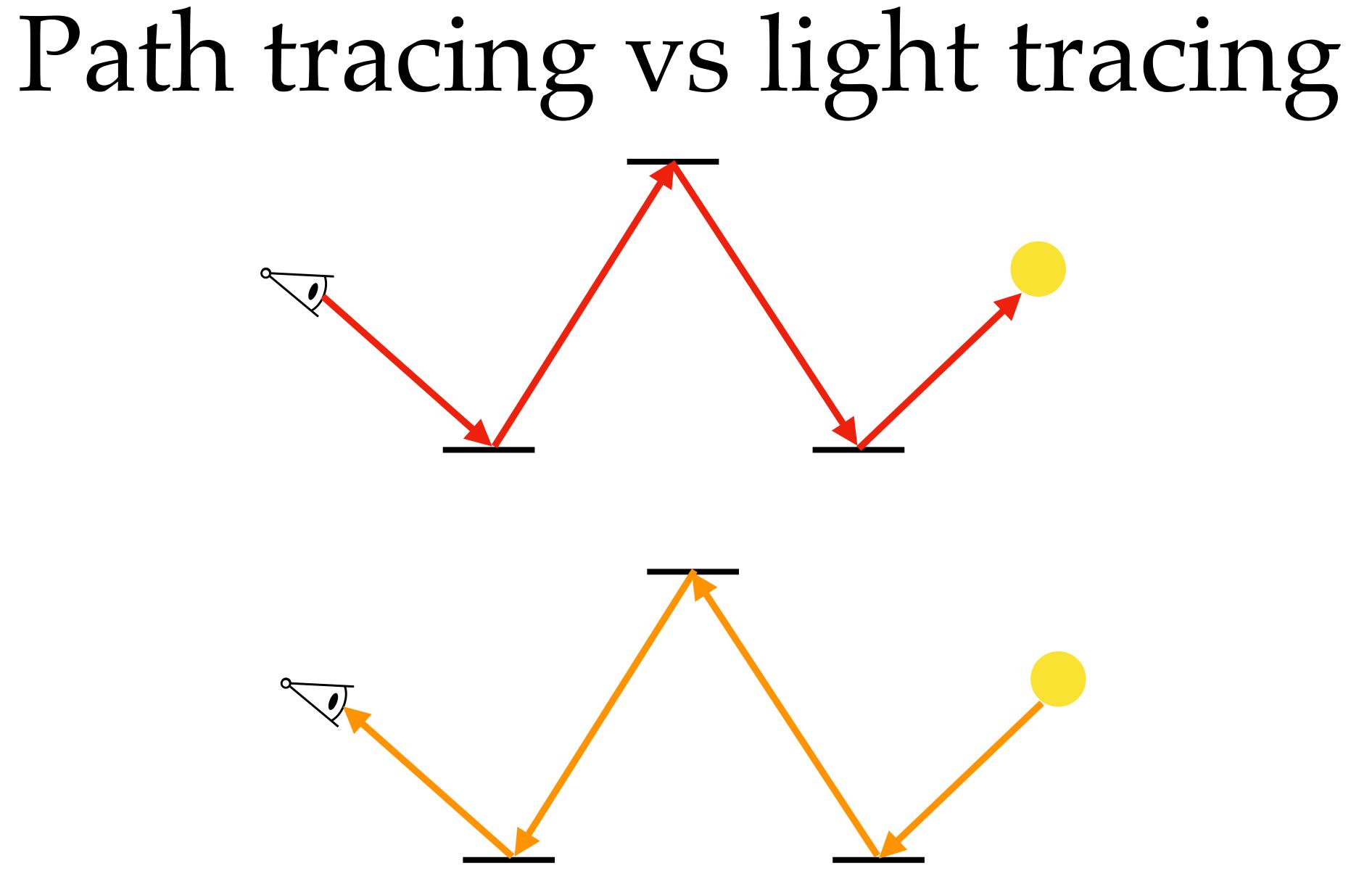
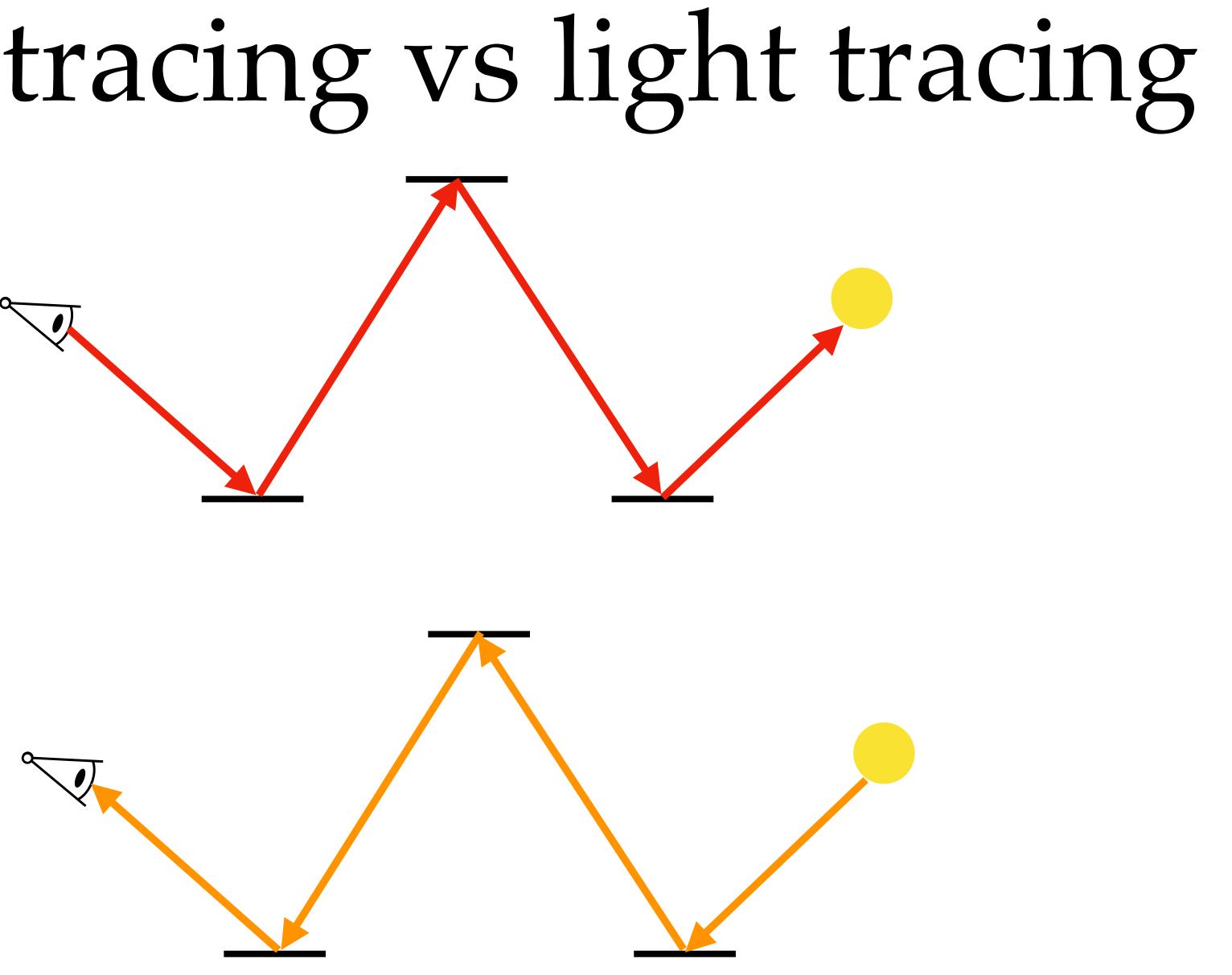
Path-space & bidirectional path tracing

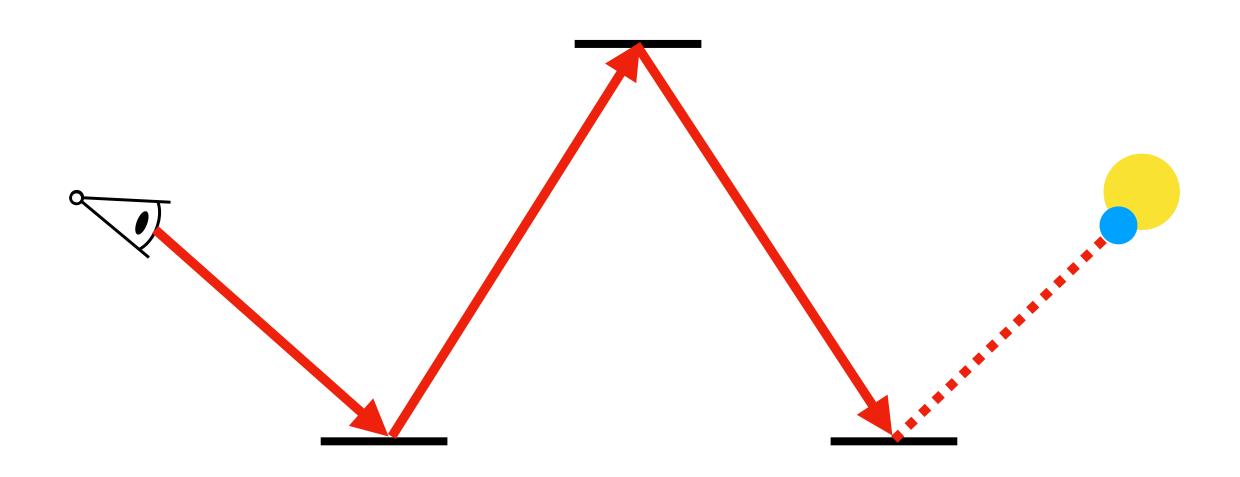
UCSD CSE 272 Advanced Image Synthesis

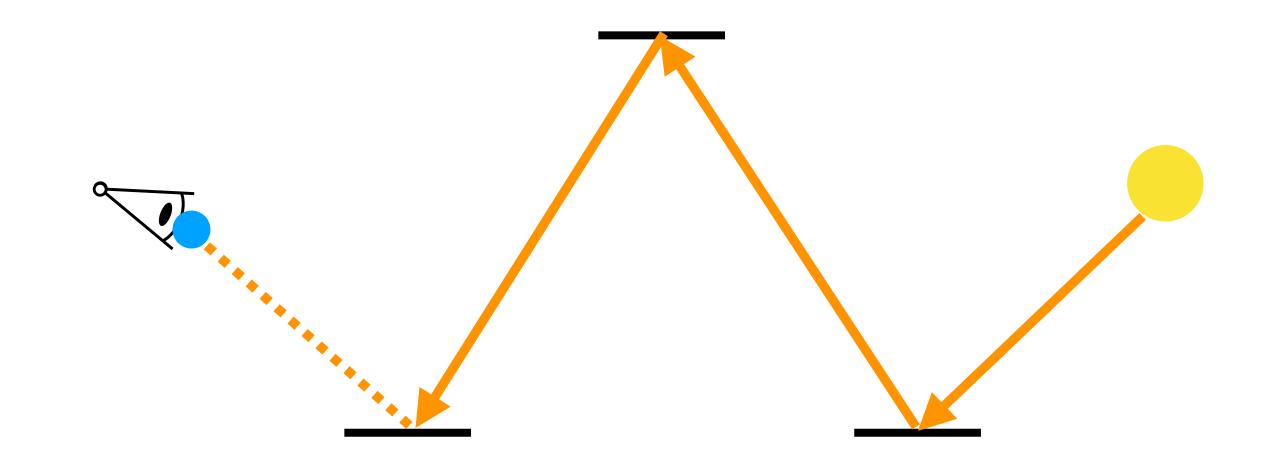
Tzu-Mao Li



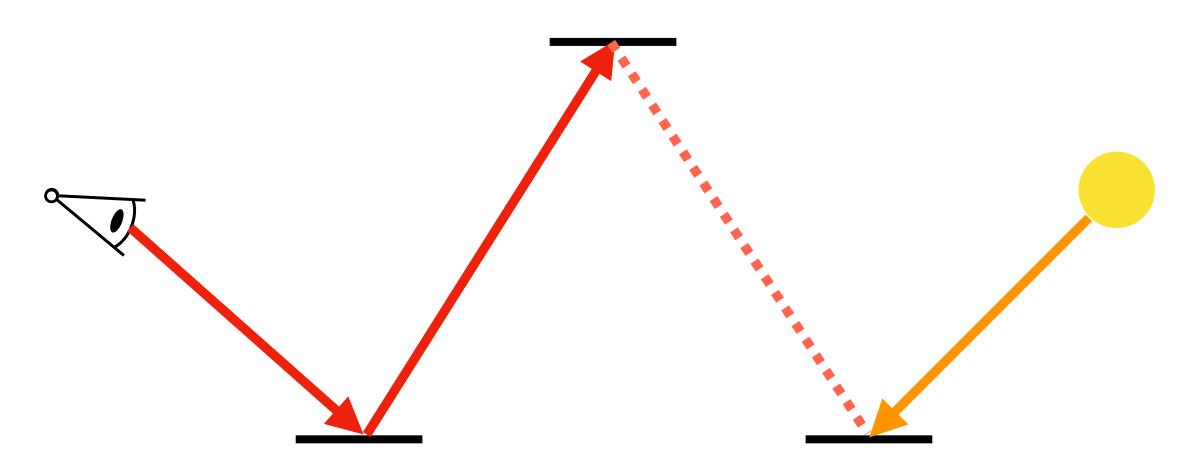


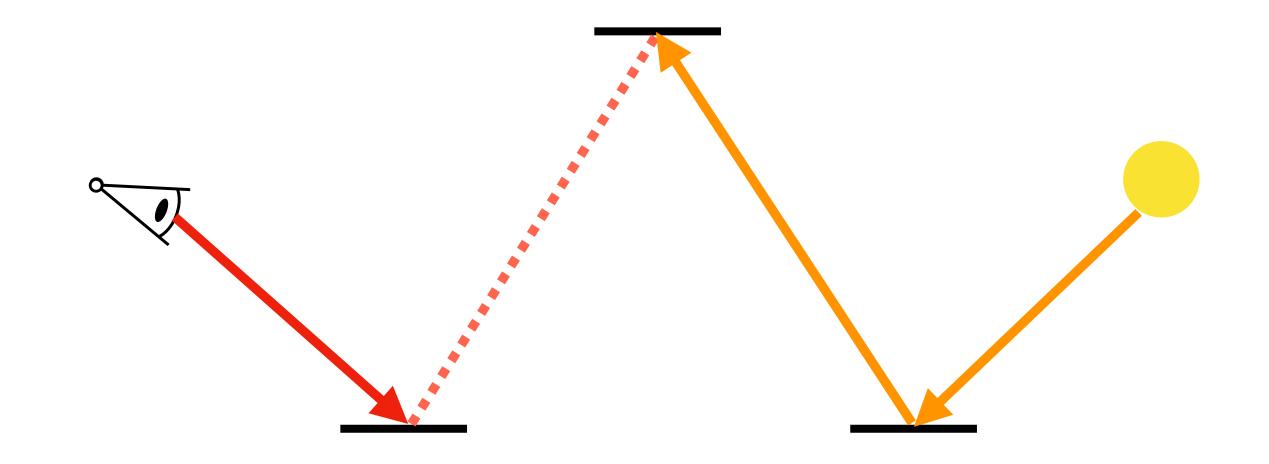
Next event estimation



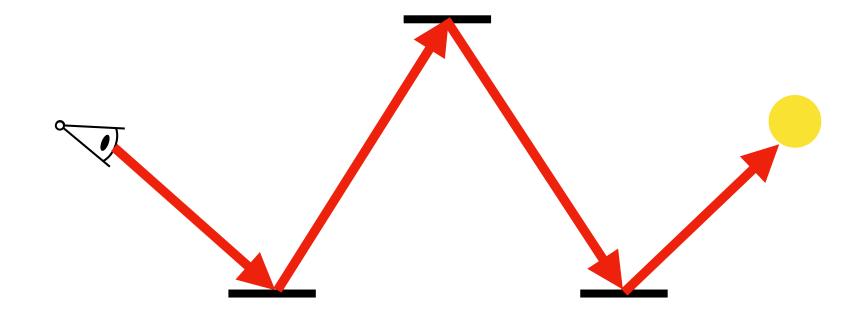


Combining path tracing & light tracing

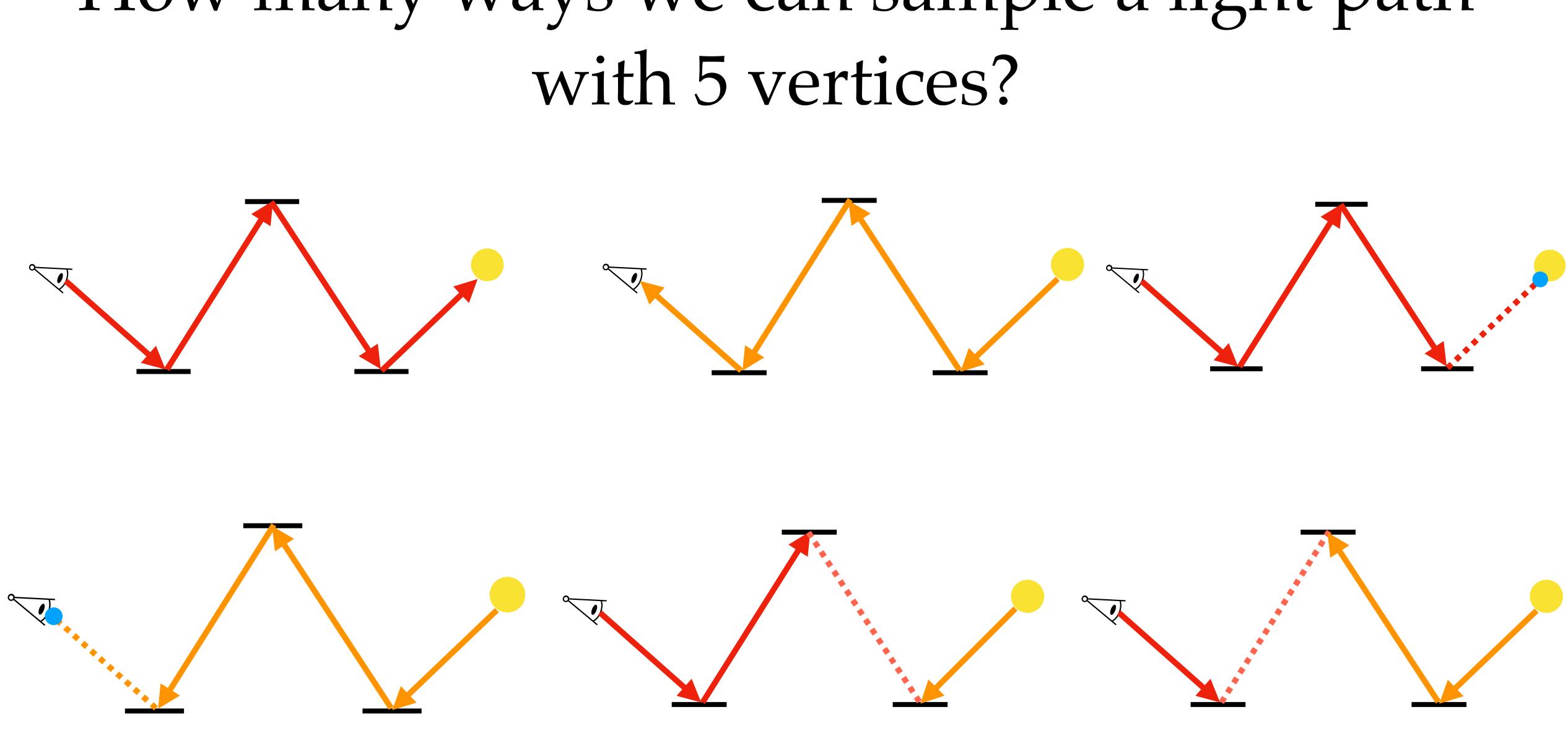




How many ways we can sample a light path with 5 vertices?



How many ways we can sample a light path with 5 vertices?



Path-space formulation for rendering

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

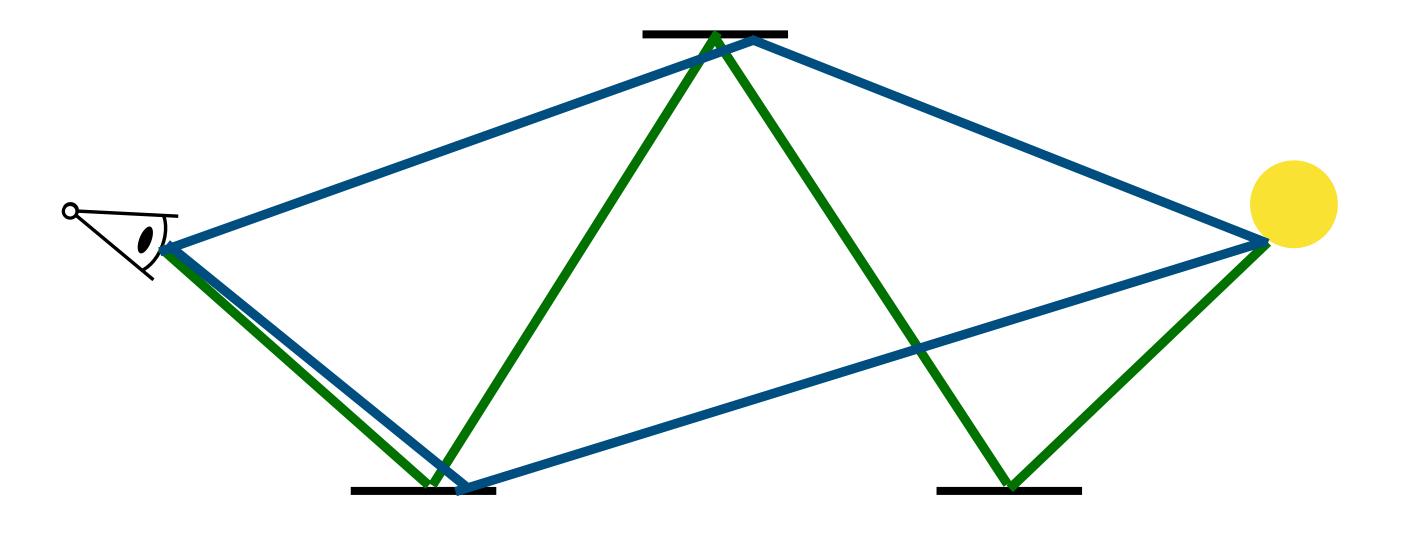
DOCTOR OF PHILOSOPHY

by Eric Veach December 1997

ROBUST MONTE CARLO METHODS FOR LIGHT TRANSPORT SIMULATION

Idea: rewrite rendering equation as an integral over **paths**

 $\int_{\text{light paths}} f(\bar{x}) d\bar{x}$



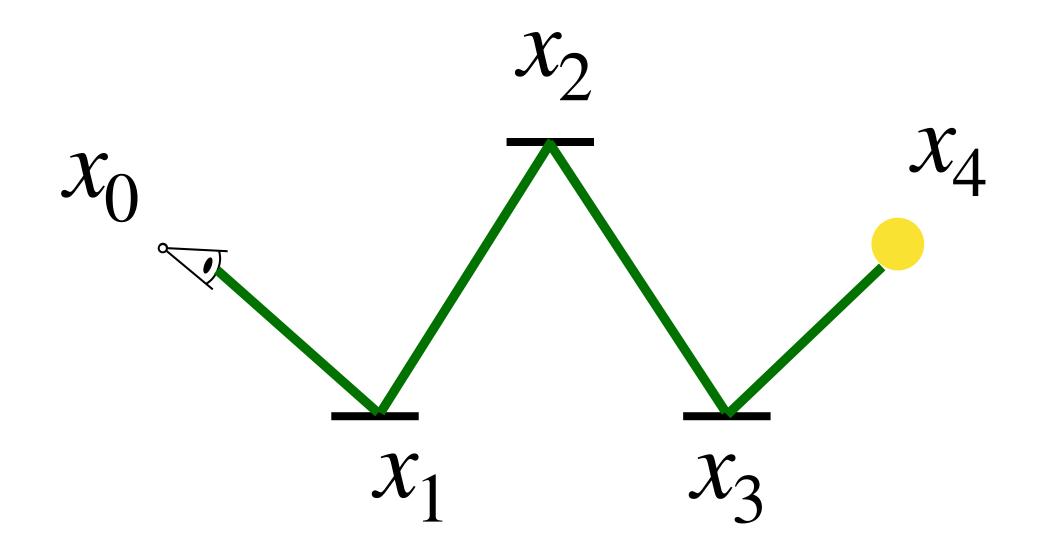
- what is a path \bar{x} ?
- what is the path contribution *f* ?
- how do we importance sample light paths?

Path: a sequence of vertices

$\bar{x} = x_0 x_1 x_2 x_3 x_4$

$d\bar{x} = dx_0 dx_1 dx_2 dx_3 dx_4$

x_i: a 3D position dx_i : a small 2D surface area around the vertex



Jight paths

Path contribution

geometry term

$$f(\bar{x}) = W(x_0 \to x_1) G(x_0 \leftrightarrow x_1) \rho(x_0 \to x_1 \to x_2) G(x_1 \leftrightarrow x_2) \rho(x_0 \to x_1) \rho(x_0 \to x_1)$$

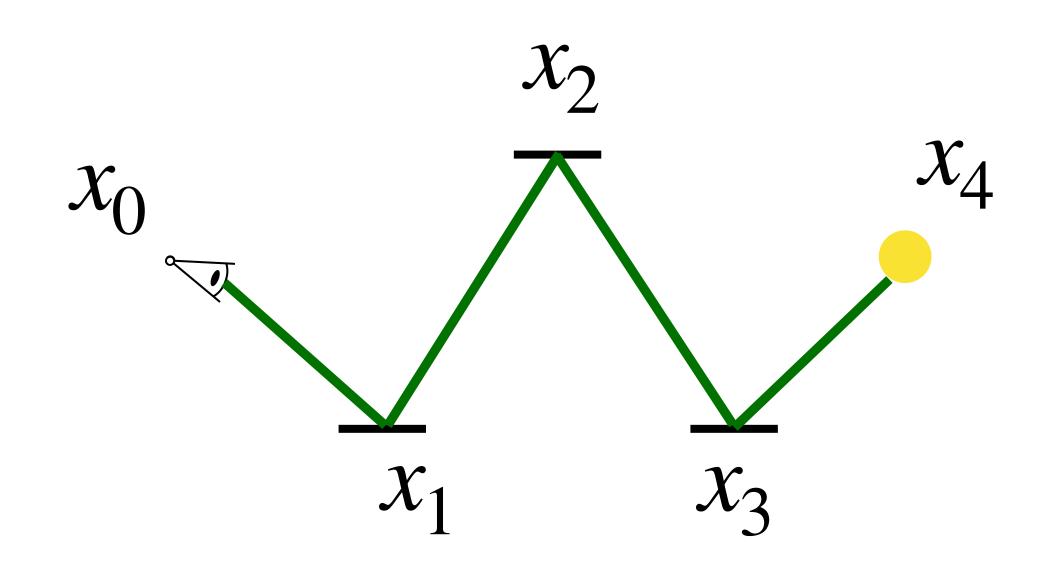
pixel filter & camera sensitivity

BSDF & cosine

$$G(x \leftrightarrow y) = \frac{\left|\frac{x - y}{\|x - y\|} \cdot n_{y}\right|}{\|x - y\|^{2}} \text{visible}(x, y)$$

 $\rho(x_1 \to x_2 \to x_3)G(x_2 \leftrightarrow x_3)\rho(x_2 \to x_3 \to x_4)G(x_3 \leftrightarrow x_4)L_e(x_3 \to x_4)$

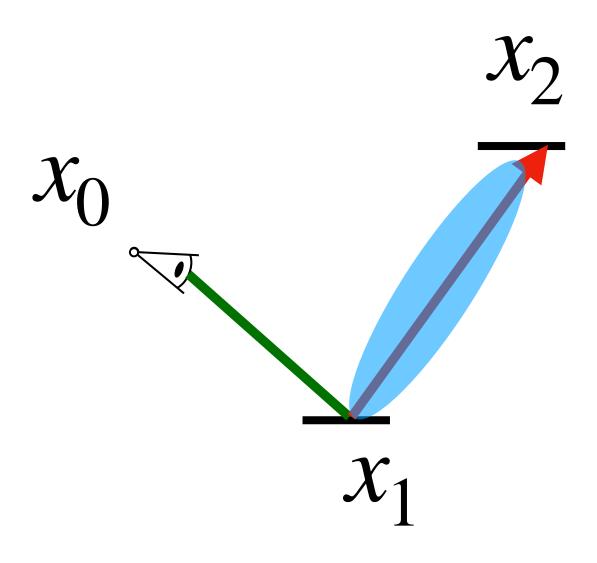
light emission





Observation: BSDF importance sampling cancels out ρ and G

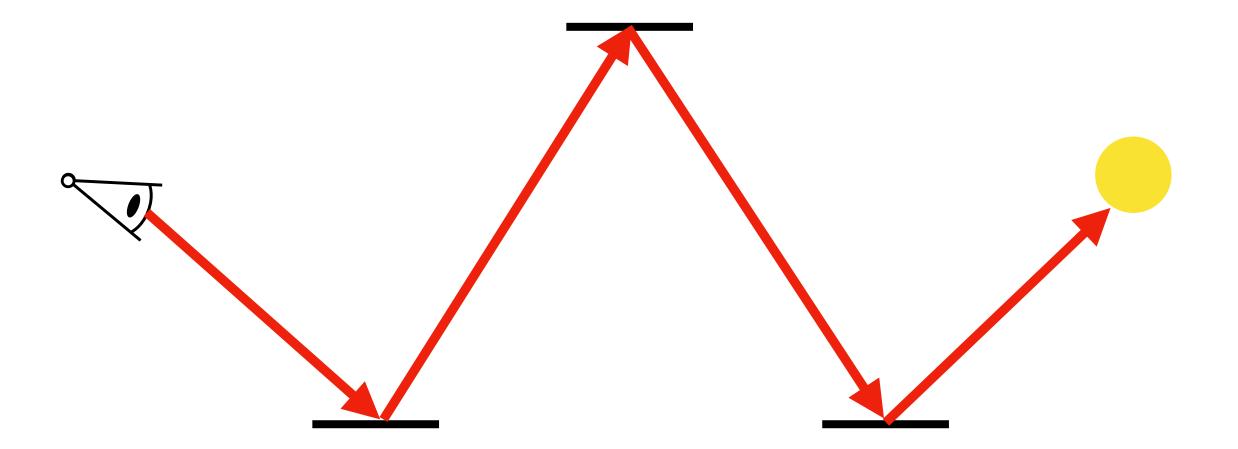
 $f(\bar{x}) = W(x_0 \to x_1)G(x_0 \leftrightarrow x_1)\rho(x_0 \to x_1 \to x_2)G(x_1 \leftrightarrow x_2)\rho(x_1 \to x_2 \to x_3)G(x_2 \leftrightarrow x_3)\rho(x_2 \to x_3 \to x_4)G(x_3 \leftrightarrow x_4)L_e(x_3 \to x_4)$



Path tracing without next event estimation: importance sampling everything except Le

$$f(\bar{x}) = W(x_0 \to x_1) G(x_0 \leftrightarrow x_1) \rho(x_0 \to x_1 \to x_2) G(x_1 \leftrightarrow x_2) \rho(x_0 \to x_1) \rho(x_0 \to x_1)$$

quiz: when will this be a good/bad strategy?

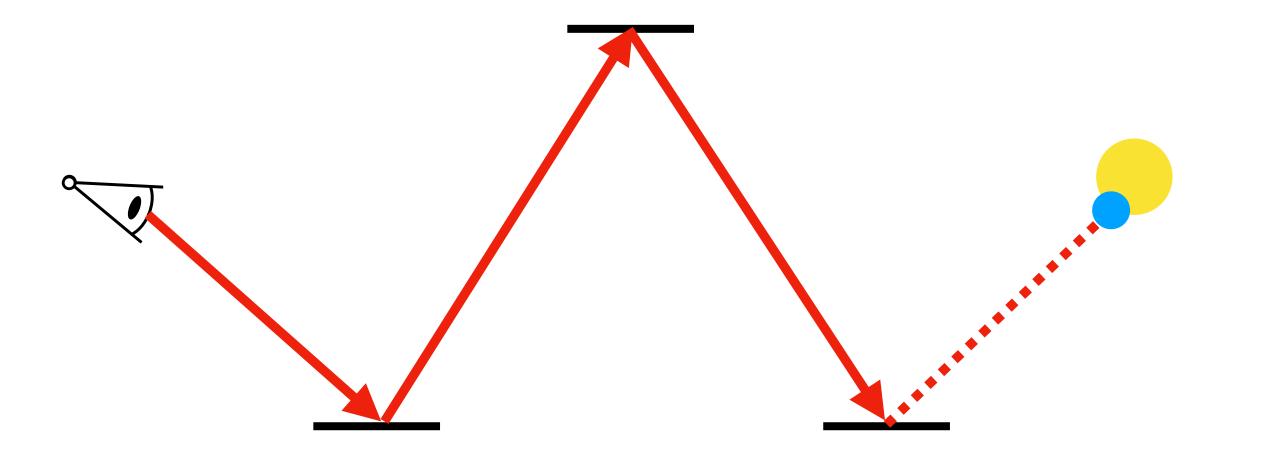


 $\rho(x_1 \to x_2 \to x_3)G(x_2 \leftrightarrow x_3)\rho(x_2 \to x_3 \to x_4)G(x_3 \leftrightarrow x_4)L_e(x_3 \to x_4)$

Path tracing with next event estimation

$$f(\bar{x}) = W(x_0 \to x_1) G(x_0 \leftrightarrow x_1) \rho(x_0 \to x_1 \to x_2) G(x_1 \leftrightarrow x_2) \rho(x_0 \to x_1) \rho(x_0 \to x_1)$$

quiz: when will this be a good/bad strategy?

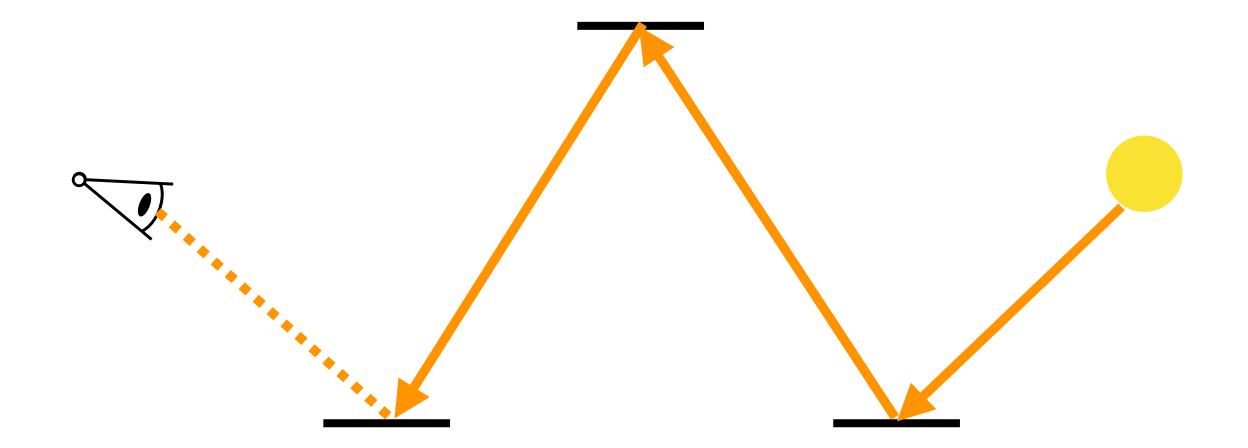


 $\rho(x_1 \to x_2 \to x_3)G(x_2 \leftrightarrow x_3)\rho(x_2 \to x_3 \to x_4)G(x_3 \leftrightarrow x_4)L_e(x_3 \to x_4)$

Light tracing with next event estimation

$$f(\bar{x}) = W(x_0 \to x_1) G(x_0 \leftrightarrow x_1) \rho(x_0 \to x_1 \to x_2) G(x_1 \leftrightarrow x_2) \rho(x_0 \to x_1) \rho(x_0 \to x_1) \rho(x_0 \to x_2) \rho(x_1 \to x_2) \rho(x_0 \to x_1) \rho(x_0 \to x_1)$$

quiz: when will this be a good/bad strategy?

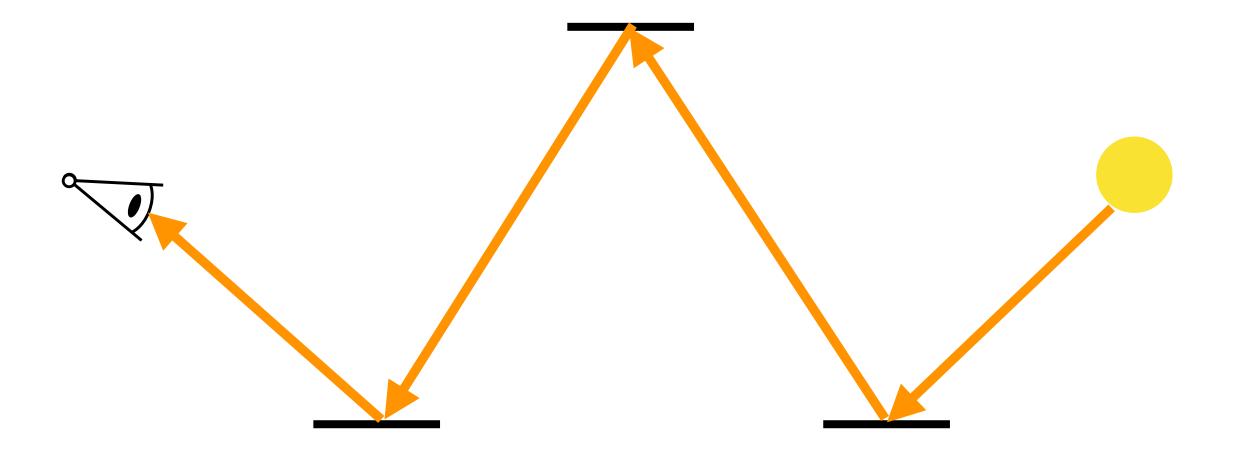


 $\rho(x_1 \to x_2 \to x_3)G(x_2 \leftrightarrow x_3)\rho(x_2 \to x_3 \to x_4)G(x_3 \leftrightarrow x_4)L_e(x_3 \to x_4)$

Light tracing without next event estimation

 $f(\bar{x}) = W(x_0 \to x_1)G(x_0 \leftrightarrow x_1)\rho(x_0 \to x_1 \to x_2)G(x_1 \leftrightarrow x_2)\rho(x_1 \to x_2 \to x_3)G(x_2 \leftrightarrow x_3)\rho(x_2 \to x_3 \to x_4)G(x_3 \leftrightarrow x_4)L_e(x_3 \to x_4)$

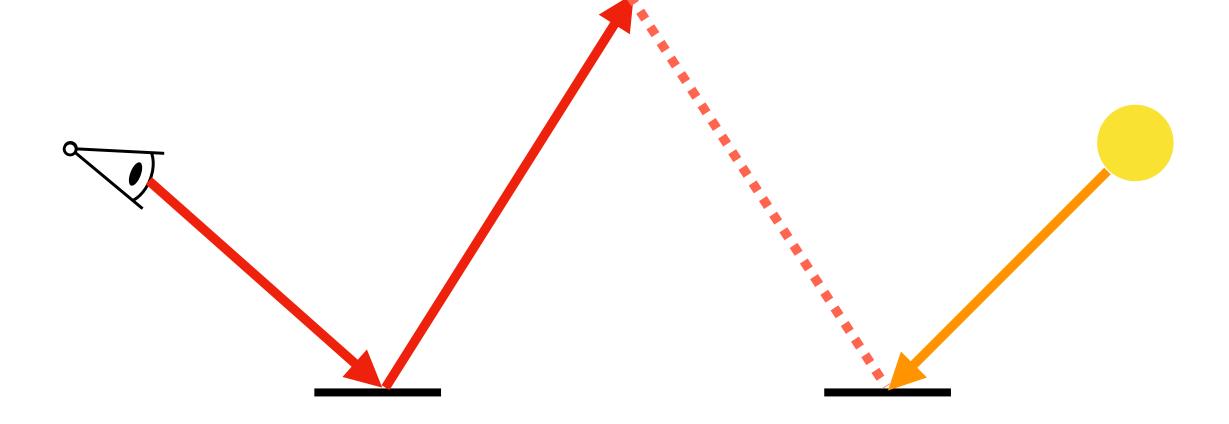
quiz: when will this be a good/bad strategy?



Hybrid path tracing & light tracing

$$f(\bar{x}) = W(x_0 \to x_1)G(x_0 \leftrightarrow x_1)\rho(x_0 \to x_1 \to x_2)G(x_1 \leftrightarrow x_2)\rho(x_0 \to x_1)\rho(x_0 \to x_1)\rho(x_0 \to x_2)G(x_1 \to x_2)\rho(x_0 \to x_1)\rho(x_0 \to x_1)$$

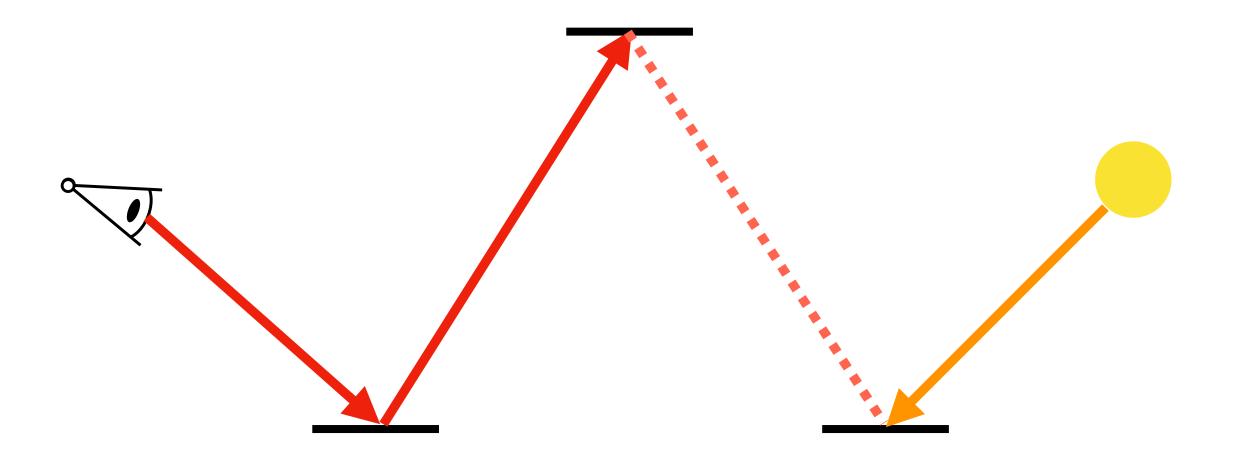
quiz: when will this be a good/bad strategy?



 $\rho(x_1 \to x_2 \to x_3) G(x_2 \leftrightarrow x_3) \rho(x_2 \to x_3 \to x_4) G(x_3 \leftrightarrow x_4) L_e(x_3 \to x_4)$

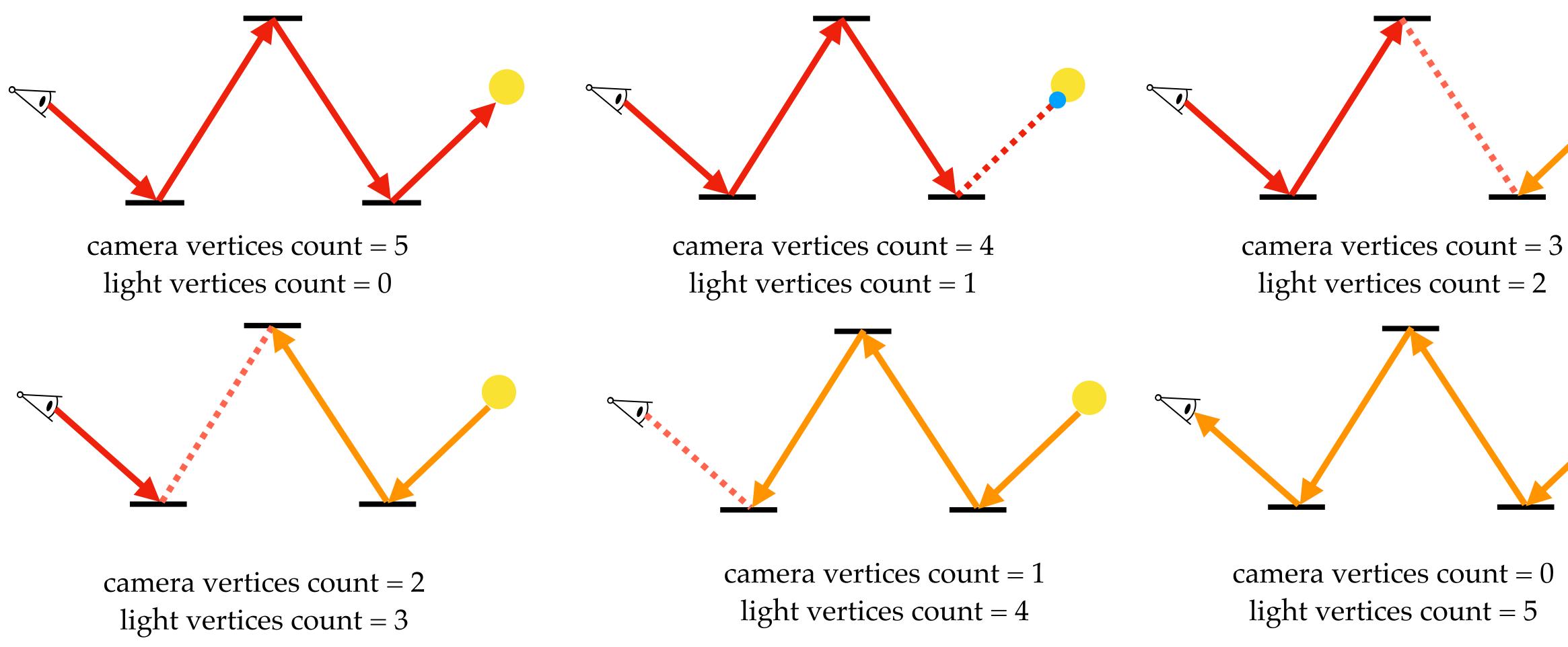
Local path sampling strategy

- two sampling operations
 - sample a point on camera or light
 - BSDF importance sampling



6 ways to sample path length = 4

• combine all of them using multiple importance sampling!





Veach's bidirectional path tracing scene

quiz: which strategy is good at which region?

https://benedikt-bitterli.me/resources/images/veach-bidir.png

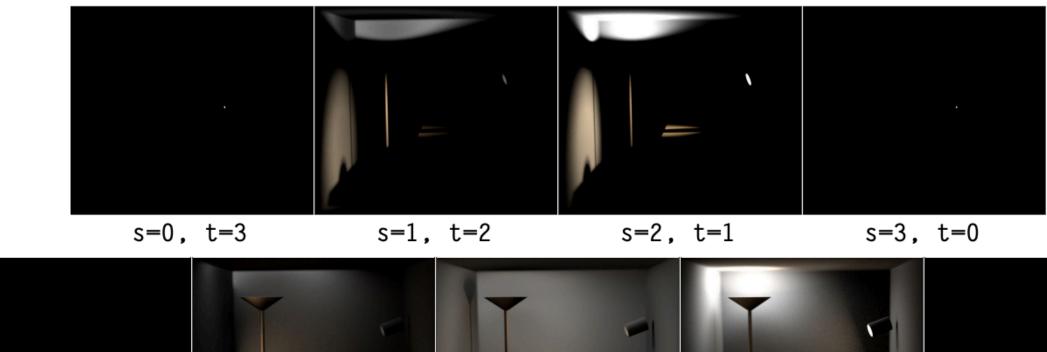
Bidirectional path tracing: combine all sampling

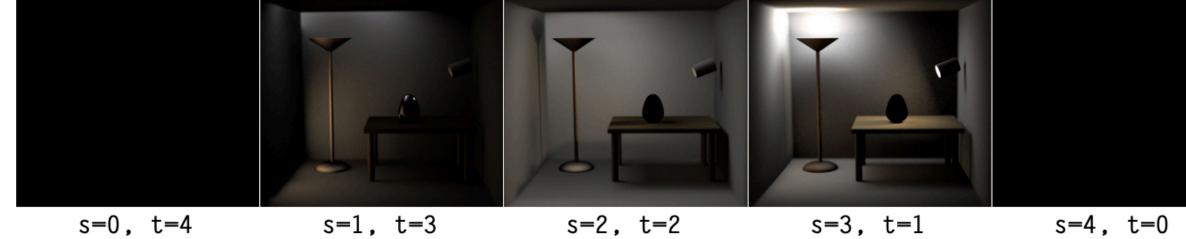
path length = 2

path length = 3

path length = 4

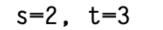
path length = 5





s=0, t=6

s=1, t=5



s=3, t=2

s=4, t=1

s=5, t=0

s=2, t=4

s=3, t=3

s=4, t=2

s=5, t=1

s=6, t=0

Walkthrough of a bidirectional path tracer

https://cs.uwaterloo.ca/~thachisu/smallpssmlt.cpp

Handling non-symmetric BSDFs

path tracing integral

$f(\omega, \omega') \neq f(\omega', \omega)$

light tracing integral

$$L = L_e + \int_{S^2} Lf(\omega, \omega') d\omega'$$

$$W = W_e + \int_{S^2} W f(\omega', \omega) d\omega'$$

Handling non-symmetric BSDFs

path tracing integral

$f(\omega, \omega') \neq f(\omega', \omega)$

define the *adjoint* of a BSDF

 $f^*(\omega, \omega') = f(\omega', \omega)$

$$L = L_e + \int_{S^2} Lf(\omega, \omega') d\omega'$$

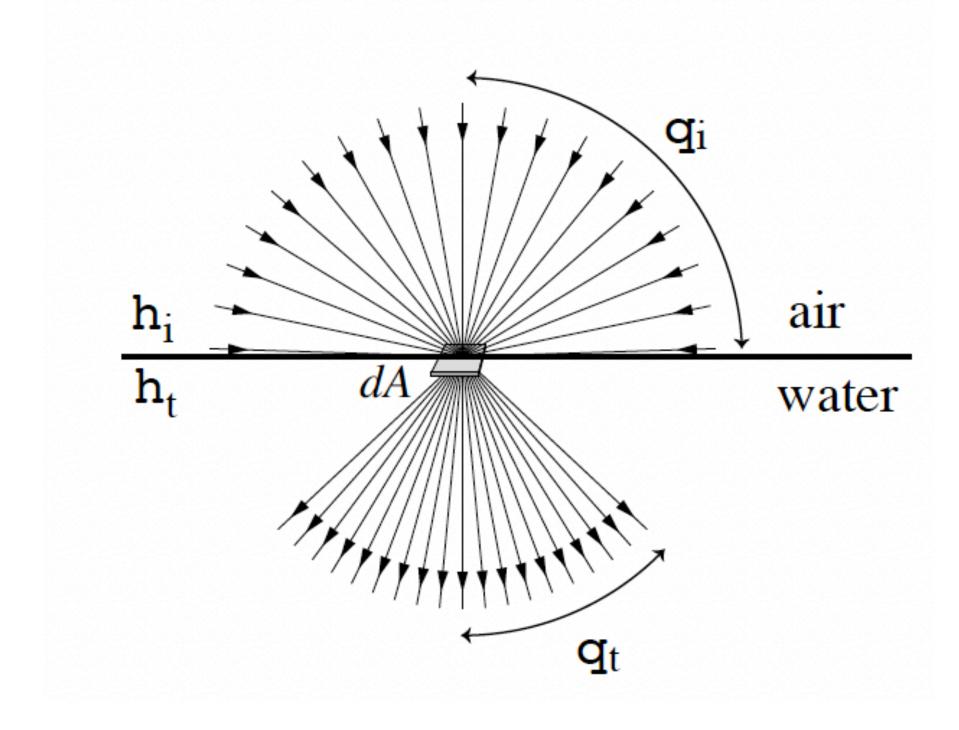
light tracing integral

$$W = W_e + \int_{S^2} Wf^*(\omega, \omega') d\omega'$$

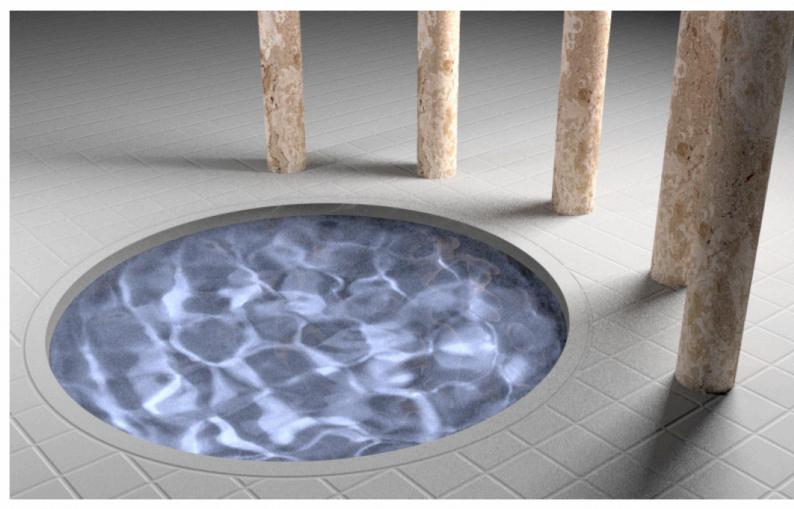
When is a BSDF non-symmetric?

refraction

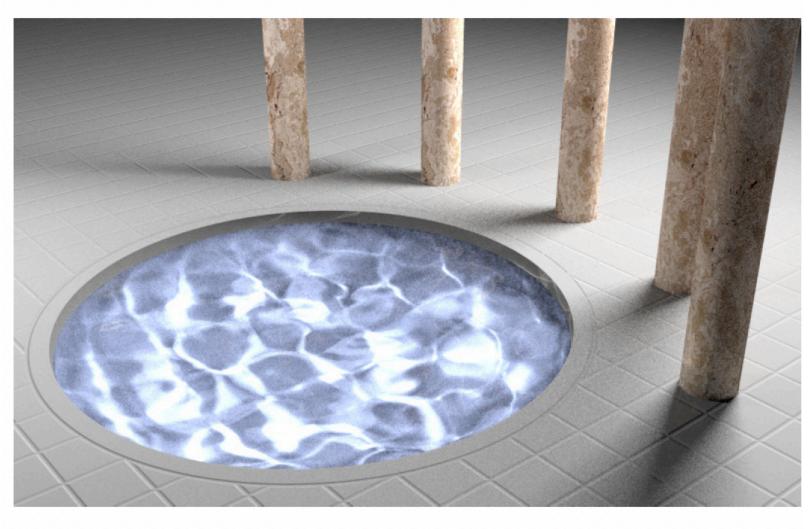
 $\frac{f(\omega_{\text{in}}, \omega_{\text{out}})}{f(\omega_{\text{out}}, \omega_{\text{in}})} = \frac{f(\omega_{\text{out}}, \omega_{\text{in}})}{f(\omega_{\text{out}}, \omega_{\text{out}})}$ η_{in} η_{in} $\eta_{\rm Out}$



Using wrong BSDFs lead to wrong results



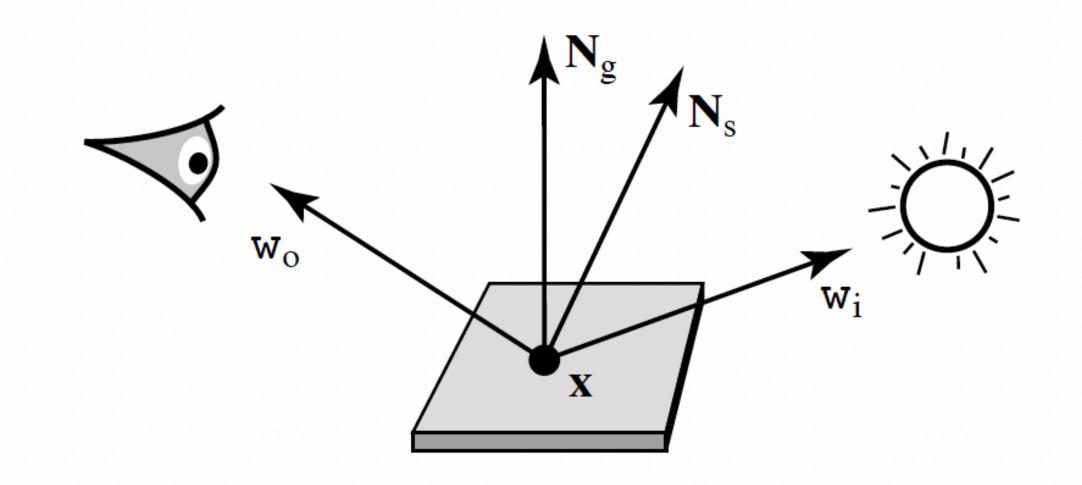
(a)



When is a BSDF non-symmetric?

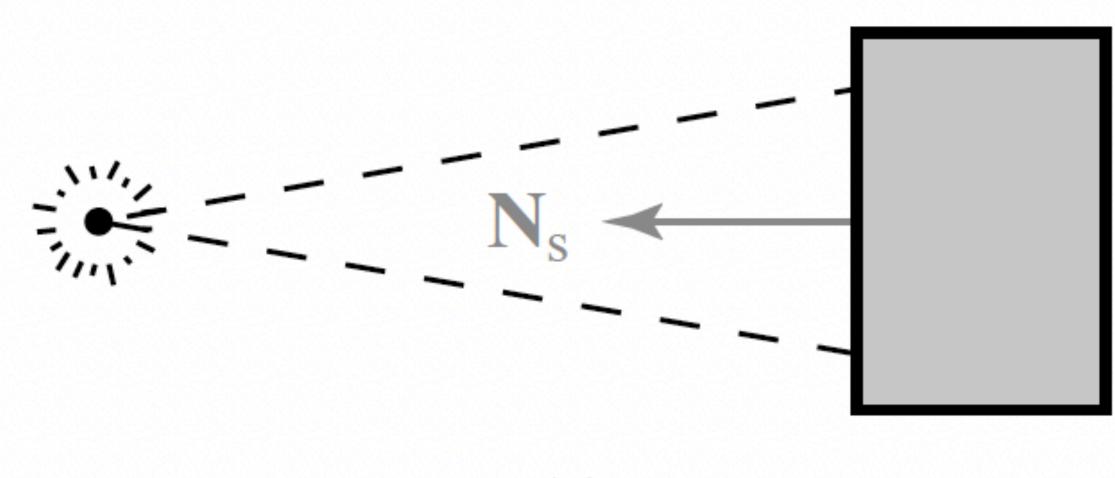
• shading normal

 $\rho(\omega_i, \omega_o) = f_s(\omega_i, \omega_o) \frac{\left| N_s \cdot \omega_o \right|}{\left| N_g \cdot \omega_o \right|}$ $\rho(\omega_o, \omega_i) = f_s(\omega_i, \omega_o) \frac{\left| N_s \cdot \omega_i \right|}{\left| N_g \cdot \omega_i \right|}$



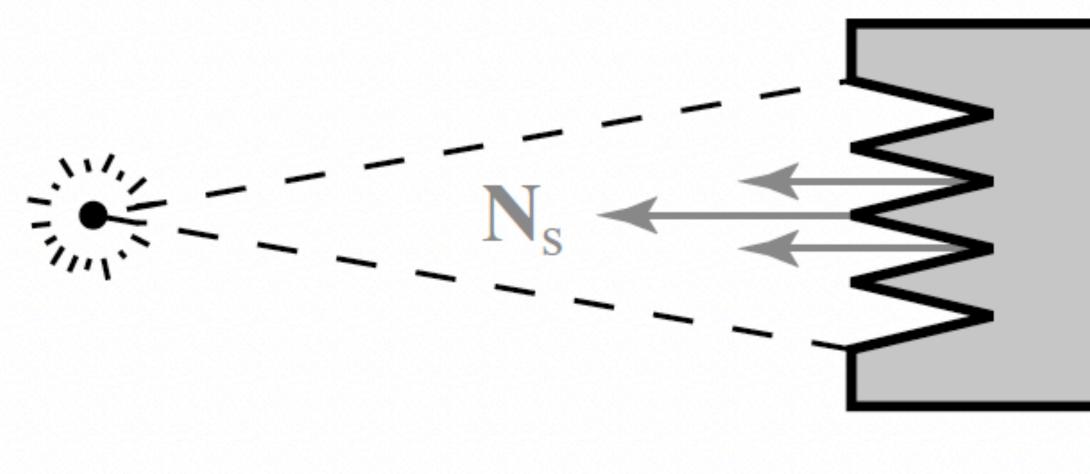
$$\rho * (\omega_i, \omega_o) = \rho(\omega_o, \omega_i) \frac{\left| N_s \cdot \omega_i \right| \left| N_g \cdot \omega_o \right|}{\left| N_g \cdot \omega_i \right| \left| N_s \cdot \omega_o \right|}$$

Shading normals violate conservation of energy



(a)

Figure 5.9: (a) A flat, diffuse surface facing toward a point light source, with $N_s = N_g$. The surface is assumed to not to absorb any light, so that the incident and reflected power is the same. (b) A ridged surface with shading normals that point toward the light. It receives the same power as (a), but reflects far more due to its larger surface area.



(b)

pinhole camera

mirror (specular) diffuse

point light mirror (specular)

pinhole camera

mirror (specular) diffuse

point light

mirror (specular)

pinhole camera

mirror (specular)

diffuse

point light

mirror (specular)

Theorem: no local sampling strategy can handle light paths that don't have consecutive "D"s with pinhole cameras & point lights

pinhole camera

Theorem 8.3. Let \bar{x} be a path generated by a local sampling algorithm for which the measurement contribution function is non-zero. Then \bar{x} necessarily has the form

 $L(S|D)^* D D (S|D)^* E$,

i.e. it must contain the substring DD. Furthermore, it is possible to generate any path of this form using local sampling strategies. 'Oľ

(specular)

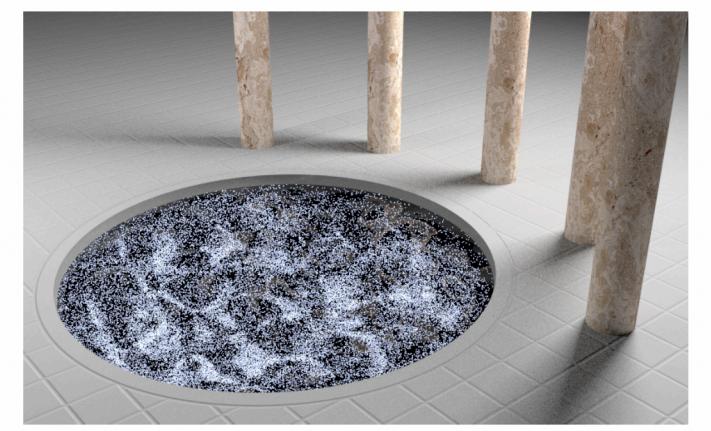
diffuse

point light

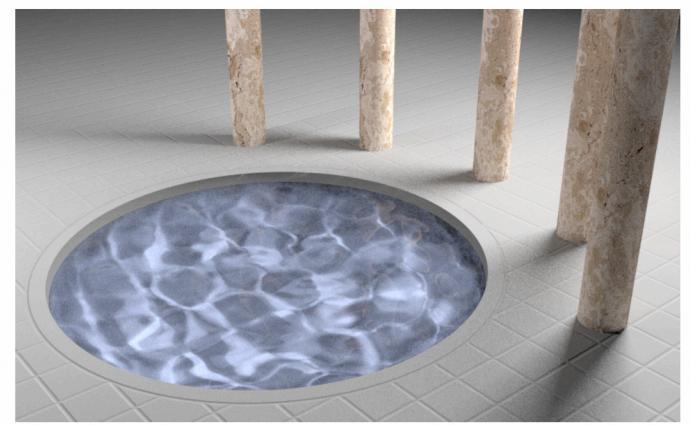
(specular)

SDS light paths

• caustics seen through a mirror or glass



(a) Path tracing with 210 samples per pixel.

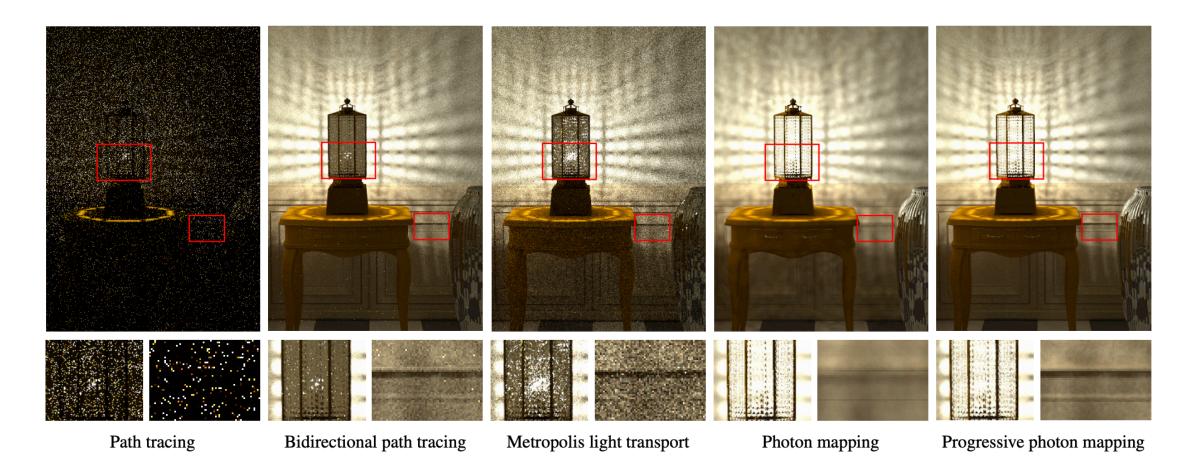


(b) Metropolis light transport with 100 mutations per pixel [the same computation time as (a)].

Progressive Photon Mapping

Toshiya Hachisuka UC San Diego Shinji Ogaki The University of Nottingham

Henrik Wann Jensen UC San Diego



more about photon mapping next time

• more about them in the future lectures

Illumination from Curved Reflectors

Don Mitchell † Pat Hanrahan ‡

† AT&T Bell Laboratories ‡ † Princeton University

Single Scattering in Refractive Media with Triangle Mesh Boundaries

Bruce Walter Cornell University

Shuang Zhao Cornell University Nicolas Holzschuch INRIA – LJK

Kavita Bala Cornell University

"Non-local" path sampling

Manifold Exploration: A Markov Chain Monte Carlo Technique for **Rendering Scenes with Difficult Specular Transport**

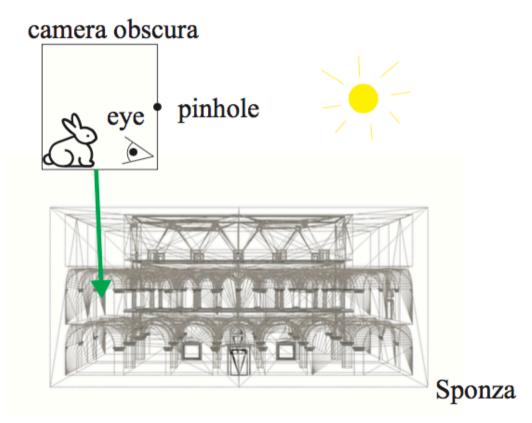
Wenzel Jakob

Steve Marschner

In ACM Transactions on Graphics (Proceedings of SIGGRAPH 2012)

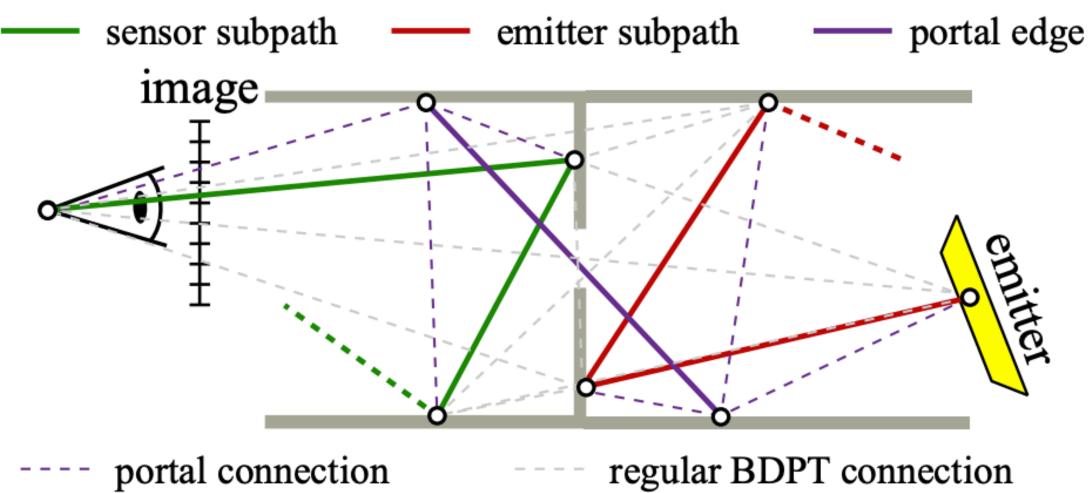
Specular Manifold Sampling for Rendering High-Frequency **Caustics and Glints**

Tri-directional path tracing



Camera Obscura Scene

Bidirectional Path Tracing, 64 spp



Our Tridirectional Path Tracing, 64 spp

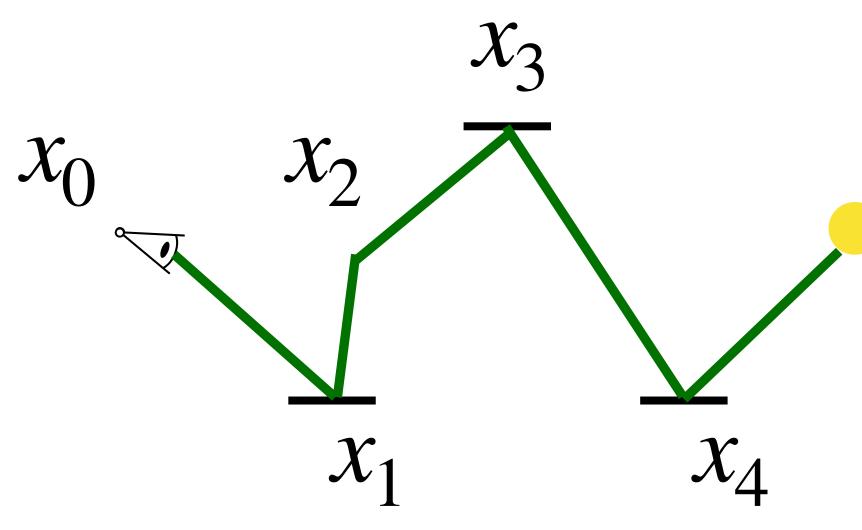
Aether: An Embedded Domain Specific Sampling Language for Monte Carlo Rendering

LUKE ANDERSON, MIT CSAIL TZU-MAO LI, MIT CSAIL JAAKKO LEHTINEN, Aalto University and NVIDIA FRÉDO DURAND, MIT CSAIL and Inria, Université Côte d'Azur

Path integral for volumetric rendering

quiz: how do we modify the following surface path contribution to take volumes into consideration?

 $f(\bar{x}) = W(x_0 \to x_1)G(x_0 \leftrightarrow x_1)\rho(x_0 \to x_1 \to x_2)G(x_1 \leftrightarrow x_2)\cdots$



Path integral for volumetric rendering

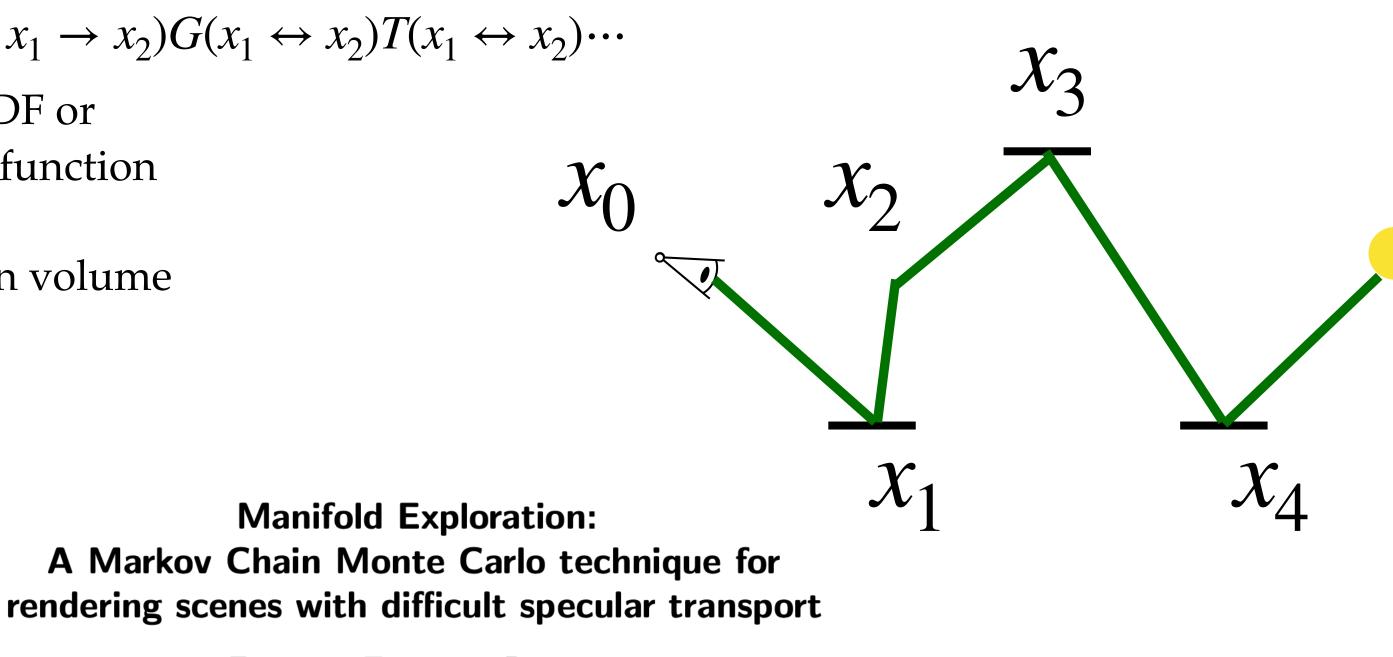
transmittance

 $f(\bar{x}) = W(x_0 \to x_1)G(x_0 \leftrightarrow x_1)T(x_0 \leftrightarrow x_1)\rho(x_0 \to x_1 \to x_2)G(x_1 \leftrightarrow x_2)T(x_1 \leftrightarrow x_2)\cdots$ BSDF or phase function

G(x, y) doesn't have the cosine term if y is in volume

Metropolis Light Transport for Participating Media

Mark Pauly ETH Zürich pauly@inf.ethz.ch Thomas Kollig Alexander Keller University of Kaiserslautern {kollig, keller}@informatik.uni-kl.de



EXPANDED TECHNICAL REPORT

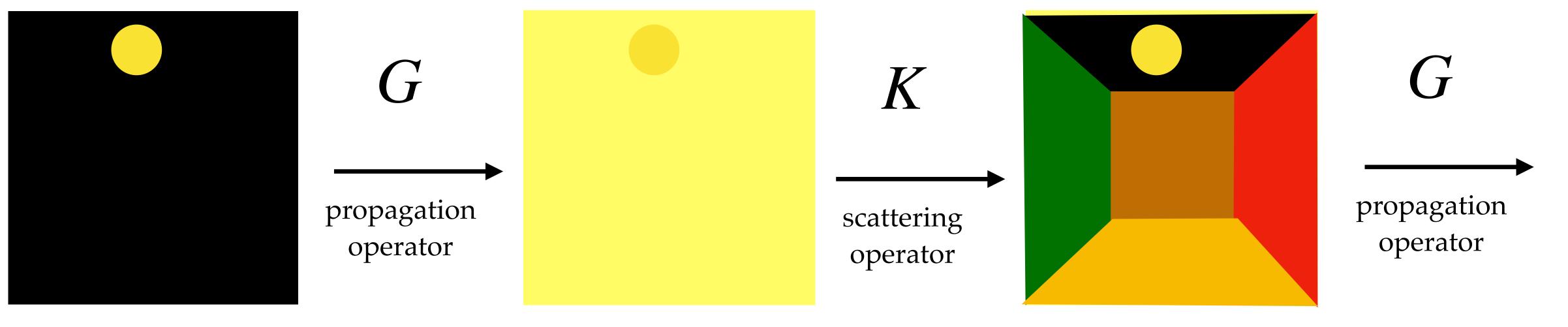
Wenzel Jakob Steve Marschner

Cornell University

May 7, 2012

Operator formulation of rendering

• rendering = linear functions operate on 4D surface light fields



Rendering = solving equilibrium of a linear operator

 $L = L_{\rho} + TL$

$L = (\mathbf{I} - \mathbf{T})^{-1}L_e$

Rendering = solving equilibrium of a linear operator

 $L = (\mathbf{I} - \mathbf{T})^{-1} L_{\rho}$

 $L = L_{\rho} + TL$

 $L = L_e + TL_e + T^2L_e + \cdots$

(doesn't converge if BSDF is not energy conserving)

Neumann series

https://en.wikipedia.org/wiki/Neumann_series

Operator formulation can be used for studying inverse rendering

$L = L_{\rho} + TL$

A Theory of Inverse Light Transport

Steven M. Seitz University of Washington

Yasuyuki Matsushita Microsoft Research Asia Kiriakos N. Kutulakos* University of Toronto

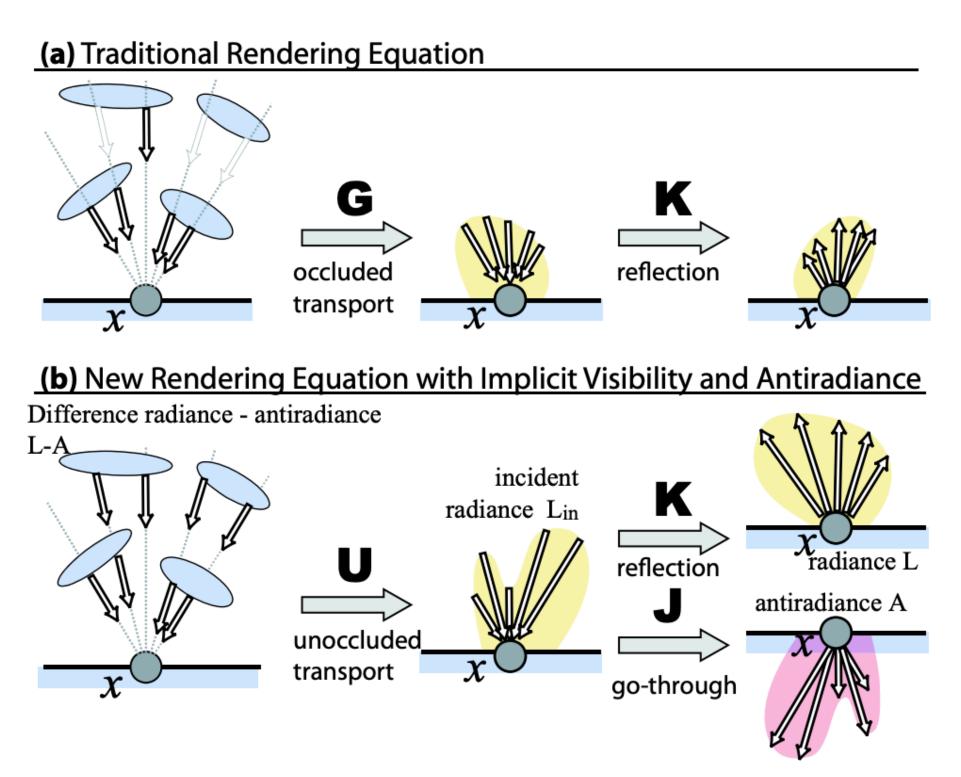
goal: given L and L_{ρ} , solve T

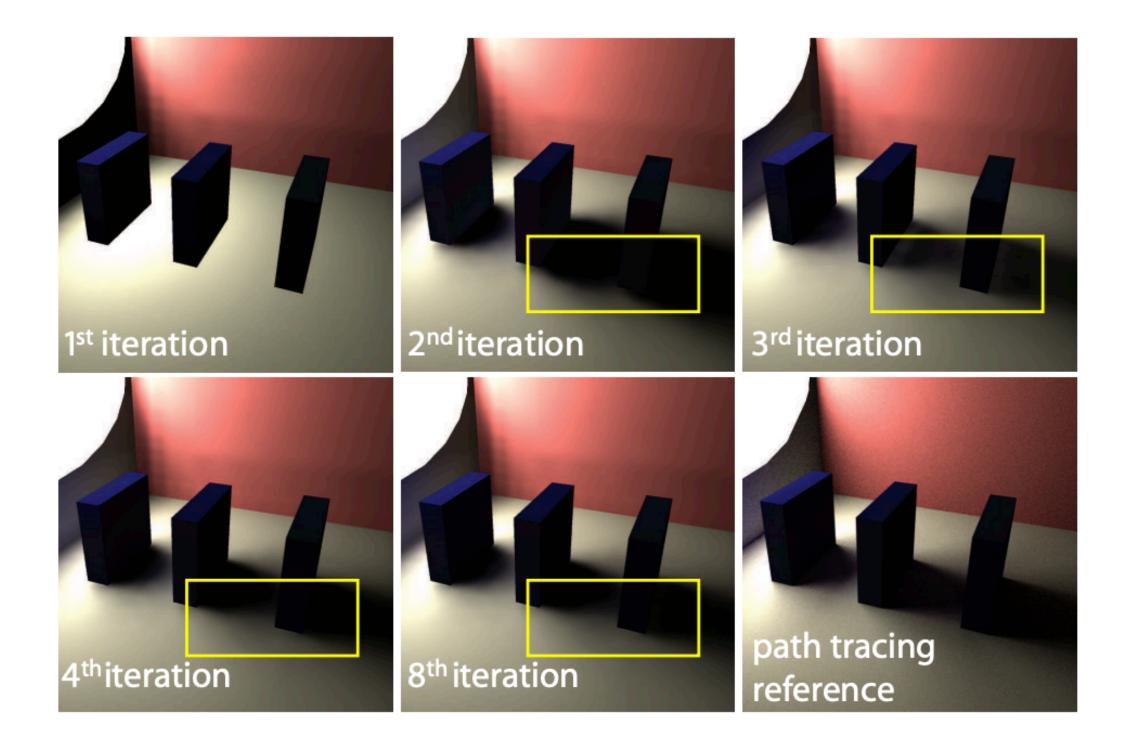
On the Duality of Forward and Inverse Light Transport

Manmohan Chandraker, Jiamin Bai, Tian-Tsong Ng and Ravi Ramamoorthi

Antiradiance: adding a "pass through" operator can speedup rendering

• warning: Neumann series may not converge under this formulation



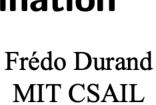


Implicit Visibility and Antiradiance for Interactive Global Illumination

Carsten Dachsbacher **REVES/INRIA Sophia-Antipolis**

Marc Stamminger University of Erlangen

George Drettakis **REVES/INRIA Sophia-Antipolis**



Functional analysis of the light transport operator

uncountably infinite dimensional

$L = L_{e} + TL$

The Role of Functional Analysis in Global Illumination

James Arvo

Program of Computer Graphics Cornell University Ithaca, NY 14853

finite dimensional $\longrightarrow \begin{bmatrix} L_1 \\ L_2 \\ \vdots \\ L_n \end{bmatrix} = \begin{bmatrix} L_{e_1} \\ L_{e_2} \\ \vdots \\ L_{e_n} \end{bmatrix} + \begin{bmatrix} T_{1,1} & T_{1,1} & \cdots & T_{1,n} \\ T_{2,1} & T_{2,1} & \cdots & T_{2,n} \\ \vdots \\ T_{n,1} & T_{1,1} & \cdots & T_{n,n} \end{bmatrix} \begin{bmatrix} L_1 \\ L_2 \\ \vdots \\ L_n \end{bmatrix}$

Soler et al.: the error can be unbounded over arbitrary L_{ρ} because T is not "compact"

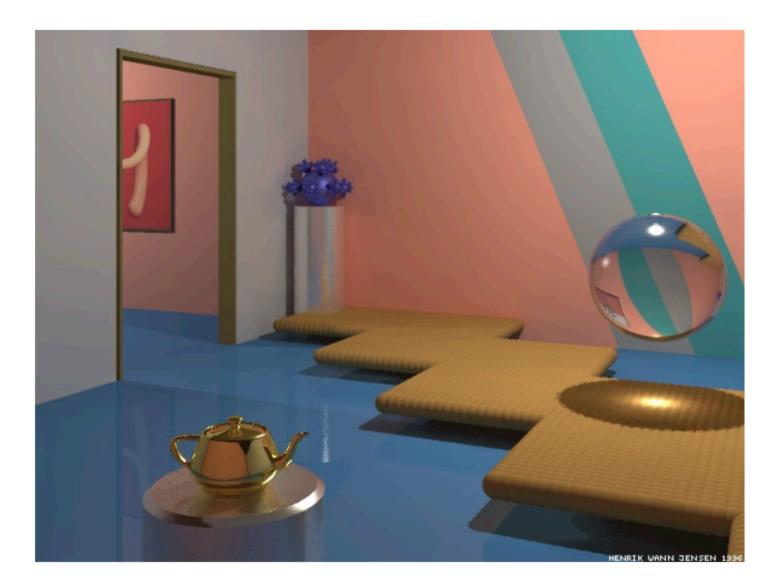
A Theoretical Analysis of Compactness of the Light Transport Operator

CYRIL SOLER, INRIA - Grenoble University, France RONAK MOLAZEM, INRIA - Grenoble University, France KARTIC SUBR, University of Edinburgh, UK

Next: photon mapping

Global Illumination using Photon Maps

The Technical University of Denmark



A simple museum scene rendered with photon mapping

Note the caustic below the glass sphere, the glossy reflections, and the overall quality of the global illumination.

Henrik Wann Jensen