Low-discrepancy sequences (aka Quasi Monte Carlo methods)

UCSD CSE 272
Advanced Image Synthesis

Tzu-Mao Li

HW1 graded

Haolin Lu

Alexander Mai
some cool images

Peter Wu

Zimu Guan

Pasha Bouzarjomehri

Multi-jittered sampling

- one sample in each square
- one sample in each row
- one sample in each column

Multi-jittered sampling

- one sample in each square
- one sample in each row
- one sample in each column
quiz: can we add more constraints to the point set?

Digital nets (aka ($\mathrm{t}, \mathrm{m}, \mathrm{s}$) nets)

- one sample in all rectangular partition of the space

Digital nets (aka ($\mathrm{t}, \mathrm{m}, \mathrm{s}$) nets)

- one sample in all rectangular partition of the space
partition of 164×4 rectangles

Digital nets (aka ($\mathrm{t}, \mathrm{m}, \mathrm{s}$) nets)

- one sample in all rectangular partition of the space
partition of 1616×1 rectangles

Digital nets (aka ($\mathrm{t}, \mathrm{m}, \mathrm{s}$) nets)

- one sample in all rectangular partition of the space
partition of 161×16 rectangles

Digital nets (aka ($\mathrm{t}, \mathrm{m}, \mathrm{s}$) nets)

- one sample in all rectangular partition of the space
partition of 168×2 rectangles

Digital nets (aka ($\mathrm{t}, \mathrm{m}, \mathrm{s}$) nets)

- one sample in all rectangular partition of the space
partition of 168×2 rectangles
multi-jittered sampling fails to satisfy the digital nets property!

Digital nets (aka ($\mathrm{t}, \mathrm{m}, \mathrm{s}$) nets)

- one sample in all rectangular partition of the space
partition of 162×8 rectangles
multi-jittered sampling fails to satisfy the digital nets property!

A point set that satisfies the digital net property

- one sample in all rectangular partition of the space

A point set that satisfies the digital net property

- one sample in all rectangular partition of the space

A point set that satisfies the digital net property

- one sample in all rectangular partition of the space

Low-discrepancy sequences

- deterministic \& progressive Latin hypercube samples based on the minimization of discrepancy
- entire field of study called "Quasi-Monte-Carlo"

Koksma-Hlawka inequality

- discrepancy is the upper bound of the absolute estimation error!

$$
\left|\frac{1}{n} \sum_{i=0}^{n} f\left(x_{i}\right)-\int f(x) \mathrm{d} x\right| \leq V(f) D_{n}^{*}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

star discrepancy: only consider rectangles with one vertex at the origin

$$
D_{n}=\max _{\text {all rectangles }} \left\lvert\, \frac{\text { no. of points in the rectangle }}{n}-\right.\text { area(rectangle) } \mid
$$

The van der Corput sequence Φ_{b}

the simplest low-discrepancy sequence in 1D
define a sequence for a base b

k	Base 2	Φ_{b}
1	1	$.1_{2}=1 / 2$
2	10	$.01_{2}=1 / 4$
3	11	$.11_{2}=3 / 4$
4	100	$.001_{2}=1 / 8$
5	101	$.101_{2}=5 / 8$
6	110	$.011_{2}=3 / 8$
7	111	$.111_{2}=7 / 8$
\cdots		

The van der Corput sequence Φ_{b}

the simplest low-discrepancy sequence in 1D define a sequence for a base b

k	Base 3	Φ_{b}
1	1	$.1_{3}=1 / 3$
2	2	$.2_{3}=2 / 3$
3	10	$.01_{3}=1 / 9$
4	11	$.11_{3}=4 / 9$
5	12	$.21_{3}=7 / 9$
6	20	$.02_{3}=2 / 9$
7	21	$.12_{3}=5 / 9$
\ldots		

The van der Corput sequence Φ_{b}

 subdivide the 1D space into b regions| k | Base 3 | Φ_{b} |
| :--- | :--- | :--- |
| 1 | 1 | $.1_{3}=1 / 3$ |
| 2 | 2 | $.23=2 / 3$ |
| 3 | 10 | $.01_{3}=1 / 9$ |
| 4 | 11 | $.11_{3}=4 / 9$ |
| 5 | 12 | $.21_{3}=7 / 9$ |
| 6 | 20 | $.02_{3}=2 / 9$ |
| 7 | 21 | $.12_{3}=5 / 9$ |
| \ldots | | |

The van der Corput sequence Φ_{b}

 subdivide the 1D space into b regions sample the boundaries| k | Base 3 | Φ_{b} |
| :--- | :--- | :--- |
| 1 | 1 | $.1_{3}=1 / 3$ |
| 2 | 2 | $.23=2 / 3$ |
| 3 | 10 | $.01_{3}=1 / 9$ |
| 4 | 11 | $.11_{3}=4 / 9$ |
| 5 | 12 | $.21_{3}=7 / 9$ |
| 6 | 20 | $.02_{3}=2 / 9$ |
| 7 | 21 | $.12_{3}=5 / 9$ |
| \ldots | | |

The van der Corput sequence Φ_{b}

 subdivide the 1D space into b regions sample the boundaries recurse into each region

k	Base 3	Φ_{b}
1	1	$.1_{3}=1 / 3$
2	2	$.23=2 / 3$
3	10	$.01_{3}=1 / 9$
4	11	$.11_{3}=4 / 9$
5	12	$.21_{3}=7 / 9$
6	20	$.02_{3}=2 / 9$
7	21	$.12_{3}=5 / 9$
\ldots		

The van der Corput sequence Φ_{b}

 subdivide the 1D space into b regions sample the boundaries recurse into each region| k | Base 3 | Φ_{b} |
| :--- | :--- | :--- |
| 1 | 1 | $.1_{3}=1 / 3$ |
| 2 | 2 | $.2_{3}=2 / 3$ |
| 3 | 10 | $.01_{3}=1 / 9$ |
| 4 | 11 | $.11_{3}=4 / 9$ |
| 5 | 12 | $.21_{3}=7 / 9$ |
| 6 | 20 | $.02_{3}=2 / 9$ |
| 7 | 21 | $.12_{3}=5 / 9$ |
| \ldots | | |

The van der Corput sequence Φ_{b}

 subdivide the 1D space into b regions sample the boundaries recurse into each region| k | Base 3 | Φ_{b} |
| :--- | :--- | :--- |
| 1 | 1 | $.1_{3}=1 / 3$ |
| 2 | 2 | $.2_{3}=2 / 3$ |
| 3 | 10 | $.01_{3}=1 / 9$ |
| 4 | 11 | $.11_{3}=4 / 9$ |
| 5 | 12 | $.21_{3}=7 / 9$ |
| 6 | 20 | $.02_{3}=2 / 9$ |
| 7 | 21 | $.12_{3}=5 / 9$ |
| \ldots | | |

The van der Corput sequence Φ_{b}

 subdivide the 1D space into b regions sample the boundaries recurse into each region| k | Base 10 | Φ_{b} |
| :--- | :--- | :--- |
| 1 | 1 | $.1_{10}=1 / 10$ |
| 5 | 5 | $.5_{10}=5 / 10$ |
| 9 | 9 | $.9_{10}=9 / 10$ |
| 10 | 10 | $.01_{10}=1 / 100$ |
| 11 | 11 | $.11_{10}=11 / 100$ |
| 12 | 21 | $.21_{10}=21 / 100$ |
| 21 | | $.12_{10}=12 / 100$ |
| \ldots | | |

High-dimensional generalization of van der Corput sequence: Halton sequence

$$
\operatorname{Halton}(k)=\left(\Phi_{2}(k), \Phi_{3}(k), \Phi_{5}(k), \cdots\right)
$$

concatenate van der Corput sequences with co-prime bases into a vector

High-dimensional generalization of van der Corput sequence: Halton sequence

$$
\operatorname{Halton}(k)=\left(\Phi_{2}(k), \Phi_{3}(k), \Phi_{5}(k), \cdots\right)
$$

concatenate van der Corput sequences with co-prime bases into a vector

High-dimensional generalization of van der Corput sequence: Halton sequence

$$
\text { Halton }(k)=\left(\Phi_{2}(k), \Phi_{3}(k), \Phi_{5}(k), \cdots\right)
$$

concatenate van der Corput sequences with co-prime bases into a vector

High-dimensional generalization of van der Corput sequence: Halton sequence

$$
\text { Halton }(k)=\left(\Phi_{2}(k), \Phi_{3}(k), \Phi_{5}(k), \cdots\right)
$$

concatenate van der Corput sequences with co-prime bases into a vector

High-dimensional generalization of van der Corput sequence: Halton sequence

$$
\text { Halton }(k)=\left(\Phi_{2}(k), \Phi_{3}(k), \Phi_{5}(k), \cdots\right)
$$

concatenate van der Corput sequences with co-prime bases into a vector

High-dimensional generalization of van der Corput sequence: Halton sequence

$$
\text { Halton }(k)=\left(\Phi_{2}(k), \Phi_{3}(k), \Phi_{5}(k), \cdots\right)
$$

concatenate van der Corput sequences with co-prime bases into a vector

Halton sequence vs independent noise

Hammersley sequence

- append Halton sequence with $\frac{k}{N^{\prime}} \mathrm{N}$ is the total number of samples
- not progressive anymore, but more evenly distributed

$$
\operatorname{Halton}(k)=\left(\Phi_{2}(k), \Phi_{3}(k), \Phi_{5}(k), \cdots\right)
$$

$\operatorname{Hammersley}(k)=\left(\frac{k}{N}, \Phi_{2}(k), \Phi_{3}(k), \Phi_{5}(k), \cdots\right)$

Hammersley vs Halton sequences

Discrepancies of Halton/Hammersley sequence

Koksma-Hlawka inequality

$$
D_{n}^{*}=O\left(\frac{(\log N)^{d}}{N}\right)
$$

$$
\left|\frac{1}{n} \sum_{i=0}^{n} f\left(x_{i}\right)-\int f(x) \mathrm{d} x\right| \leq V(f) D_{n}^{*}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Convergence rates compared (2D)

Samplers	Worst Case	Best Case
Random	$\mathcal{O}\left(N^{-1}\right)$	$\mathcal{O}\left(N^{-1}\right)$
Jitter	$\mathcal{O}\left(N^{-1.5}\right)$	$\mathcal{O}\left(N^{-2}\right)$
Poisson Disk	$\mathcal{O}\left(N^{-1}\right)$	$\mathcal{O}\left(N^{-1}\right)$
CCVT	$\mathcal{O}\left(N^{-1.5}\right)$	$\mathcal{O}\left(N^{-3}\right)$

$$
o\left(\frac{(\log N)^{2}}{N}\right)
$$

for large N , low-discrepancy sequences win
(though note that $\mathrm{V}(\mathrm{f})$ is often unbounded in rendering)

Issues of Halton/Hammersley sequences: correlated pattern in high dimension

$$
\left(\Phi_{29}, \Phi_{31}\right)
$$

A solution: scramble the digits of each coordinate

scrambling preserves (often improves) discrepancy!

$\Phi_{29}(k)=0 . a b c d e f g_{29}$
 scramble
 $\Phi_{29}(k)=0 . c d a b g f e_{29}$

apply the same scramble to all k !

Scrambling fixes the regularity issue

(the clumping might look bad, but note that this is a projection of a high-dimensional point set)

Jittered vs Halton

Another solution to the correlation problem: don't use high bases!

digital nets: low discrepancy sequences constructed only using low number bases

$$
\Phi_{2}(k)
$$

$$
\Phi_{29}(k)
$$

The first two dimensions of Hammersley sequence follows the digital nets property

higher dimensions do not follow the same property due to the large base b

Definition of digital nets

elementary interval: partition of space into equal-size rectangles

Definition of digital nets

elementary interval: partition of space into equal-size rectangles

digital nets: for two non-negative integers $t \leq m$, a (t, m, s)-net in base b is a finite point set with b^{m} points with s dimensions where each elementary interval of volume b^{t-m} contains exactly b^{t} points

Definition of digital nets

elementary interval: partition of space into equal-size rectangles

digital nets: for two non-negative integers $t \leq m$, a (t, m, s)-net in base b is a finite point set with b^{m} points with s dimensions where each elementary interval of volume b^{t-m} contains exactly b^{t} points
$a(t, s)$-sequence is an infinite point sequence whose subsequences form a digital net

Sobol' sequence satisfies digital nets property

 aka Faure or Niederreiter or digital sequencewant to find a function $y_{d}=f_{d}(k)$ that will output a number y_{d} in base b for each dimension d

Sobol' sequence satisfies digital nets property

 aka Faure or Niederreiter or digital sequencewant to find a function $y_{d}=f_{d}(k)$ that will output a number y_{d} in base b for each dimension d
represents k and y in terms of their digits

$$
k=k_{1} k_{2} k_{3} \ldots k_{m_{b}} \quad y=0 . y_{1} y_{2} y_{3} \ldots y_{m_{b}}
$$

Sobol' sequence satisfies digital nets property

 aka Faure or Niederreiter or digital sequencewant to find a function $y_{d}=f_{d}(k)$ that will output a number y_{d} in base b for each dimension d
turn the digits into vectors

$$
y=0 . y_{1} y_{2} y_{3} \ldots y_{m b}
$$

$$
\left[\begin{array}{c}
k_{1} \\
k_{2} \\
\vdots \\
k_{m}
\end{array}\right]
$$

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]
$$

Sobol' sequence satisfies digital nets property

 aka Faure or Niederreiter or digital sequencewant to find a function $y_{d}=f_{d}(k)$ that will output a number y_{d} in base b for each dimension d
let f be a linear function (!?) applied to the k vector

$$
y=0 . y_{1} y_{2} y_{3} \ldots y_{m_{b}}
$$

$$
\left[\begin{array}{c}
c_{1,1} \cdots c_{1, m} \\
c_{2,1} \cdots c_{2, m} \\
\vdots \\
c_{m, 1} \cdots c_{m, m}
\end{array}\right]\left[\begin{array}{c}
k_{1} \\
k_{2} \\
\vdots \\
k_{m}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]
$$

(need to take modulo of b after multiplication)

Sobol' sequence satisfies digital nets property

aka Faure or Niederreiter or digital sequence
want to find a function $y_{d}=f_{d}(k)$ that will output a number y_{d} in base b for each dimension d
let f be a linear function (!?) applied to the k vector

$$
y=0 . y_{1} y_{2} y_{3} \ldots y_{m_{b}}
$$

(need to take modulo of b after multiplication)

Intuition of the generator matrix

generator matrix can be seen as a generalization of "scrambling" before we apply the van der Corput sequence transformation (as opposed to post scrambling)
can be a permutation matrix

$$
y=0 . y_{1} y_{2} y_{3} \ldots y_{m b}
$$

$$
\left[\begin{array}{c}
c_{1,1} \cdots c_{1, m} \\
c_{2,1} \cdots c_{2, m} \\
\vdots \\
c_{m, 1} \cdots c_{m, m}
\end{array}\right]\left[\begin{array}{c}
k_{1} \\
k_{2} \\
\vdots \\
k_{m}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]
$$

Intuition of the generator matrix

focus on base 2 for now $-k_{i}$ and y_{i} are either 0 or 1

$$
\begin{aligned}
& 0 \mid \\
& 0 \\
& \hline
\end{aligned}
$$

Intuition of the generator matrix

1D elementary intervals

$$
\left[\begin{array}{c}
c_{1,1} \cdots c_{1, m} \\
c_{2,1} \cdots c_{2, m} \\
\vdots \\
c_{m, 1} \cdots c_{m, m}
\end{array}\right]\left[\begin{array}{c}
k_{1} \\
k_{2} \\
\vdots \\
k_{m}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]
$$

first row is responsible for the first digit of y

Intuition of the generator matrix

1D elementary intervals
focus on base 2 for now $-k_{i}$ and y_{i} are either 0 or 1

$$
y=0 . y_{1} y_{2} y_{3} \ldots y_{m b}
$$

$$
\left[\begin{array}{c}
{\left[\begin{array}{c}
c_{1,1} \cdots c_{1, m} \\
c_{2,1} \cdots c_{2, m}
\end{array}\right.} \\
\vdots \\
c_{m, 1} \cdots c_{m, m}
\end{array}\right]\left[\begin{array}{c}
k_{1} \\
k_{2} \\
\vdots \\
k_{m}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]
$$

first two rows are responsible for the first two digits of y

Intuition of the generator matrix -2 D

$$
\left[\begin{array}{lll}
c_{1,1} & c_{1,2} & c_{1,3} \\
c_{2,1} & c_{2,2} & c_{2,3} \\
c_{3,1} & c_{3,2} & c_{3,3}
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
c_{1,1}^{\prime} & c_{1,2}^{\prime} & c_{1,3}^{\prime} \\
c_{2,1}^{\prime} & c_{2,2}^{\prime} & c_{2,3}^{\prime} \\
c_{3,1}^{\prime} & c_{3,2}^{\prime} & c_{3,3}^{\prime}
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3}
\end{array}\right]=\left[\begin{array}{l}
y_{1}^{\prime} \\
y_{2}^{\prime} \\
y_{3}^{\prime}
\end{array}\right]
$$

Intuition of the generator matrix -2 D

Intuition of the generator matrix -2 D

$$
\left.\begin{array}{l}
{\left[\begin{array}{ll}
{\left[c_{1,1} c_{1,2} c_{1,3}\right]}
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3}
\end{array}\right]=\left[\begin{array}{l}
\left.y_{1}\right]
\end{array}\right.} \\
{\left[\begin{array}{ll}
c_{1,1}^{\prime} c_{1,2}^{\prime} c_{1,3}^{\prime} \\
c_{2,1}^{\prime} & c_{2,2}^{\prime} \\
c_{2,3}^{\prime}
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3}
\end{array}\right]=\left[\begin{array}{l}
y_{1}^{\prime} \\
y_{2}^{\prime}
\end{array}\right] .
$$

Intuition of the generator matrix -2 D

Intuition of the generator matrix -2 D

Intuition of the generator matrix -2 D

Designing generator matrices

enumerate all elementary intervals (or even just subregions of the domain)

Designing generator matrices

enumerate all elementary intervals (or even just subregions of the domain)

write down the constraints of different sub matrices

$\operatorname{det}(\mathrm{A})!=0 \quad \operatorname{det}(\mathrm{~B})!=0 \quad \operatorname{det}(\mathrm{C})!=0 \quad \operatorname{det}(\mathrm{D})!=0$

Designing generator matrices

enumerate all elementary intervals (or even just subregions of the domain)
write down the constraints of different sub matrices

$\operatorname{det}(\mathrm{A})!=0 \quad \operatorname{det}(\mathrm{~B})!=0 \quad \operatorname{det}(\mathrm{C})!=0 \quad \operatorname{det}(\mathrm{D})!=0$
solve for the polynomial systems (in general NP hard, but there are many known solutions in number theory, and fast greedy approximation exists)

Example of generator matrices

Sobol's algorithm produces a ($0, \mathrm{~s}$)-sequence on base 2
base $=2, \mathrm{~m}=6$

$$
C_{1}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad C_{2}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 1
\end{array}\right]
$$

Some good references

Efficient Multidimensional Sampling

Thomas Kollig and Alexander Keller
Department of Computer Science, Kaiserslautern University, Germany

MatBuilder: Mastering Sampling Uniformity Over Projections

LOÏS PAULIN, Univ Lyon, UCBL, CNRS, INSA Lyon, LIRIS, France
NICOLAS BONNEEL, Univ Lyon, CNRS, INSA Lyon, UCBL, LIRIS, France
DAVID COEURJOLLY, Univ Lyon, CNRS, INSA Lyon, UCBL, LIRIS, France
JEAN-CLAUDE IEHL, Univ Lyon, UCBL, CNRS, INSA Lyon, LIRIS, France
ALEXANDER KELLER, NVIDIA, Germany
VICTOR OSTROMOUKHOV, Univ Lyon, UCBL, CNRS, INSA Lyon, LIRIS, France
Optimizing Dyadic Nets

ABDALLA G. M. AHMED, KAUST, KSA
PETER WONKA, KAUST, KSA

Halton vs Sobol'

Sobol' converges faster than Halton/Hammersley (due to the digital nets property), but introduces structural artifacts

Halton vs Sobol'

Sobol' converges faster than Halton/Hammersley (due to the digital nets property),
but introduce structural artifacts

Halton

Sobol'

Avoiding structural artifacts in Sobol' sampling

- Cranley-Patterson rotation
- Owen scrambling

Avoiding structural artifacts in Sobol' sampling

- Cranley-Patterson rotation
- Owen scrambling
add a global random shift to all points in the sequence

can degrade uniformity a little bit

Avoiding structural artifacts in Sobol' sampling

- Cranley-Patterson rotation
- Owen scrambling
hierarchically and randomly scramble the elementary intervals
(similar to Faure's scrambling for Halton sequence)

provably preserves digital nets property and discrepancy!!

Blue noise + Sobol'

can be done by hacking Owen's scrambling or the generation matrices

Sequences with Low-Discrepancy Blue-Noise 2-D Projections

Incorporation of blue noise in digital nets is still limiting

Low-Discrepancy Blue Noise Sampling

Optimizing Dyadic Nets

ABDALLA G. M. AHMED, KAUST, KSA PETER WONKA, KAUST, KSA
mostly applies to 2D

Sequences with Low-Discrepancy Blue-Noise 2-D Projections

needs the \# of samples to be power of 16

Power spectrum of Sobol' sampling

Sequences with Low-Discrepancy Blue-Noise 2-D Projections

Blue-noise Low-Discrepancy Sequences

Perrier et al.

Connection to optimal transport/ Wasserstein distance

- Rubinstein-Kantorovich theorem

$$
\left|\int f(x) d x-\frac{1}{n} \sum_{i=1}^{n} f\left(x^{i}\right)\right| \leq \operatorname{Lip}(f) . W_{1}\left(X, 1_{\Omega}\right)
$$

instead of using discrepancies, measure the earth mover distance

Rank-1 lattice

S. Dammertz and A. Keller

Institute of Media Informatics, Ulm University, Germany

Spherical Fibonacci lattice

Spherical Fibonacci Point Sets for Illumination Integrals

R. Marques ${ }^{1}$, C. Bouville 2, M. Ribardière ${ }^{2}$, L. P. Santos ${ }^{3}$ and K. Bouatouch ${ }^{2}$

Comparison between low-discrepancy sequences and jittering

at low dimension, for smooth integrals, digital nets often outperform jittering
(but extensions of progressive multi-jittering, PMJ02, is as good at 2D)

Comparison between low-discrepancy sequences and jittering

at mid dimension, for smooth integrals, digital nets still often outperform jittering (PMJ02 requires uncorrelated jittering to work and is less effective)

Comparison between low-discrepancy sequences and jittering

at high dimension, all methods are similar, except independent white noise

So, which sample sequence should we use?

- PMJ is much easier to combine with blue noise, so it has better perceptual quality
- Digital nets can converge faster in mid dimensional smooth problems (e.g., 4-8D)
- For high-dimensional problems ($>10 \mathrm{D}$), you are good as long as you don't use white noise

Related topic: blue-noise dithered sampling

- focus on the reconstruction properties of sampling patterns, instead of integration
often by optimizing the Cranley-Patterson rotation offset in preprocessing
A Low-Discrepancy Sampler that Distributes Monte Carlo Errors as a Blue Noise in Screen Space Eric Heitz (Unity Technologies) - Laurent Belcour (Unity Technologies) - Victor Ostromoukhov - David Coeuriolly - Jean-Claude ehl (LIRIS) Published in ACM SIGGRAPH Talk 2019

A paper tex bib supp. code supp. doc unity demo <12 supp. html video 困 slides

Blue-noise Dithered Sampling

Iliyan Georgiey Solid Angle

Marcos Fajardo
Solid Angle

Our dithered light source sampling

[^0]

Neural nets for point sampling

Deep Point Correlation Design

Thomas Leimkühler ${ }^{1}$, Gurprit Singh ${ }^{1}$, Karol Myszkowski ${ }^{1}$, Hans-Peter Seidel ${ }^{1}$, Tobias Ritschel ${ }^{2}$
${ }^{1}$ Max Planck Institute for Informatics, Saarbrücken, ${ }^{2}$ University College London, UK

In ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2019, Volume 38 issue 6)

Next: path-space \& Eric Veach

next Monday is holiday!

ROBUST MONTE CARLO METHODS
FOR LIGHT TRANSPORT SIMULATION

Figure 10.1: A transport path from a light source to the camera lens, created by concat ing two separately generated pieces.

(a) $s=0, t=3$

(b) $s=1, t=2$

(c) $s=2, t=1$

(d) $s=3, t=0$

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE and the committee on graduate studies of Stanford university in Partial fulfillment of the requirements FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

by

Eric Veach
December 1997

[^0]: Distributing Monte Carlo Errors as a Blue Noise in Screen Space by Permuting Pixel Seeds Between Frames Eric Heitz (Unity Technologies) - Laurent Belcour (Unity Technologies)
 Published in Eurographics Symposium on Rendering (EGSR) 2019
 A paper supp.material demo 国 slides

