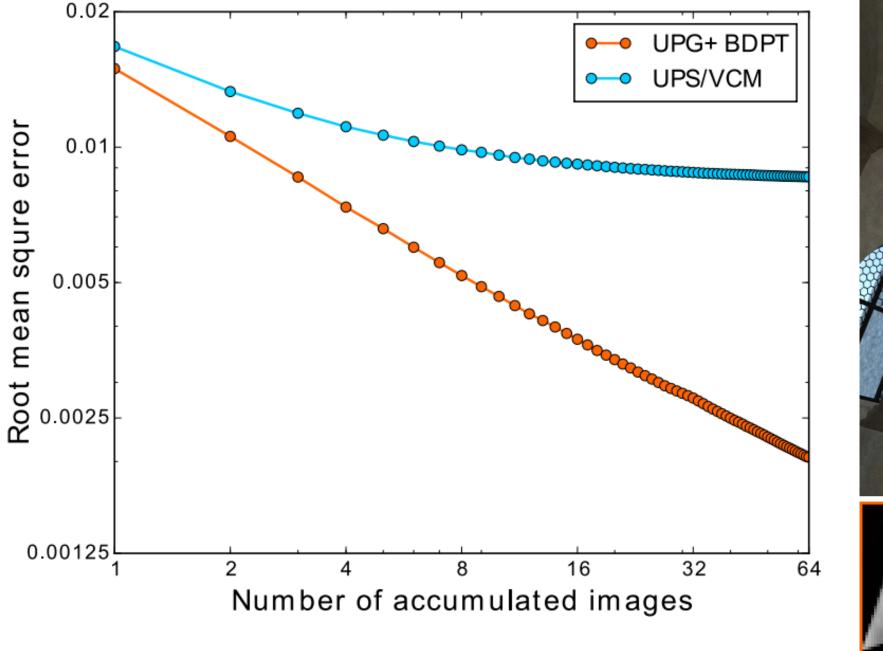
idea: rewrite the reciprocal using an infinite series

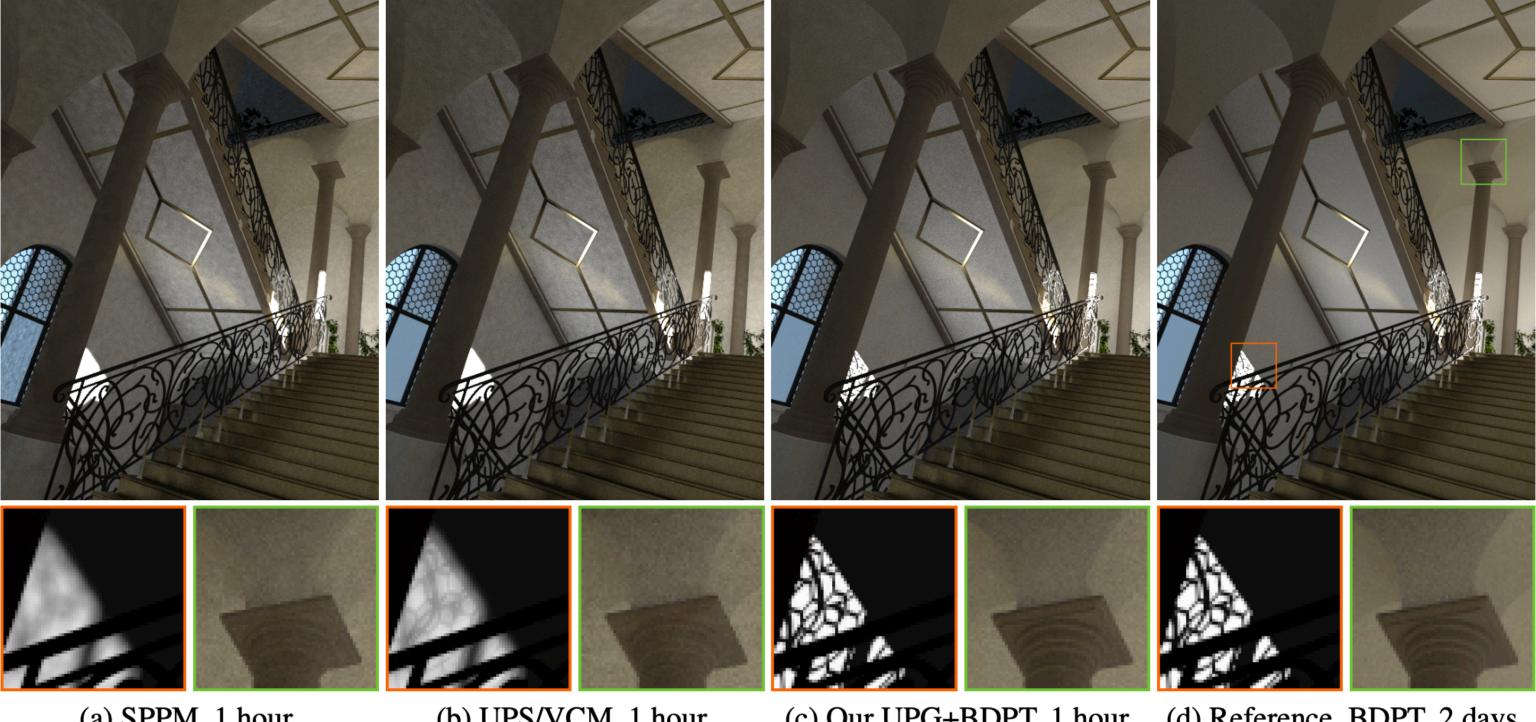
$$\frac{1}{\int g(x) \mathrm{d}x} = \frac{1}{1 - G}$$

can be estimated using Russian roulette

$= 1 + G + G^2 + \cdots$

Unbiased photon mapping converges faster, but can't do pure specular paths



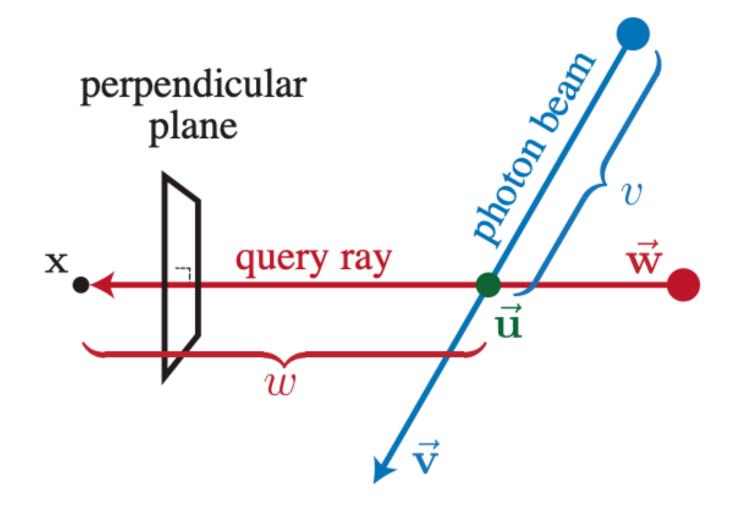


(a) SPPM, 1 hour

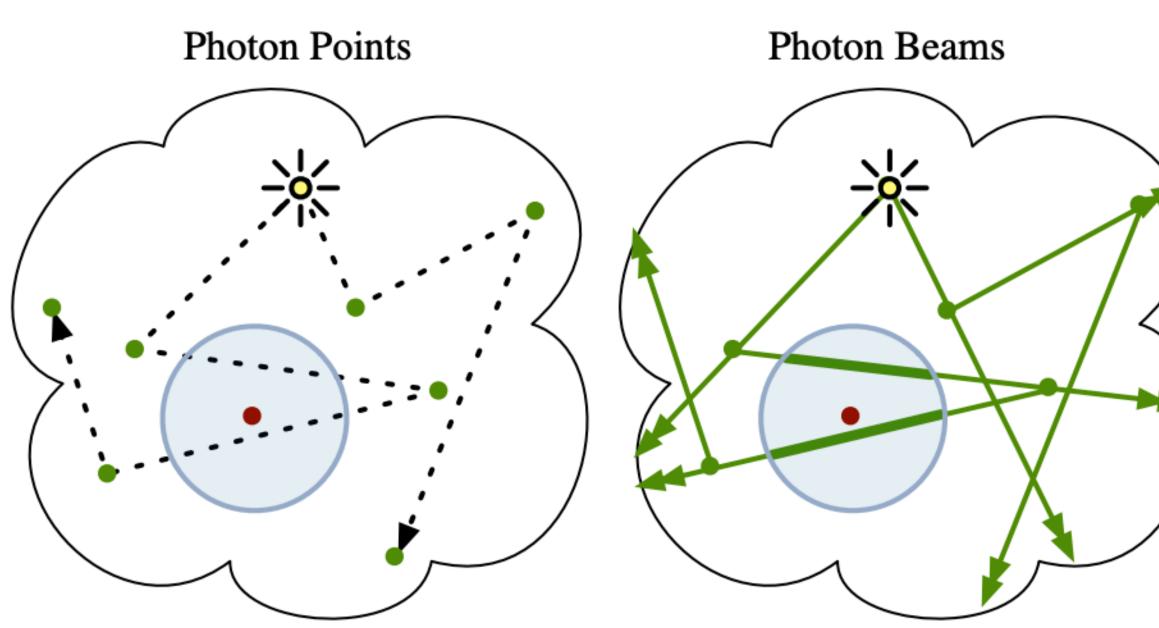
- (b) UPS/VCM, 1 hour
- (c) Our UPG+BDPT, 1 hour
- (d) Reference, BDPT, 2 days

Photon beams for volumetric rendering

- treat a light subpath as infinitely many photons
- treat a camera subpath as infinitely many query points



Robert Thomas¹ Wojciech Jarosz¹ Derek Nowrouzezahrai¹ ¹Disney Research Zürich ²Disney Interactive Studios



Progressive Photon Beams

Peter-Pike Sloan²

³University of Bern

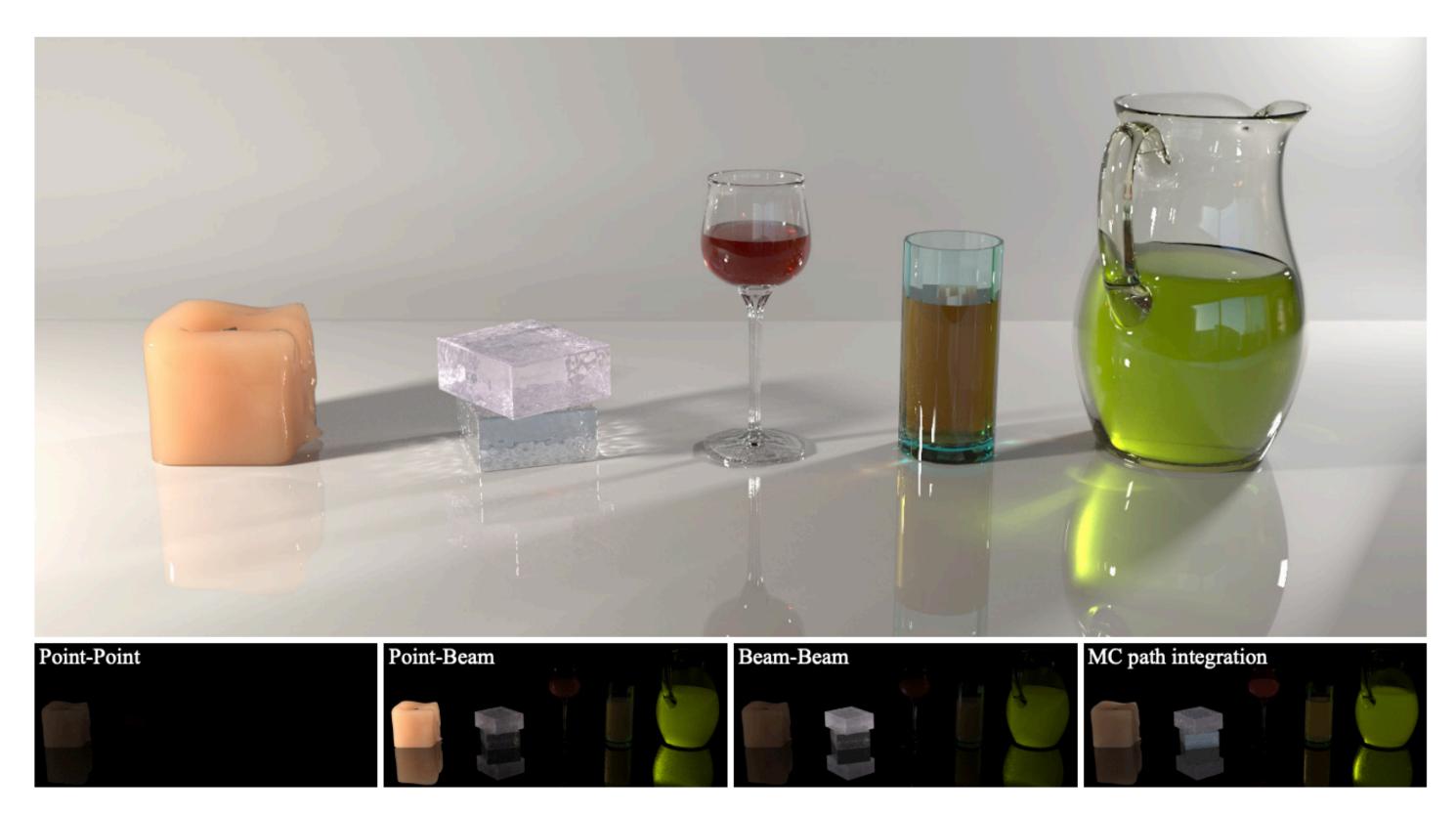
Combining photon beams, points, and bidirectional path tracing

Unifying Points, Beams, and Paths in Volumetric Light Transport Simulation

Jaroslav Křivánek¹

Iliyan Georgiev² Toshiya Hachisuka³ Martin Šik¹ Derek Nowrouzezahrai⁴ Wojciech Jarosz⁵

¹Charles University in Prague ²Light Transportation Ltd. ³Aarhus University ⁴Université de Montréal ⁵Disney Research Zürich



Petr Vévoda¹

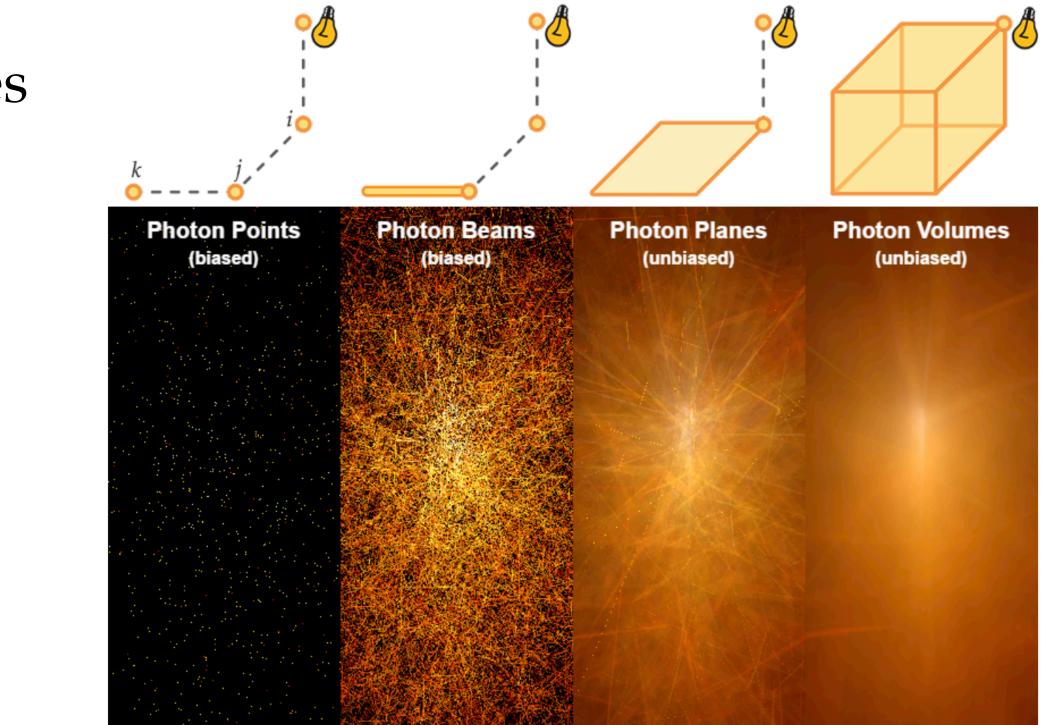
Photon planes and photon volumes

• infinitely many photons in planes & volumes

Beyond Points and Beams: Higher-Dimensional Photon Samples for Volumetric Light Transport

Benedikt Bitterli Wojciech Jarosz

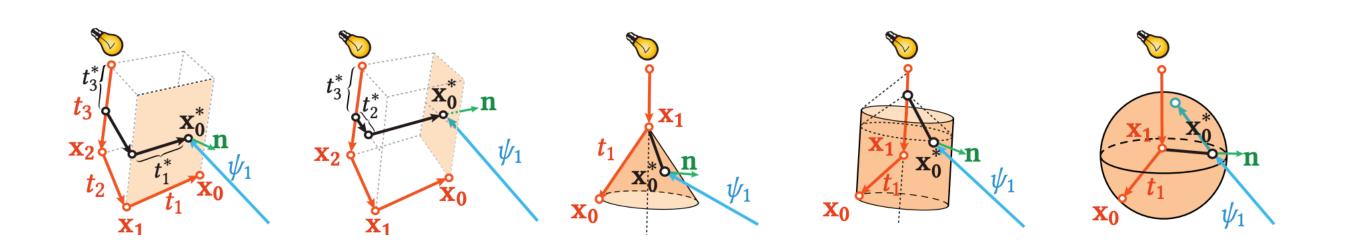
ACM Transactions on Graphics (Proceedings of SIGGRAPH), 36(4), July 2017



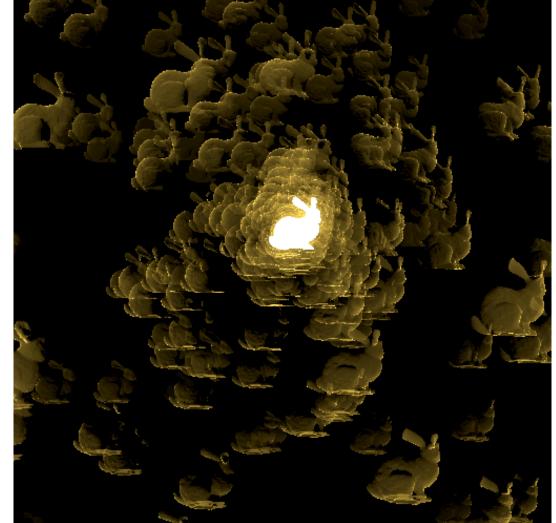
Photon cones/cylinders/spheres and photon bunnies Photon surfaces for robust, unbiased volumetric density estimation

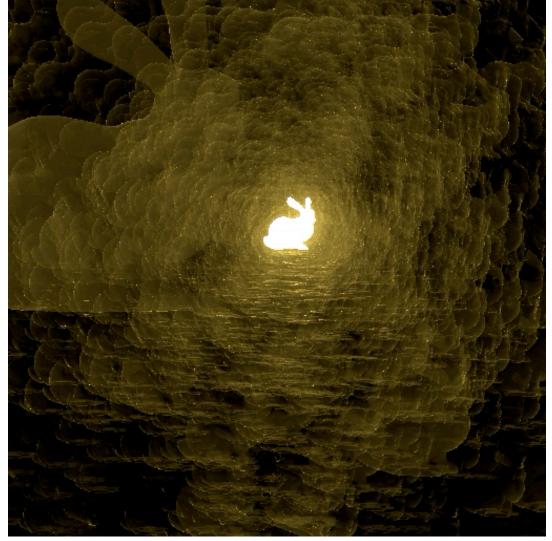
Xi Deng^{1C}

Shaojie Jiao¹



- Benedikt Bitterli¹ Wojciech Jarosz¹
- ¹Dartmouth College
- In ACM Transactions on Graphics (Proceedings of SIGGRAPH), 2019

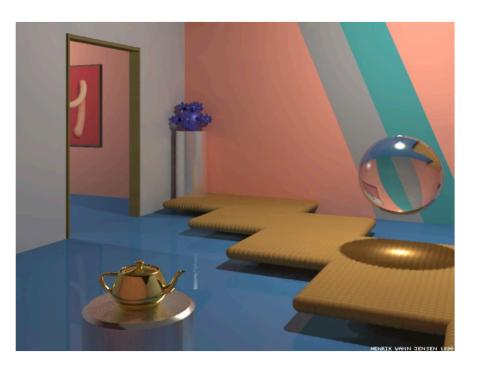




Global Illumination using Photon Maps

Henrik Wann Jensen

The Technical University of Denmark



1996

Efficient Simulation of Light Transport in Scenes with Participating Media using Photon Maps

Henrik Wann Jensen

Per H. Christensen

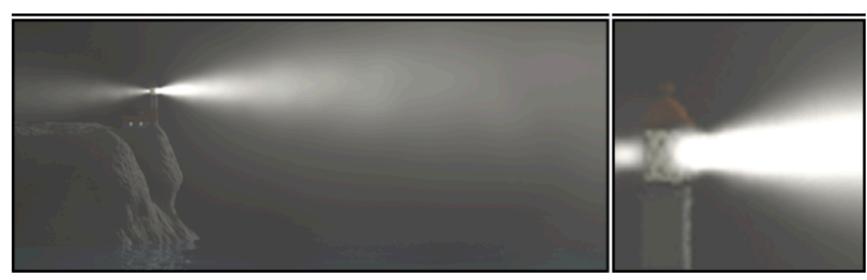
mental images^{*}

1998

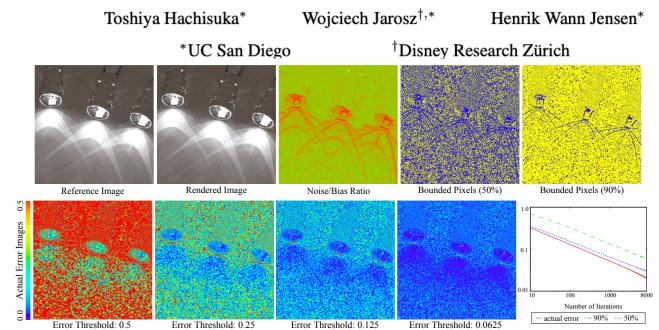
The beam radiance estimate for volumetric photon mapping

Wojciech Jarosz¹ Matthias Zwicker¹ Henrik Wann Jensen¹

¹UC San Diego



A Progressive Error Estimation Framework for Photon Density Estimation



2010

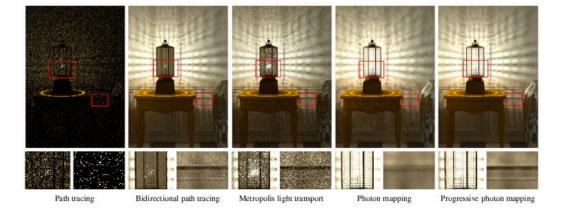
2008

History/biblography

Progressive Photon Mapping

Toshiya Hachisuka UC San Diego Shinji Ogaki The University of Nottingham

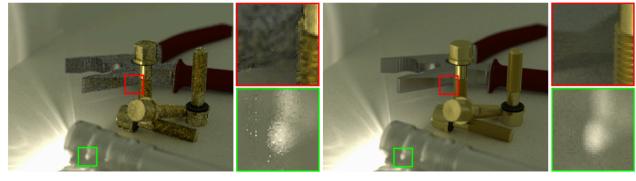
> Henrik Wann Jensen UC San Diego



2008

Stochastic Progressive Photon Mapping

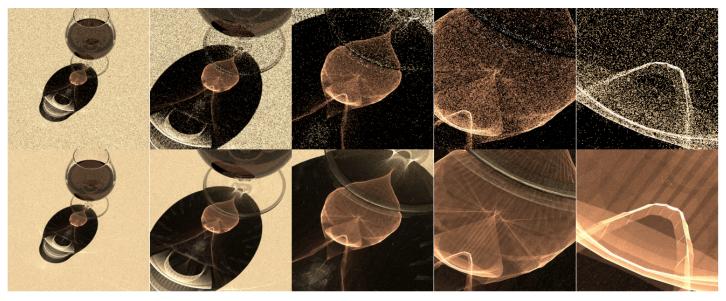
Henrik Wann Jensen Toshiya Hachisuka UC San Diego

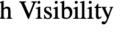


2009

Robust Adaptive Photon Tracing using Photon Path Visibility

TOSHIYA HACHISUKA and HENRIK WANN JENSEN University of California, San Diego





Anton S. Kaplanyan and Carsten Dachsbacher Karlsruhe Institute of Technology, Germany

2011

Jiating Chen^{1,2,3,4}, Bin Wang^{1,3,4} and Jun-Hai Yong^{1,3,4}

Improved Stochastic Progressive Photon Mapping with

Metropolis Sampling

Karlsruhe Institute of Technology 2012

Claude Knaus and Matthias Zwicker

Progressive Photon Relaxation

BEN SPENCER

MARK W. JONES

and

ANTON S. KAPLANYAN and CARSTEN DACHSBACHER

2011 University of Bern, Switzerland

Adaptive Progressive Photon Mapping

photon points and beams

A comprehensive theory of volumetric radiance estimation using

Visual and Interactive Computing Group, Swansea University

Into the Blue: Better Caustics through Photon Relaxation

B. Spencer and M. W. Jones

Wojciech Jarosz^{1,2} Derek Nowrouzezahrai^{1,3} Iman Sadeghi² Henrik Wann Jensen²

¹Disney Research Zürich ²UC San Diego ³University of Toronto

In ACM Transactions on Graphics (Presented at SIGGRAPH), 2011

Progressive Photon Mapping: A Probabilistic Approach

2009

*Microsoft Research Asia

Light Transport Simulation with Vertex Connection and Merging

Xin Sun*

Iliyan Georgiev* Saarland University Intel VCI, Saarbrücken

Jaroslav Křivánek[†] Charles University, Prague

2012

A Path Space Extension for Robust Light Transport Simulation

Toshiya Hachisuka^{1,3} ¹Aarhus University

Jacopo Pantaleoni² ²NVIDIA Research

roup, Swansea University, UK

History/biblography

Progressive Expectation–Maximization for hierarchical volumetric photon mapping

Wenzel Jakob^{1,2}^C Christian Regg^{1,3}^C Wojciech Jarosz¹

¹Disney Research Zürich ²Cornell University ³ETH Zürich

In Computer Graphics Forum (Proceedings of EGSR), 2011 **Our Method**

Beam Radiance Estimation [Jarosz et al. 2008]

Line Space Gathering for Single Scattering in Large Scenes

Kun Zhou[†] Stephen Lin* Baining Guo*

[†]State Key Lab of CAD&CG, Zhejiang University

2010

Progressive photon beams

Wojciech Jarosz¹ Derek Nowrouzezahrai^{1C} Robert Thomas¹ Peter-Pike Sloan^{2C} Matthias Zwick

Unifying points, beams, and paths in volumetric light transport simulation

Jaroslav Křivánek^{1C*} Iliyan Georgiev^{2C*} Toshiya Hachisuka^{3C*} Petr Vévoda¹ Martin Šik^{1C*} Derek Nowrouzezahrai⁴ Wojciech Jarosz⁵

¹Charles University, Prague ²Light Transportation Ltd. ³Aarhus University ⁴Université de Montréal ⁵Disney Research Zürich

In ACM Transactions on Graphics (Proceedings of SIGGRAPH), 2014

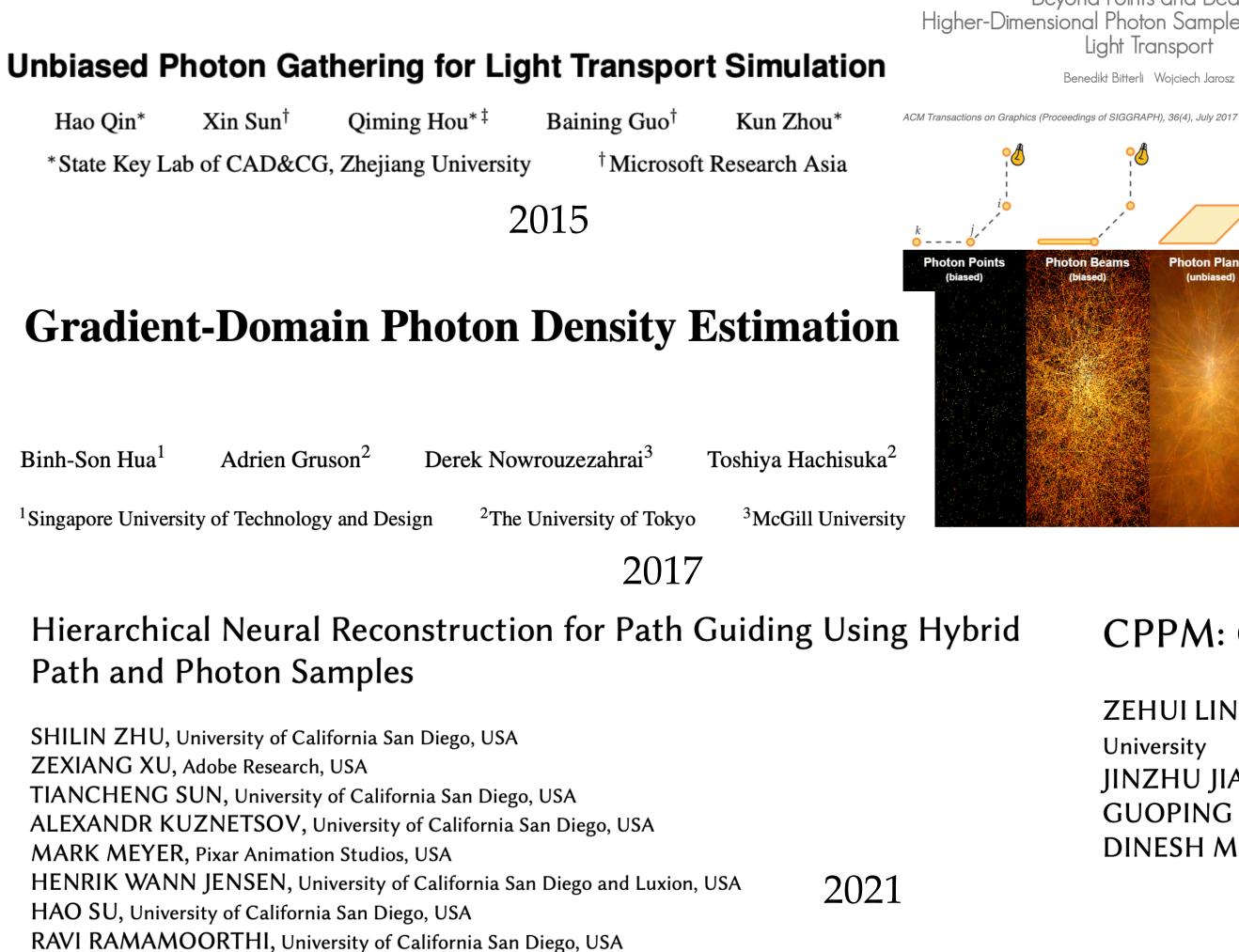
Tomaś Davidovič[‡] Saarland University Intel VCI, Saarbrücken

Philipp Slusallek[§] Saarland University Intel VCI & DFKI, Saarbrücken

Henrik Wann Jensen³ ³UC San Diego

2012

Path Space Regularization for Holistic and Robust Light Transport



History/biblography A Spatial Target Function For Metropolis Photon Tracing

Adrien Gruson, IRISA, University of Rennes 1, France Beyond Points and Beams: Mickael Ribardiere, XLIM-SIC, University of Poitiers, France Higher-Dimensional Photon Samples for Volumetric Martin Sik, Charles University, Czech Republic Light Transport Jiri Vorba, Charles University, Czech Republic Benedikt Bitterli Wojciech Jarosz Remi Cozot, IRISA, University of Rennes 1, France Kadi Bouatouch, IRISA, University of Rennes 1, France Jaroslav Krivanek, Charles University, Czech Republic In ACM Trans. Graph, 2016 (Presented at Siggraph 2017). Photon surfaces for robust, unbiased volumetric density estimation Shaojie Jiao¹ Benedikt Bitterli¹ Wojciech Jarosz¹ Xi Deng^{1C*} Photon Planes Photon Volun ¹Dartmouth College In ACM Transactions on Graphics (Proceedings of SIGGRAPH), 2019 Var: 0.024× MIS (11, t), (0, t), (11, 0)-planes Beams Var: 0.389× 3-planes, cones, cylinders **OD** Plane

CPPM: Chi-squared Progressive Photon Mapping

ZEHUI LIN, SHENG LI*, XINLU ZENG, and CONGYI ZHANG, Dept. of Computer Science and Technology, Peking University

JINZHU JIA, Dept. of Biostatistics and Center for Statistical Science, Peking University

GUOPING WANG, Dept. of Computer Science and Technology, Peking University

DINESH MANOCHA, University of Maryland at College Park

2020

Next time: Metropolis light transport

