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Idea 2: share light subpaths among 
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Math formulation:  
blurring path contribution

∫light paths
f(x̄)dx̄ ∫surface ∫light paths

k(x2, x′ 2)f(x̄′ )dx̄dx′ 2

: convolution kernelk
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Sidetrack: blurring an integrand does *not* 
necessarily change its integral!

∫ f(x)dx = ̂f(0)

recall: integration = taking DC in frequency domain

∫ ∫ k(x, y)f(x)dxdy = ̂f(0) ̂k(0)

blurring = multiply the DCs in frequency domain

as long as , the integral is preserved!̂k(0) = 1



Photon mapping: estimating 
the blurring integral using camera subpaths & light subpaths

∫surface ∫light paths
k(x2, x′ 2)f(x̄′ )dx̄dx′ 2 ≈

k(x2, x′ 2)f(x̄′ )
p(x0 → x1 → x2)p(x4 → x3 → x′ 2)
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Density estimation interpretation of 
photon mapping

L(x, ω) ≈
1
N

N

∑
i=1

k(xi, x)γi

• reconstructing radiance at position  using randomly sampled photons at position x xi

ω
γi

x

important: 
N = all photons, not just photon nearby to x!

photon contribution * BSDF(x)
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Bias-variance trade-off in photon mapping
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how do we analyze the effect of the interpolation radius?
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Bias-variance analysis of photon mapping

Observation:
• variance reduces with N, bias does not
• bias increases with r, but variance reduces with r

quiz: is photon mapping a consistent estimator?

bias ∝ r2 variance ∝
1

Nr2
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Epanechnikov kernel minimizes the variance

variance ≈ (Var[γ] + E[γ]2) p(x)
Nr2 ∫ k(t)2dt

1
r2 ∫ k(t)dt = 1 ∫ tk(t)dt = 0

k(t) =
3

4 5 (1 − 1
5

t2) − 5 ≤ t ≤ 5

0 otherwise

Silverman 1986

s.t.

minimize ∫ k(t)2dt



Progressive photon mapping: 
a consistent photon mapping estimator

L ≈
1
N

N

∑
i=1

1
r2

k ( xi − x
r ) γi

can we eliminate bias when N goes to infinity?

bias ∝ r2

variance ∝
1

Nr2
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Progressive photon mapping: 
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goal: decrease  so that bias goes to 0,  
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Progressive photon mapping: 
a consistent photon mapping estimator

goal: decrease  so that bias goes to 0,  
but variance does not go to infinity

r idea: set  such that  ri
r2
i+1

r2
i

=
i + α
i + 1

( )α ∈ (0,1)

Var =
1

N2 ∑
i

Vari = O (N−α) Bias =
1
N ∑

i

Biasi = O (N1−α)

 gives optimal mean square error = bias^2 + varianceα =
2
3
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Alternative: directly set  to minimize 
mean square error

r

bias ≈ r2E[γ]∫ tTHp(x)tdt

mean square error = bias^2 + variance

Anton’s method Anton’s method

variance ≈ (Var[γ] + E[γ]2) p(x)
Nr2 ∫ k(t)2dt
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Combining with bidirectional path tracing
(VCM/UPS)

• apply multiple importance sampling

• challenge: photon mapping has one more vertex (  in this case), can’t compare PDFs

• idea: perturb the bidirectional path tracing vertex to match,  

approximate perturbation probability as 

x′ 2

1
πr2

x0

x1

x2

x3

x4

x′ 2

path tracing: 
photon mapping: 

x0x1x2x3x4
x0x1x2x′ 2x3x4



Photon mapping is good at SDS paths
BPT is better at non SDS paths



Can we make photon mapping 
unbiased?

• surprisingly — yes!

• recall: blurring the integrand doesn’t change the integral if the kernel is properly 
normalized

• why is photon mapping biased?

• it usually uses fake BSDF & visibility

• kernel is not normalized w.r.t. visibility

x0

x1

x2

x3

x4

x′ 2



Unbiased photon mapping: 
trace rays to the photon to debias

∫surface ∫light paths
k(x2, x′ 2)f(x̄′ )dx̄dx′ 2

≈
k(x2, x′ 2)f(x̄′ )

p(x0 → x1 → x2)p(x4 → x3 → x′ 2) ∫ k(x2, x′ 2)dx′ 2

photon mapping

unbiased photon mapping



Unbiased photon mapping: 
trace rays to the photon to debias

∫surface ∫light paths
k(x2, x′ 2)f(x̄′ )dx̄dx′ 2

≈
k(x2, x′ 2)f(x̄′ )

p(x0 → x1 → x2)p(x4 → x3 → x′ 2) ∫ k(x2, x′ 2)dx′ 2

photon mapping

unbiased photon mapping

challenge: taking reciprocal of a Monte Carlo estimator leads to bias!



Unbiased estimation of a reciprocal integral

1
∫ g(x)dx

≠ E
1

1
N ∑N

i=1 g(xi)

similar to the problem we faced when estimating transmittance



Unbiased estimation of a reciprocal integral

1
∫ g(x)dx

=
1

1 − G
= 1 + G + G2 + ⋯

can be estimated using Russian roulette

idea: rewrite the reciprocal using an infinite series



Unbiased photon mapping converges faster, 
but can’t do pure specular paths



Photon beams for volumetric rendering
• treat a light subpath as infinitely 

many photons

• treat a camera subpath as infinitely 
many query points



Combining photon beams, points, and 
bidirectional path tracing



Photon planes and photon volumes

• infinitely many photons in planes & volumes



Photon cones/cylinders/spheres and  
photon bunnies
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Next time: Metropolis light transport


