Path-space \&
 bidirectional path tracing

UCSD CSE 272
Advanced Image Synthesis

Tzu-Mao Li

Path tracing vs light tracing

Next event estimation

Combining path tracing \& light tracing

How many ways we can sample a light path with 5 vertices?

How many ways we can sample a light path with 5 vertices?

Path-space formulation for rendering

ROBUST MONTE CARLO METHODS

FOR LIGHT TRANSPORT SIMULATION

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Idea: rewrite rendering equation as an integral over paths

$\int_{\text {light paths }} f(\bar{x}) \mathrm{d} \bar{x}$

- what is a path \bar{x} ?
- what is the path contribution f ?

- how do we importance sample light paths?

Path: a sequence of vertices

x_{i} : a 3D position
$\mathrm{d} x_{i}$: a small 2D surface area around the vertex

$$
\int_{\text {light paths }} f(\bar{x}) \mathrm{d} \bar{x}
$$

Path contribution

geometry term
$f(\bar{x})=W\left(x_{0} \rightarrow x_{1}\right) G\left(x_{0} \leftrightarrow x_{1}\right) \rho\left(x_{0} \rightarrow x_{1} \rightarrow x_{2}\right) G\left(x_{1} \leftrightarrow x_{2}\right) \rho\left(x_{1} \rightarrow x_{2} \rightarrow x_{3}\right) G\left(x_{2} \leftrightarrow x_{3}\right) \rho\left(x_{2} \rightarrow x_{3} \rightarrow x_{4}\right) G\left(x_{3} \leftrightarrow x_{4}\right) L_{e}\left(x_{3} \rightarrow x_{4}\right)$
pixel filter \& camera sensitivity

BSDF \& cosine

Observation: BSDF importance sampling cancels out ρ and G

$$
f(\bar{x})=W\left(x_{0} \rightarrow x_{1}\right) G\left(x_{0} \leftrightarrow x_{1}{ }_{l} \rho\left(x_{0} \rightarrow x_{1} \rightarrow x_{2}\right) G\left(x_{1} \leftrightarrow x_{2}\right) \rho\left(x_{1} \rightarrow x_{2} \rightarrow x_{3}\right) G\left(x_{2} \leftrightarrow x_{3}\right) \rho\left(x_{2} \rightarrow x_{3} \rightarrow x_{4}\right) G\left(x_{3} \leftrightarrow x_{4}\right) L_{e}\left(x_{3} \rightarrow x_{4}\right)\right.
$$

Path tracing without next event estimation: importance sampling everything except Le

$$
f(\bar{x})=W\left(x_{0} \rightarrow x_{1}\right) G\left(x_{0} \leftrightarrow x_{1}\right) \rho\left(x_{0} \rightarrow x_{1} \rightarrow x_{2}\right) G\left(x_{1} \leftrightarrow x_{2}\right) \rho\left(x_{1} \rightarrow x_{2} \rightarrow x_{3}\right) G\left(x_{2} \leftrightarrow x_{3}\right) \rho\left(x_{2} \rightarrow x_{3} \rightarrow x_{4}\right) G\left(x_{3} \leftrightarrow x_{4} L_{e}\left(x_{3} \rightarrow x_{4}\right)\right.
$$

quiz: when will this be a good / bad strategy?

Path tracing with next event estimation

quiz: when will this be a good / bad strategy?

Light tracing with next event estimation

$$
f(\bar{x})=W\left(x_{0} \rightarrow x_{1}\right) G\left(x_{0} \leftrightarrow x_{1}\right) \rho\left(x_{0} \rightarrow x_{1} \rightarrow x_{2}\right) G\left(x_{1} \leftrightarrow x_{2}\right) \rho\left(x_{1} \rightarrow x_{2} \rightarrow x_{3}\right) G\left(x_{2} \leftrightarrow x_{3}\right) \rho\left(x_{2} \rightarrow x_{3} \rightarrow x_{4}\right) G\left(x_{3} \leftrightarrow x_{4}\right) L_{e}\left(x_{3} \rightarrow x_{4}\right)
$$

quiz: when will this be a good / bad strategy?

Light tracing without next event estimation

$$
f(\bar{x})=W\left(x_{0} \rightarrow x_{1}\right) G\left(x_{0} \leftrightarrow x_{1}\right) \rho\left(x_{0} \rightarrow x_{1} \rightarrow x_{2}\right) G\left(x_{1} \leftrightarrow x_{2}\right) \rho\left(x_{1} \rightarrow x_{2} \rightarrow x_{3}\right) G\left(x_{2} \leftrightarrow x_{3}\right) \rho\left(x_{2} \rightarrow x_{3} \rightarrow x_{4}\right) G\left(x_{3} \leftrightarrow x_{4}\right) L_{e}\left(x_{3} \rightarrow x_{4}\right)
$$

quiz: when will this be a good / bad strategy?

Hybrid path tracing \& light tracing

$$
f(\bar{x})=W\left(x_{0} \rightarrow x_{1}\right) G\left(x_{0} \leftrightarrow x_{1}\right) \rho\left(x_{0} \rightarrow x_{1} \rightarrow x_{2}\right) G\left(x_{1} \leftrightarrow x_{2} \rho\left(x_{1} \rightarrow x_{2} \rightarrow x_{3}\right) G\left(x_{2} \leftrightarrow x_{3}\right) \rho\left(x_{2} \rightarrow x_{3} \rightarrow x_{4}\right) G\left(x_{3} \leftrightarrow x_{4}\right) L_{e}\left(x_{3} \rightarrow x_{4}\right)\right.
$$

quiz: when will this be a good / bad strategy?

Local path sampling strategy

- two sampling operations
- sample a point on camera or light
- BSDF importance sampling

6 ways to sample path length $=4$

- combine all of them using multiple importance sampling!

camera vertices count $=5$
light vertices count $=0$

camera vertices count $=2$
light vertices count $=3$

camera vertices count $=4$
light vertices count $=1$

camera vertices count $=1$
light vertices count $=4$

camera vertices count $=3$ light vertices count $=2$

camera vertices count $=0$ light vertices count $=5$

Veach's bidirectional path tracing scene

quiz: which strategy is good at which region?

Bidirectional path tracing: combine all sampling

path length $=2$
path length $=3$
path length $=4$
path length $=5$

Walkthrough of a bidirectional path tracer

https://cs.uwaterloo.ca/~thachisu/smallpssmlt.cpp

Handling non-symmetric BSDFs

path tracing integral

$$
f\left(\omega, \omega^{\prime}\right) \neq f\left(\omega^{\prime}, \omega\right)
$$

$$
L=L_{e}+\int_{S^{2}} L f\left(\omega, \omega^{\prime}\right) \mid \omega^{\prime}
$$

light tracing integral

$$
W=W_{e}+\int_{S^{2}} u f\left(\omega^{\prime}, \omega\right) \vec{d} \omega^{\prime}
$$

Handling non-symmetric BSDFs

path tracing integral

$$
L=L_{e}+\int_{S^{2}} L f\left(\omega, \omega^{\prime}\right) \mathrm{d} \omega^{\prime}
$$

$$
f\left(\omega, \omega^{\prime}\right) \neq f\left(\omega^{\prime}, \omega\right)
$$

light tracing integral
define the adjoint of a BSDF

$$
f^{*}\left(\omega, \omega^{\prime}\right)=f\left(\omega^{\prime}, \omega\right)
$$

$$
W=W_{e}+\int_{S^{2}} W f^{*}\left(\omega, \omega^{\prime}\right) \mathrm{d} \omega^{\prime}
$$

When is a BSDF non-symmetric?

- refraction

$$
\frac{f\left(\omega_{\text {in }}, \omega_{\text {out }}\right)}{\eta_{\text {out }}}=\frac{f\left(\omega_{\text {out }}, \omega_{\text {in }}\right)}{\eta_{\text {in }}}=\frac{f^{*}\left(\omega_{\text {in }}, \omega_{\text {out }}\right)}{\eta_{\text {in }}}
$$

Using wrong BSDFs lead to wrong results

(a)

When is a BSDF non-symmetric?

- shading normal

$$
\begin{gathered}
\rho\left(\omega_{i}, \omega_{o}\right)=f_{s}\left(\omega_{i}, \omega_{o}\right) \frac{\left|N_{s} \cdot \omega_{o}\right|}{\left|N_{g} \cdot \omega_{o}\right|} \\
\rho\left(\omega_{o}, \omega_{i}\right)=f_{s}\left(\omega_{i}, \omega_{o}\right) \frac{\left|N_{s} \cdot \omega_{i}\right|}{\left|N_{g} \cdot \omega_{i}\right|}
\end{gathered}
$$

Shading normals violate conservation of energy

Figure 5.9: (a) A flat, diffuse surface facing toward a point light source, with $\mathbf{N}_{\mathrm{s}}=\mathbf{N}_{\mathrm{g}}$. The surface is assumed to not to absorb any light, so that the incident and reflected power is the same. (b) A ridged surface with shading normals that point toward the light. It receives the same power as (a), but reflects far more due to its larger surface area.

Limitations of local sampling strategies

Limitations of local sampling strategies

Limitations of local sampling strategies

Limitations of local sampling strategies

Theorem: no local sampling strategy can handle light paths that don't have consecutive " D "s
with pinhole cameras \& point lights
diffuse

pinhole camera

 surement contribution function is non-zero. Then \bar{x} necessarily has the form

$$
L(S \mid D)^{*} D D(S \mid D)^{*} E,
$$

(specular)

SDS light paths

- caustics seen through a mirror or glass

Progressive Photon Mapping

Toshiya Hachisuka	Shinji Ogaki	Henrik Wann Jense
UC San Diego	The University of Nottingham	UC San Diego

more about photon mapping next time

"Non-local" path sampling

- more about them in the future lectures

Illumination from Curved Reflectors
Don Mitchell \dagger
Pat Hanrahan \ddagger
\dagger AT\&T Bell Laboratories
$\ddagger \dagger$ Princeton University

Single Scattering in Refractive Media with Triangle Mesh Boundaries

Bruce Walter
Cornell University

Shuang Zhao
Cornell Universit Cornell University

Nicolas Holzschuch INRIA - LJK

Manifold Exploration: A Markov Chain Monte Carlo Technique for Rendering Scenes with Difficult Specular Transport

Wenzel Jakob Steve Marschner
In ACM Transactions on Graphics (Proceedings of SIGGRAPH 2012)

Specular Manifold Sampling for Rendering High-Frequency Caustics and Glints

Tri-directional path tracing

Bidirectional Path Tracing, 64 spp

Our Tridirectional Path Tracing, 64 spp

Aether: An Embedded Domain Specific Sampling Language for Monte Carlo Rendering

LUKE ANDERSON, MIT CSAIL
TZU-MAO LI, MIT CSAIL
JAAKKO LEHTINEN, Aalto University and NVIDIA
FRÉDO DURAND, MIT CSAIL and Inria, Université Côte d'Azur

Path integral for volumetric rendering

quiz: how do we modify the following surface path contribution to take volumes into consideration?

$$
f(\bar{x})=W\left(x_{0} \rightarrow x_{1}\right) G\left(x_{0} \leftrightarrow x_{1}\right) \rho\left(x_{0} \rightarrow x_{1} \rightarrow x_{2}\right) G\left(x_{1} \leftrightarrow x_{2}\right) \cdots
$$

Path integral for volumetric rendering

transmittance

$$
f(\bar{x})=W\left(x_{0} \rightarrow x_{1}\right) G\left(x_{0} \leftrightarrow x_{1}\right) T\left(x_{0} \leftrightarrow x_{1}\right) \rho\left(x_{0} \rightarrow x_{1} \rightarrow x_{2}\right) G\left(x_{1} \leftrightarrow x_{2}\right) T\left(x_{1} \leftrightarrow x_{2}\right) \cdots
$$

$G(x, y)$ doesn't have the cosine term if y is in volume

Metropolis Light Transport for Participating
 Media

Mark Pauly
ETH Zürich pauly@inf.ethz.c

Thomas Kollig
University of Kaiserslautern
\{kollig, keller\}@informatik.uni-kl.de

Manifold Exploration:
A Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport

Expanded Technical Report
Wenzel Jakob Steve Marschner

Operator formulation of rendering

- rendering $=$ linear functions operate on 4D surface light fields

Rendering = solving equilibrium of a linear operator

$$
\begin{aligned}
& L=L_{e}+\mathbf{T} L \\
& L=(\mathbf{I}-\mathbf{T})^{-1} L_{e}
\end{aligned}
$$

Rendering = solving equilibrium of a linear operator

$$
\begin{array}{r}
L=L_{e}+\mathbf{T} L \\
L=(\mathbf{I}-\mathbf{T})^{-1} L_{e} \\
L=L_{e}+T L_{e}+T^{2} L_{e}+\cdots
\end{array}
$$

Operator formulation can be used for studying inverse rendering

$$
L=L_{e}+\mathbf{T} L
$$

goal: given L and L_{e} solve \mathbf{T}

A Theory of Inverse Light Transport

Yasuyuki Matsushita

 Microsoft Research AsiaKiriakos N. Kutulakos* University of Toronto

On the Duality of Forward and Inverse Light Transport
Manmohan Chandraker, Jiamin Bai, Tian-Tsong Ng and Ravi Ramamoorthi

Antiradiance: adding a "pass through" operator can speedup rendering

- warning: Neumann series may not converge under this formulation

(b) New Rendering Equation with Implicit Visibility and Antiradiance

Implicit Visibility and Antiradiance for Interactive Global Illumination

Functional analysis of the light transport operator

$$
\boldsymbol{L}=\boldsymbol{L}_{\boldsymbol{e}}+\mathbf{T} \boldsymbol{L} \longrightarrow\left[\begin{array}{c}
L_{1} \\
L_{2} \\
\vdots \\
L_{n}
\end{array}\right]=\left[\begin{array}{c}
L_{e_{1}} \\
L_{e_{2}} \\
\vdots \\
L_{e_{n}}
\end{array}\right]+\left[\begin{array}{cccc}
T_{1,1} & T_{1,1} & \cdots & T_{1, n} \\
T_{2,1} & T_{2,1} & \cdots & T_{2, n} \\
& \vdots & & \\
T_{n, 1} & T_{1,1} & \cdots & T_{n, n}
\end{array}\right]\left[\begin{array}{c}
L_{1} \\
L_{2} \\
\vdots \\
L_{n}
\end{array}\right]
$$

finite dimensional

Soler et al.: the error can be unbounded over arbitrary L_{e} because T is not "compact"

The Role of Functional Analysis in Global Illumination
James Arvo
Program of Computer Graphics
Cornell University
Ithaca, NY 14853

A Theoretical Analysis of Compactness of the Light Transport Operator
CYRIL SOLER, INRIA - Grenoble University, France
RONAK MOLAZEM, INRIA - Grenoble University, France
KARTIC SUBR, University of Edinburgh, UK

Next: photon mapping

Global Illumination using Photon Maps

Henrik Wann Jensen
The Technical University of Denmark

A simple museum scene rendered with photon mapping
Note the caustic below the glass sphere, the glossy reflections, and the overall quality of the global illumination.

