Low-discrepancy sequences (aka Quasi Monte Carlo methods)

UCSD CSE 272 Advanced Image Synthesis

Tzu-Mao Li

slides are largely inspired by Wojciech Jarosz and Lois Paulin

Haolin Lu

Alexander Mai

HW1 graded

some cool images

Keli Wang

Issac Nealey

Peter Wu

Zimu Guan

Pasha Bouzarjomehri

Multi-jittered sampling

- one sample in each square
- one sample in each row
- one sample in each column

Multi-jittered sampling

- one sample in each square
- one sample in each row
- one sample in each column

quiz: can we add more constraints to the point set?

- one sample in all rectangular partition of the space

63

Random Number Generation and Quasi-Monte Carlo Methods

HARALD NIEDERREITER

- one sample in all rectangular partition of the space

partition of 16 4x4 rectangles

- one sample in all rectangular partition of the space

partition of 16 16x1 rectangles

- one sample in all rectangular partition of the space

partition of 16 1x16 rectangles

- one sample in all rectangular partition of the space

partition of 16 8x2 rectangles

- one sample in all rectangular partition of the space

partition of 16 8x2 rectangles

multi-jittered sampling fails to satisfy the digital nets property!

- one sample in all rectangular partition of the space

partition of 16 2x8 rectangles

multi-jittered sampling fails to satisfy the digital nets property!

A point set that satisfies the digital net property - one sample in all rectangular partition of the space

A point set that satisfies the digital net property - one sample in all rectangular partition of the space

A point set that satisfies the digital net property - one sample in all rectangular partition of the space

Low-discrepancy sequences

- deterministic & progressive Latin hypercube samples based on the minimization of discrepancy
- entire field of study called "Quasi-Monte-Carlo"

$$D_n = \max_{\substack{\text{all rectangles}}} \frac{no. \text{ of points in the rectangle}}{n}$$

https://stats.stackexchange.com/questions/40384/fake-uniform-random-numbers-more-evenly-distributed-than-true-uniform-data

Koksma-Hlawka inequality

• discrepancy is the upper bound of the absolute estimation error!

$$\left| \frac{1}{n} \sum_{i=0}^{n} f(x_i) - \int f(x) dx \right| \le V(f) D_n^*(x_1, x_2, \dots, x_n)$$

star discrepancy: only consider rectangles with one vertex at the origin

no. of points in the rectangle

 $D_n =$ max all rectangles

V: the "total variation" of f

area(rectangle)

the simplest low-discrepancy sequence in 1D

define a sequence for a base b

k	Base 2	Φ_b
1	1	.1 ₂ = 1/2
2	10	$.01_2 = 1/4$
3	11	.11 ₂ = 3/4
4	100	$.001_2 = 1/3$
5	101	$.101_2 = 5/3$
6	110	$.011_2 = 3/8$
7	111	$.111_2 = 7/8$
• • •		

the simplest low-discrepancy sequence in 1D

define a sequence for a base b

k	Base 3	Φ_b
1	1	.1 ₃ = 1/3
2	2	$.2_3 = 2/3$
3	10	.01 ₃ = 1/9
4	11	. 11 ₃ = 4/9
5	12	.21 ₃ = 7/9
6	20	$.02_3 = 2/9$
7	21	.12 ₃ = 5/9
•••		

subdivide the 1D space into b regions

k	Base 3	Φ_b
1	1	.1 ₃ = 1/3
2	2	$.2_3 = 2/3$
3	10	.01 ₃ = 1/9
4	11	.11 ₃ = 4/9
5	12	.21 ₃ = 7/9
6	20	$.02_3 = 2/9$
7	21	.12 ₃ = 5/9

subdivide the 1D space into b regions

sample the boundaries

k	Base 3	Φ_b
1	1	.1 ₃ = 1/3
2	2	$.2_3 = 2/3$
3	10	.01 ₃ = 1/9
4	11	.11 ₃ = 4/9
5	12	.21 ₃ = 7/9
6	20	$.02_3 = 2/9$
7	21	.12 ₃ = 5/9

subdivide the 1D space into b regions

k	Base 3	Φ_b
1	1	.1 ₃ = 1/3
2	2	$.2_3 = 2/3$
3	10	.01 ₃ = 1/9
4	11	.11 ₃ = 4/9
5	12	.21 ₃ = 7/9
6	20	$.02_3 = 2/9$
7	21	.12 ₃ = 5/9

subdivide the 1D space into b regions

k	Base 3	Φ_b
1	1	.1 ₃ = 1/3
2	2	$.2_3 = 2/3$
3	10	.01 ₃ = 1/9
4	11	.11 ₃ = 4/9
5	12	.21 ₃ = 7/9
6	20	$.02_3 = 2/9$
7	21	.12 ₃ = 5/9

subdivide the 1D space into b regions

k	Base 3	Φ_b
1	1	.1 ₃ = 1/3
2	2	$.2_3 = 2/3$
3	10	.01 ₃ = 1/9
4	11	.11 ₃ = 4/9
5	12	.21 ₃ = 7/9
6	20	$.02_3 = 2/9$
7	21	.12 ₃ = 5/9

subdivide the 1D space into b regions

k	Base 10	Φ_b
1	1	$1_{10} = 1/10$
5	5	$.5_{10} = 5/10$
9	9	.9 ₁₀ = 9/10
10	10	$.01_{10} = 1/^{-1}$
11	11	$.11_{10} = 11/$
12	12	$.21_{10} = 21/$
21	21	.12 ₁₀ = 12/

concatenate van der Corput sequences with co-prime bases into a vector

ALGORITHM 247

RADICAL-INVERSE QUASI-RANDOM POINT SEQUENCE [G5]

J. H. HALTON AND G. B. SMITH (Recd. 24 Jan. 1964 and 21 July 1964)

concatenate van der Corput sequences with co-prime bases into a vector

 $\left(\frac{1}{2},\frac{1}{3}\right)$

ALGORITHM 247 RADICAL-INVERSE QUASI-RANDOM POINT SEQUENCE [G5]

J. H. HALTON AND G. B. SMITH (Recd. 24 Jan. 1964 and 21 July 1964)

concatenate van der Corput sequences with co-prime bases into a vector

ALGORITHM 247 RADICAL-INVERSE QUASI-RANDOM POINT SEQUENCE [G5]

J. H. HALTON AND G. B. SMITH (Recd. 24 Jan. 1964 and 21 July 1964)

concatenate van der Corput sequences with co-prime bases into a vector

ALGORITHM 247 RADICAL-INVERSE QUASI-RANDOM POINT SEQUENCE [G5]

J. H. HALTON AND G. B. SMITH (Recd. 24 Jan. 1964 and 21 July 1964)

concatenate van der Corput sequences with co-prime bases into a vector

ALGORITHM 247 RADICAL-INVERSE QUASI-RANDOM POINT SEQUENCE [G5]

J. H. HALTON AND G. B. SMITH (Recd. 24 Jan. 1964 and 21 July 1964)

concatenate van der Corput sequences with co-prime bases into a vector

progressive & naturally generalize to higher dimension!

ALGORITHM 247 RADICAL-INVERSE QUASI-RANDOM POINT SEQUENCE [G5]

J. H. HALTON AND G. B. SMITH (Recd. 24 Jan. 1964 and 21 July 1964)

Halton sequence vs independent noise

https://en.wikipedia.org/wiki/Halton_sequence

Hammersley sequence

- append Halton sequence with $\frac{k}{N}$, N is the total number of samples
 - not progressive anymore, but more evenly distributed

$$\operatorname{Halton}(k) = \left(\Phi_2(k), \Phi_3(k), \Phi_5(k), \cdots\right)$$

Hammersley
$$(k) = \left(\frac{k}{N}, \Phi_2(k), \Phi_3(k), \Phi_5(k), \cdots\right)$$

Hammersley vs Halton sequences

Discrepancies of Halton/Hammersley sequence

 $D_n^* = O\left(\frac{\left(\log N\right)^d}{N}\right) \qquad \left|\frac{1}{n}\right|$

Koksma-Hlawka inequality

$$\frac{1}{2}\sum_{i=0}^{n} f(x_i) - \int f(x) dx \le V(f) D_n^*(x_1, x_2, \dots, x_n)$$

Convergence rates compared (2D)

Samplers	Worst Case	Best Ca
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-2})$
Poisson Disk	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
CCVT	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-\xi})$

ISE 2` **T**)

$$O\left(\frac{\left(\log N\right)^2}{N}\right)$$

for large N, low-discrepancy sequences win

(though note that V(f) is often unbounded in rendering)

Issues of Halton/Hammersley sequences: correlated pattern in high dimension

 (Φ_{29}, Φ_{31})

https://www.pbr-book.org/3ed-2018/Sampling_and_Reconstruction/The_Halton_Sampler

A solution: scramble the digits of each coordinate

scrambling preserves (often improves) discrepancy!

 $\Phi_{29}(k) = 0.abcdefg_{29}$

scramble

 $\Phi_{29}(k) = 0.cdabgfe_{29}(k)$

apply the same scramble to all k!

1992

Good Permutations for Extreme Discrepancy

Henri Faure

Mathématiques Informatique, Université de Provence, 3, Place Victor-Hugo, 13331 Marseille, Cedex 3, France

Scrambling fixes the regularity issue

(the clumping might look bad, but note that this is a projection of a high-dimensional point set)

(Φ_{29}, Φ_{31})

jittered

Jittered vs Halton

4D integral

Halton

https://www.pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Sobol_Sampler

Another solution to the correlation problem: don't use high bases!

digital nets: low discrepancy sequences constructed only using low number bases

 $\Phi_{\gamma}(k)$

The first two dimensions of Hammersley sequence follows the digital nets property

higher dimensions do not follow the same property due to the large base b

Definition of digital nets

elementary interval: partition of space into equal-size rectangles

Definition of digital nets

elementary interval: partition of space into equal-size rectangles

digital nets: for two non-negative integers $t \leq m$, a (t, m, s)-net in base b is a finite point set with b^m points with *s* dimensions where each elementary interval of volume b^{t-m} contains exactly b^t points

Definition of digital nets

elementary interval: partition of space into equal-size rectangles

digital nets: for two non-negative integers $t \leq m$, a (t, m, s)-net in base b is a finite point set with b^m points with *s* dimensions where each elementary interval of volume b^{t-m} contains exactly b^t points

a (t, s)-sequence is an infinite point sequence whose subsequences form a digital net

https://gruenschloss.org/sample-enum/sample-enum.pdf

aka Faure or Niederreiter or digital sequence

want to find a function $y_d = f_d(k)$ that will output a number y_d in base b for each dimension *d*

aka Faure or Niederreiter or digital sequence

for each dimension *d*

represents k and y in terms of their digits

 $k = k_1 k_2 k_3 \dots k_{m_h}$

want to find a function $y_d = f_d(k)$ that will output a number y_d in base b

 $y = 0.y_1y_2y_3...y_{m_h}$

aka Faure or Niederreiter or digital sequence

for each dimension *d*

turn the digits into vectors

want to find a function $y_d = f_d(k)$ that will output a number y_d in base b

 $y = 0.y_1y_2y_3...y_{m_b}$

aka Faure or Niederreiter or digital sequence

for each dimension *d*

let f be a linear function (!?) applied to the k vector

$$\begin{bmatrix} c_{1,1} \cdots c_{1,m} \\ c_{2,1} \cdots c_{2,m} \\ \vdots \\ c_{m,1} \cdots c_{m,m} \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_m \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

- want to find a function $y_d = f_d(k)$ that will output a number y_d in base b

$$y = 0.y_1y_2y_3\dots y_{m_b}$$

(need to take modulo of b after multiplication)

aka Faure or Niederreiter or digital sequence

for each dimension *d*

let f be a linear function (!?) applied to the k vector

"generator matrix"

$$\begin{bmatrix} c_{1,1} \cdots c_{1,m} \\ c_{2,1} \cdots c_{2,m} \\ \vdots \\ c_{m,1} \cdots c_{m,m} \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_m \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

- want to find a function $y_d = f_d(k)$ that will output a number y_d in base b

$$y = 0.y_1y_2y_3\dots y_{m_b}$$

(need to take modulo of b after multiplication)

generator matrix can be seen as a generalization of "scrambling" before we apply the van der Corput sequence transformation (as opposed to post scrambling)

can be a permutation matrix!

$$y = 0.y_1y_2y_3...y_{m_b}$$

focus on base 2 for now — k_i and y_i are either 0 or 1

 $y = 0.y_1y_2y_3...y_{m_h}$

1D elementary intervals

first row is responsible for the first digit of y

Intuition of the generator matrix

focus on base 2 for now — k_i and y_i are either 0 or 1

1D elementary intervals

first two rows are responsible for the first two digits of y

Intuition of the generator matrix

focus on base 2 for now — k_i and y_i are either 0 or 1

 $\begin{bmatrix} c_{1,1} & c_{1,2} & c_{1,3} \\ c_{2,1} & c_{2,2} & c_{2,3} \\ c_{3,1} & c_{3,2} & c_{3,3} \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$

 $\begin{bmatrix} c'_{1,1} & c'_{1,2} & c'_{1,3} \\ c'_{2,1} & c'_{2,2} & c'_{2,3} \\ c'_{3,1} & c'_{3,2} & c'_{3,3} \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} y'_1 \\ y'_2 \\ y'_3 \end{bmatrix}$

$$\begin{bmatrix} c_{1,1} & c_{1,2} & c_{1,3} \\ c_{2,1} & c_{2,2} & c_{2,3} \\ c_{3,1} & c_{3,2} & c_{3,3} \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

$$\begin{bmatrix} c'_{1,1} & c'_{1,2} & c'_{1,3} \\ c'_{2,1} & c'_{2,2} & c'_{2,3} \\ c'_{3,1} & c'_{3,2} & c'_{3,3} \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} y'_1 \\ y'_2 \\ y'_3 \end{bmatrix}$$

 $\begin{bmatrix} c'_{1,1} & c'_{1,2} & c'_{1,3} \\ c'_{2,1} & c'_{2,2} & c'_{2,3} \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} =$

$$\begin{bmatrix} c_{1,1} & c_{1,2} & c_{1,3} \\ c'_{1,1} & c'_{1,2} & c'_{1,3} \\ c'_{2,1} & c'_{2,2} & c'_{2,3} \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_2 \end{bmatrix} = \begin{bmatrix} y'_1 \\ y'_1 \\ y'_2 \end{bmatrix}$$

digital nets property = bijection between two vectors

$$\begin{bmatrix} c_{1,1} & c_{1,2} & c_{1,3} \\ c'_{1,1} & c'_{1,2} & c'_{1,3} \\ c'_{2,1} & c'_{2,2} & c'_{2,3} \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_2 \end{bmatrix} = \begin{bmatrix} y'_1 \\ y'_1 \\ y'_2 \end{bmatrix}$$

digital nets property = bijection between two vectors

bijection = the matrix being invertible!! (i.e. det != 0)

MatBuilder: Mastering Sampling Uniformity Over Projections

Designing generator matrices

enumerate all elementary intervals (or even just subregions of the domain)

MatBuilder: Mastering Sampling Uniformity Over Projections

Designing generator matrices

enumerate all elementary intervals (or even just subregions of the domain)

write down the constraints of different sub matrices

det(A) != 0 det(B) != 0 det(C) != 0 det(D) != 0

MatBuilder: Mastering Sampling Uniformity Over Projections

Designing generator matrices

enumerate all elementary intervals (or even just subregions of the domain)

write down the constraints of different sub matrices

det(A) != 0 det(B) != 0 det(C) != 0 det(D) != 0

solve for the polynomial systems (in general NP hard, but there are many known solutions in number theory, and fast greedy approximation exists)

MatBuilder: Mastering Sampling Uniformity Over Projections

Example of generator matrices

Sobol's algorithm produces a (0,s)-sequence on base 2

$C_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \qquad C_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$

base = 2, m = 6

$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$ 1 1 0 0 1 1

Some good references

Random Number Generation and Quasi-Monte Carlo Methods

HARALD NIEDERREITER

Optimizing Dyadic Nets

63

ABDALLA G. M. AHMED, KAUST, KSA PETER WONKA, KAUST, KSA

Efficient Multidimensional Sampling

Thomas Kollig and Alexander Keller

Department of Computer Science, Kaiserslautern University, Germany

MatBuilder: Mastering Sampling Uniformity Over Projections

Halton vs Sobol'

Halton

Sobol' converges faster than Halton/Hammersley (due to the digital nets property), but introduces structural artifacts

Sobol' converges faster than Halton/Hammersley (due to the digital nets property), but introduce structural artifacts

Halton

Halton vs Sobol'

Sobol'

Avoiding structural artifacts in Sobol' sampling

- Cranley-Patterson rotation
- Owen scrambling

Avoiding structural artifacts in Sobol' sampling

Cranley-Patterson rotation

Owen scrambling

add a global random shift to all points in the sequence

can degrade uniformity a little bit

RANDOMIZATION OF NUMBER THEORETIC METHODS FOR MULTIPLE INTEGRATION*

R. CRANLEY AND T. N. L. PATTERSON[†]

https://www.uni-kl.de/AG-Heinrich/EMS.pdf

Avoiding structural artifacts in Sobol' sampling

Cranley-Patterson rotation

Owen scrambling

provably preserves digital nets property and discrepancy!!

hierarchically and randomly scramble the elementary intervals (similar to Faure's scrambling for Halton sequence)

<u>https://andrew-helmer.github.io/tree-shuffling/</u>

Blue noise + Sobol'

can be done by hacking Owen's scrambling or the generation matrices

Sequences with Low-Discrepancy Blue-Noise 2-D Projections

Hélène Perrier¹

David Coeurjolly¹

¹Université de Lyon, CNRS, LIRIS, France

Feng Xie²

Pat Hanrahan²

Victor Ostromoukhov¹

²Stanford, USA

³ Google, USA

Matt Pharr³

Incorporation of blue noise in digital nets is still limiting

Sequences with Low-Discrepancy Blue-Noise 2-D Projections

Optimizing Dyadic Nets

ABDALLA G. M. AHMED, KAUST, KSA PETER WONKA, KAUST, KSA

mostly applies to 2D

needs the # of samples to be power of 16

Power spectrum of Sobol' sampling

Sequences with Low-Discrepancy Blue-Noise 2-D Projections

Blue-noise Low-Discrepancy Sequences

Perrier et al.

Sequences with Low-Discrepancy Blue-Noise 2-D Projections

Connection to optimal transport/ Wasserstein distance

• Rubinstein-Kantorovich theorem

$$\left|\int f(x)\,dx - \frac{1}{n}\sum_{i=1}^n f(x^i)\right|$$

instead of using discrepancies, measure the earth mover distance

$\leq \operatorname{Lip}(f) \cdot W_1(X, 1_{\Omega})_{\mathfrak{l}}$

Sliced Optimal Transport Sampling

LOIS PAULIN, Univ Lyon, CNRS NICOLAS BONNEEL, Univ Lyon, CNRS DAVID COEURJOLLY, Univ Lyon, CNRS JEAN-CLAUDE IEHL, Univ Lyon, CNRS ANTOINE WEBANCK, Univ Lyon, CNRS MATHIEU DESBRUN, ShanghaiTech/Caltech VICTOR OSTROMOUKHOV, Univ Lyon, CNRS

Rank-1 lattice

Rank-1 Lattices for Efficient Path Integral Estimation

Hongli Liu¹ and Honglei Han¹ \dagger and Min Jiang²

¹State Key Laboratory of Media Convergence and Communication, and School of Animation and Digital Arts, Communication University of China, China ²Framestore, United Kingdom

Image Synthesis by Rank-1 Lattices

S. Dammertz and A. Keller Institute of Media Informatics, Ulm University, Germany

Spherical Fibonacci lattice

Spherical Fibonacci Point Sets for Illumination Integrals

R. Marques¹, C. Bouville², M. Ribardière², L. P. Santos³ and K. Bouatouch²

¹INRIA Rennes, France ²IRISA Rennes, France ³Universidade do Minho, Braga, Portugal

https://math.stackexchange.com/questions/3291489/can-the-fibonacci-lattice-be-extended-to-dimensions-higher-than-3

Comparison between low-discrepancy sequences and jittering

at low dimension, for smooth integrals, digital nets often outperform jittering (but extensions of progressive multi-jittering, PMJ02, is as good at 2D)

Gaussian integrands

Heaviside integrands

https://perso.liris.cnrs.fr/david.coeurjolly/publication/cascaded2021/Cascaded2021.pdf

Comparison between low-discrepancy sequences and jittering

at mid dimension, for smooth integrals, digital nets still often outperform jittering (PMJ02 requires uncorrelated jittering to work and is less effective)

https://perso.liris.cnrs.fr/david.coeurjolly/publication/cascaded2021/Cascaded2021.pdf

Comparison between low-discrepancy sequences and jittering

at high dimension, all methods are similar, except independent white noise

https://perso.liris.cnrs.fr/david.coeurjolly/publication/cascaded2021/Cascaded2021.pdf

So, which sample sequence should we use?

- PMJ is much easier to combine with blue noise, so it has better perceptual quality
- Digital nets can converge faster in mid dimensional smooth problems (e.g., 4-8D)

• For high-dimensional problems (>10D), you are good as long as you don't use white noise

Related topic: blue-noise dithered sampling

• focus on the reconstruction properties of sampling patterns, instead of integration

often by optimizing the Cranley-Patterson rotation offset in preprocessing

Blue-noise Dithered Sampling

A Low-Discrepancy Sampler that Distributes Monte Carlo Errors as a Blue Noise in Screen Space Eric Heitz (Unity Technologies) - Laurent Belcour (Unity Technologies) - Victor Ostromoukhov - David Coeurjolly - Jean-Claude Iehl (LIRIS) Published in ACM SIGGRAPH Talk 2019

Neural nets for point sampling

Deep Point Correlation Design

Thomas Leimkühler¹, Gurprit Singh¹, Karol Myszkowski¹, Hans-Peter Seidel¹, Tobias Ritschel²

¹Max Planck Institute for Informatics, Saarbrücken, ²University College London, UK

In ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2019, Volume 38 issue 6)

Next: path-space & Eric Veach

next Monday is holiday!

Figure 10.1: A transport path from a light source to the camera lens, created by concate ing two separately generated pieces.

ROBUST MONTE CARLO METHODS FOR LIGHT TRANSPORT SIMULATION

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

> by Eric Veach December 1997