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Multi-jittered sampling

- one sample in each square
- one sample in each row
- one sample in each column

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf


Multi-jittered sampling

- one sample in each square
- one sample in each row
- one sample in each column

quiz: can we add more constraints  
to the point set?

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf


Digital nets (aka (t,m,s) nets)
- one sample in all rectangular 

partition of the space

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf


Digital nets (aka (t,m,s) nets)
- one sample in all rectangular 

partition of the space

partition of 16 4x4 rectangles

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf


Digital nets (aka (t,m,s) nets)
- one sample in all rectangular 

partition of the space

partition of 16 16x1 rectangles

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf


Digital nets (aka (t,m,s) nets)
- one sample in all rectangular 

partition of the space

partition of 16 1x16 rectangles

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf


Digital nets (aka (t,m,s) nets)
- one sample in all rectangular 

partition of the space

partition of 16 8x2 rectangles

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf


Digital nets (aka (t,m,s) nets)
- one sample in all rectangular 

partition of the space

partition of 16 8x2 rectangles

multi-jittered sampling fails to satisfy 
the digital nets property!

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf


Digital nets (aka (t,m,s) nets)
- one sample in all rectangular 

partition of the space

partition of 16 2x8 rectangles

multi-jittered sampling fails to satisfy 
the digital nets property!

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf


A point set that satisfies the
digital net property

- one sample in all rectangular 
partition of the space

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf
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A point set that satisfies the
digital net property

- one sample in all rectangular 
partition of the space

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf
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A point set that satisfies the
digital net property

- one sample in all rectangular 
partition of the space

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf


Low-discrepancy sequences
• deterministic & progressive Latin hypercube samples based on the minimization of 

discrepancy

• entire field of study called “Quasi-Monte-Carlo”

https://stats.stackexchange.com/questions/40384/fake-uniform-random-numbers-more-evenly-distributed-than-true-uniform-data

Dn = max
all rectangles

no. of points in the rectangle
n

− area(rectangle)

https://stats.stackexchange.com/questions/40384/fake-uniform-random-numbers-more-evenly-distributed-than-true-uniform-data


Koksma-Hlawka inequality

Dn = max
all rectangles

no. of points in the rectangle
n

− area(rectangle)

• discrepancy is the upper bound of the absolute estimation error!

1
n

n

∑
i=0

f(xi) − ∫ f(x)dx ≤ V( f )D*n (x1, x2, …, xn)

star discrepancy: only consider rectangles with one vertex 
at the origin

V: the “total variation” of f



The van der Corput sequence Φb
the simplest low-discrepancy 
sequence in 1D
define a sequence for a base b

k Base 2 Φb
1 1 .12 = 1/2

2 10 .012 = 1/4

3 11 .112 = 3/4

4 100 .0012 = 1/8

5 101 .1012 = 5/8

6 110 .0112 = 3/8

7 111 .1112 = 7/8

...

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier-slides-2-patterns.pdf


The van der Corput sequence Φb
the simplest low-discrepancy 
sequence in 1D
define a sequence for a base b

k Base 3 Φb
1 1 .13 = 1/3

2 2 .23 = 2/3

3 10 .013 = 1/9

4 11 .113 = 4/9

5 12 .213 = 7/9

6 20 .023 = 2/9

7 21 .123 = 5/9

...



The van der Corput sequence Φb
subdivide the 1D space 
into b regions

k Base 3 Φb
1 1 .13 = 1/3

2 2 .23 = 2/3

3 10 .013 = 1/9

4 11 .113 = 4/9

5 12 .213 = 7/9

6 20 .023 = 2/9

7 21 .123 = 5/9

...



The van der Corput sequence Φb
subdivide the 1D space 
into b regions
sample the boundaries

k Base 3 Φb
1 1 .13 = 1/3

2 2 .23 = 2/3

3 10 .013 = 1/9

4 11 .113 = 4/9

5 12 .213 = 7/9

6 20 .023 = 2/9

7 21 .123 = 5/9

...



The van der Corput sequence Φb
subdivide the 1D space 
into b regions
sample the boundaries
recurse into each region

k Base 3 Φb
1 1 .13 = 1/3

2 2 .23 = 2/3

3 10 .013 = 1/9

4 11 .113 = 4/9

5 12 .213 = 7/9

6 20 .023 = 2/9

7 21 .123 = 5/9

...



The van der Corput sequence Φb
subdivide the 1D space 
into b regions
sample the boundaries
recurse into each region

k Base 3 Φb
1 1 .13 = 1/3

2 2 .23 = 2/3

3 10 .013 = 1/9

4 11 .113 = 4/9

5 12 .213 = 7/9

6 20 .023 = 2/9

7 21 .123 = 5/9

...



The van der Corput sequence Φb
subdivide the 1D space 
into b regions
sample the boundaries
recurse into each region

k Base 3 Φb
1 1 .13 = 1/3

2 2 .23 = 2/3

3 10 .013 = 1/9

4 11 .113 = 4/9

5 12 .213 = 7/9

6 20 .023 = 2/9

7 21 .123 = 5/9

...



The van der Corput sequence Φb
k Base 10 Φb
1 1 .110 = 1/10

5 5 .510 = 5/10

9 9 .910 = 9/10

10 10 .0110 = 1/100

11 11 .1110 = 11/100

12 12 .2110 = 21/100

21 21 .1210 = 12/100

...

subdivide the 1D space 
into b regions
sample the boundaries
recurse into each region



High-dimensional generalization 
of van der Corput sequence: Halton sequence

Halton(k) = (Φ2(k), Φ3(k), Φ5(k), ⋯)
concatenate van der Corput sequences with co-prime bases into a vector



High-dimensional generalization 
of van der Corput sequence: Halton sequence

concatenate van der Corput sequences with co-prime bases into a vector
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2
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High-dimensional generalization 
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concatenate van der Corput sequences with co-prime bases into a vector
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High-dimensional generalization 
of van der Corput sequence: Halton sequence

concatenate van der Corput sequences with co-prime bases into a vector

( 1
2

,
1
3 )

( 1
4

,
2
3 )

( 3
4

,
1
9 )( 1

8
,

2
9 )progressive & 

naturally generalize to 
higher dimension!

Halton(k) = (Φ2(k), Φ3(k), Φ5(k), ⋯)



Halton sequence vs independent noise

https://en.wikipedia.org/wiki/Halton_sequence

https://en.wikipedia.org/wiki/Halton_sequence


Hammersley sequence
• append Halton sequence with , N is the total number of samples

• not progressive anymore, but more evenly distributed

k
N

Halton(k) = (Φ2(k), Φ3(k), Φ5(k), ⋯)

Hammersley(k) = ( k
N

, Φ2(k), Φ3(k), Φ5(k), ⋯)



Hammersley vs Halton sequences

https://en.wikipedia.org/wiki/Low-discrepancy_sequence

https://en.wikipedia.org/wiki/Low-discrepancy_sequence


Discrepancies of Halton/Hammersley sequence

1
n

n

∑
i=0

f(xi) − ∫ f(x)dx ≤ V( f )D*n (x1, x2, …, xn)

Koksma-Hlawka inequality

D*n = O (log N)d

N



Convergence rates compared (2D)

Samplers Worst Case Best Case

Random

Jitter

Poisson Disk

CCVT

O(N�1)

O(N�1.5) O(N�2)

O(N�1)

O(N�1) O(N�1)

O(N�1.5) O(N�3)

O (log N)2

N

for large N, low-discrepancy sequences win

(though note that V(f) is often unbounded in rendering)



Issues of Halton/Hammersley sequences: 
correlated pattern in high dimension

https://www.pbr-book.org/3ed-2018/Sampling_and_Reconstruction/The_Halton_Sampler

(Φ29, Φ31)

https://www.pbr-book.org/3ed-2018/Sampling_and_Reconstruction/The_Halton_Sampler


A solution: scramble the digits of each coordinate

Φ29(k) = 0.abcdefg29

Φ29(k) = 0.cdabgfe29

apply the same scramble to all k!

scramble

scrambling preserves (often improves) discrepancy!

1992



Scrambling fixes the regularity issue
(the clumping might look bad, but note that this is a projection of a high-dimensional point set)

(Φ29, Φ31)



Jittered vs Halton

jittered Halton

https://www.pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Sobol_Sampler

4D integral

https://www.pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Sobol_Sampler


Another solution to the correlation problem: 
don’t use high bases!

Φ29(k)

Φ2(k)

digital nets: low discrepancy sequences constructed only using low number bases



The first two dimensions of Hammersley sequence 
follows the digital nets property

higher dimensions do not follow the same property 
due to the large base b



Definition of digital nets

elementary interval: partition of space into equal-size rectangles

https://gruenschloss.org/sample-enum/sample-enum.pdf

https://gruenschloss.org/sample-enum/sample-enum.pdf


Definition of digital nets

digital nets: for two non-negative integers , a -net in base  is a finite point set with  points 
with  dimensions where each elementary interval of volume  contains exactly  points

t ≤ m (t, m, s) b bm

s bt−m bt

elementary interval: partition of space into equal-size rectangles

https://gruenschloss.org/sample-enum/sample-enum.pdf

https://gruenschloss.org/sample-enum/sample-enum.pdf


Definition of digital nets

elementary interval: partition of space into equal-size rectangles

a (t, s)-sequence is an infinite point sequence whose subsequences form a digital net

https://gruenschloss.org/sample-enum/sample-enum.pdf

digital nets: for two non-negative integers , a -net in base  is a finite point set with  points 
with  dimensions where each elementary interval of volume  contains exactly  points

t ≤ m (t, m, s) b bm

s bt−m bt

https://gruenschloss.org/sample-enum/sample-enum.pdf


Sobol’ sequence satisfies digital nets property

want to find a function  that will output a number  in base  
for each dimension 

yd = fd(k) yd b
d

aka Faure or Niederreiter or digital sequence



want to find a function  that will output a number  in base  
for each dimension 

yd = fd(k) yd b
d

k = k1k2k3…kmb

represents k and y in terms of their digits

y = 0.y1y2y3…ymb

Sobol’ sequence satisfies digital nets property
aka Faure or Niederreiter or digital sequence



want to find a function  that will output a number  in base  
for each dimension 

yd = fd(k) yd b
d

turn the digits into vectors

k1

k2
⋮
km

y1
y2
⋮
ym

y = 0.y1y2y3…ymb

Sobol’ sequence satisfies digital nets property
aka Faure or Niederreiter or digital sequence



want to find a function  that will output a number  in base  
for each dimension 

yd = fd(k) yd b
d

let f be a linear function (!?) applied to the k vector

c1,1⋯c1,m
c2,1⋯c2,m

⋮
cm,1⋯cm,m

k1

k2
⋮
km

=

y1
y2
⋮
ym

y = 0.y1y2y3…ymb

(need to take modulo of b 
after multiplication)

Sobol’ sequence satisfies digital nets property
aka Faure or Niederreiter or digital sequence



want to find a function  that will output a number  in base  
for each dimension 

yd = fd(k) yd b
d

let f be a linear function (!?) applied to the k vector

c1,1⋯c1,m
c2,1⋯c2,m

⋮
cm,1⋯cm,m

k1

k2
⋮
km

=

y1
y2
⋮
ym

“generator matrix”

y = 0.y1y2y3…ymb

(need to take modulo of b 
after multiplication)

Sobol’ sequence satisfies digital nets property
aka Faure or Niederreiter or digital sequence



Intuition of the generator matrix

c1,1⋯c1,m
c2,1⋯c2,m

⋮
cm,1⋯cm,m

k1

k2
⋮
km

=

y1
y2
⋮
ym

y = 0.y1y2y3…ymb

generator matrix can be seen as a generalization of “scrambling”  
before we apply the van der Corput sequence transformation (as opposed to post scrambling)

can be a permutation matrix!



Intuition of the generator matrix

c1,1⋯c1,m
c2,1⋯c2,m

⋮
cm,1⋯cm,m

k1

k2
⋮
km

=

y1
y2
⋮
ym

focus on base 2 for now —  and  are either 0 or 1ki yi

y = 0.y1y2y3…ymb
0 1



Intuition of the generator matrix

c1,1⋯c1,m
c2,1⋯c2,m

⋮
cm,1⋯cm,m

k1

k2
⋮
km

=

y1
y2
⋮
ym

focus on base 2 for now —  and  are either 0 or 1ki yi

y = 0.y1y2y3…ymb
0 1

first row is responsible for the first digit of y 

1D elementary intervals



Intuition of the generator matrix

c1,1⋯c1,m
c2,1⋯c2,m

⋮
cm,1⋯cm,m

k1

k2
⋮
km

=

y1
y2
⋮
ym

focus on base 2 for now —  and  are either 0 or 1ki yi

y = 0.y1y2y3…ymb
0 1

first two rows are responsible for the first two digits of y 

1D elementary intervals



Intuition of the generator matrix — 2D
c1,1 c1,2 c1,3
c2,1 c2,2 c2,3
c3,1 c3,2 c3,3

k1

k2

k3

=
y1
y2
y3

c′ 1,1 c′ 1,2 c′ 1,3

c′ 2,1 c′ 2,2 c′ 2,3

c′ 3,1 c′ 3,2 c′ 3,3

k1

k2

k3

=
y′ 1

y′ 2

y′ 3



Intuition of the generator matrix — 2D
c1,1 c1,2 c1,3
c2,1 c2,2 c2,3
c3,1 c3,2 c3,3

k1

k2

k3

=
y1
y2
y3

c′ 1,1 c′ 1,2 c′ 1,3

c′ 2,1 c′ 2,2 c′ 2,3

c′ 3,1 c′ 3,2 c′ 3,3

k1

k2

k3

=
y′ 1

y′ 2

y′ 3

0 1

11

10

01

00 000 001

010 011

100 101

110 111



Intuition of the generator matrix — 2D

[c1,1 c1,2 c1,3]
k1

k2

k3

= [y1]

[
c′ 1,1 c′ 1,2 c′ 1,3

c′ 2,1 c′ 2,2 c′ 2,3]
k1

k2

k3

= [y′ 1

y′ 2]
0 1

11

10

01

00 000 001

010 011

100 101

110 111



Intuition of the generator matrix — 2D

c1,1 c1,2 c1,3

c′ 1,1 c′ 1,2 c′ 1,3

c′ 2,1 c′ 2,2 c′ 2,3

k1

k2

k3

=
y1

y′ 1

y′ 2

0 1

11

10

01

00 000 001

010 011

100 101

110 111



Intuition of the generator matrix — 2D

c1,1 c1,2 c1,3

c′ 1,1 c′ 1,2 c′ 1,3

c′ 2,1 c′ 2,2 c′ 2,3

k1

k2

k3

=
y1

y′ 1

y′ 2

0 1

11

10

01

00 000 001

010 011

100 101

110 111

digital nets property = bijection between two vectors



Intuition of the generator matrix — 2D

c1,1 c1,2 c1,3

c′ 1,1 c′ 1,2 c′ 1,3

c′ 2,1 c′ 2,2 c′ 2,3

k1

k2

k3

=
y1

y′ 1

y′ 2

0 1

11

10

01

00 000 001

010 011

100 101

110 111

digital nets property = bijection between two vectors

bijection = the matrix being invertible!! (i.e. det != 0)



Designing generator matrices
enumerate all elementary intervals 

(or even just subregions of the domain)



Designing generator matrices
enumerate all elementary intervals 

(or even just subregions of the domain)

write down the constraints of different sub matrices

det(A) != 0 det(B) != 0 det(C) != 0 det(D) != 0



Designing generator matrices
enumerate all elementary intervals 

(or even just subregions of the domain)

write down the constraints of different sub matrices

det(A) != 0 det(B) != 0 det(C) != 0 det(D) != 0

solve for the polynomial systems (in general NP hard, 
but there are many known solutions in number theory,

and fast greedy approximation exists)



Example of generator matrices
base = 2, m = 6

C1 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

C2 =

1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 1 1 1 0 0
1 0 0 0 1 0
1 1 0 0 1 1

Sobol’s algorithm produces a (0,s)-sequence on base 2



Some good references



Halton vs Sobol’
Sobol’ converges faster than Halton/Hammersley (due to the digital nets property), 

but introduces structural artifacts

Halton Sobol’



Halton vs Sobol’
Sobol’ converges faster than Halton/Hammersley (due to the digital nets property), 

but introduce structural artifacts

Halton Sobol’



Avoiding structural artifacts in Sobol’ sampling

• Cranley-Patterson rotation

• Owen scrambling



Avoiding structural artifacts in Sobol’ sampling

• Cranley-Patterson rotation

• Owen scrambling

add a global random shift to all points in the sequence

can degrade uniformity a little bit

https://www.uni-kl.de/AG-Heinrich/EMS.pdf

https://www.uni-kl.de/AG-Heinrich/EMS.pdf


Avoiding structural artifacts in Sobol’ sampling

• Cranley-Patterson rotation

• Owen scrambling

hierarchically and randomly scramble the elementary intervals

https://andrew-helmer.github.io/tree-shuffling/

provably preserves digital nets property and discrepancy!!

(similar to Faure’s scrambling for Halton sequence)

https://andrew-helmer.github.io/tree-shuffling/


Blue noise + Sobol’
can be done by hacking Owen’s scrambling or the generation matrices



Incorporation of blue noise in digital nets 
is still limiting

mostly applies to 2D

needs the # of samples to be power of 16



Power spectrum of Sobol’ sampling

2019



Blue-noise Low-Discrepancy Sequences

Perrier et al.

2019



Connection to optimal transport/ 
Wasserstein distance

• Rubinstein-Kantorovich theorem

instead of using discrepancies, measure the earth mover distance



Rank-1 lattice

2021 2006



Spherical Fibonacci lattice

https://math.stackexchange.com/questions/3291489/can-the-fibonacci-lattice-be-extended-to-dimensions-higher-than-3

https://math.stackexchange.com/questions/3291489/can-the-fibonacci-lattice-be-extended-to-dimensions-higher-than-3


Comparison between low-discrepancy 
sequences and jittering

at low dimension, for smooth integrals, digital nets often outperform jittering  
(but extensions of progressive multi-jittering, PMJ02, is as good at 2D)

https://perso.liris.cnrs.fr/david.coeurjolly/publication/cascaded2021/Cascaded2021.pdf

https://perso.liris.cnrs.fr/david.coeurjolly/publication/cascaded2021/Cascaded2021.pdf


Comparison between low-discrepancy 
sequences and jittering

at mid dimension, for smooth integrals, digital nets still often outperform jittering  
(PMJ02 requires uncorrelated jittering to work and is less effective)

https://perso.liris.cnrs.fr/david.coeurjolly/publication/cascaded2021/Cascaded2021.pdf

https://perso.liris.cnrs.fr/david.coeurjolly/publication/cascaded2021/Cascaded2021.pdf


Comparison between low-discrepancy 
sequences and jittering

at high dimension, all methods are similar, except independent white noise

https://perso.liris.cnrs.fr/david.coeurjolly/publication/cascaded2021/Cascaded2021.pdf

https://perso.liris.cnrs.fr/david.coeurjolly/publication/cascaded2021/Cascaded2021.pdf


So, which sample sequence should we use?
• PMJ is much easier to combine with blue noise, so it has better perceptual quality

• Digital nets can converge faster in mid dimensional smooth problems (e.g., 4-8D)

• For high-dimensional problems (>10D), you are good as long as you don’t use white noise



Related topic: blue-noise dithered sampling
• focus on the reconstruction properties of sampling patterns, instead of integration

often by optimizing the Cranley-Patterson rotation offset in preprocessing



Neural nets for point sampling



Next: path-space & Eric Veach
next Monday is holiday!


