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Sampling pattern matters

which one 
is better?



Noise v.s. aliasing trade-offs



A middle ground?



Comparison

per pixel (relative) error



Comparison

per pixel (relative) error



Questions
• Are there other ways to stratify?

• How do we generalize this to high-dimensional space?

• What are the mathematical tools we have for analyzing these patterns?

• Pros and cons between different patterns?



Frequency analysis of Monte Carlo integration
f Sintegrand sampling pattern

∫ f(x)dx ≈
1
N

N

∑
i=0

f(xi) = ∫ f(x)S(x)dx S(x) = ∑ δ(x − xi)

Sf (multiplication)

2011



Frequency analysis of Monte Carlo integration

̂f ̂SFourier
integrand

Fourier
sampling pattern

∫ f(x)S(x)dx = ̂f ⊗ ̂S(0)

̂S ⊗ ̂f (convolution)

• numerical integration = taking DC of the convolution between sampling patterns & integrand in 
frequency domain

2011



Frequency analysis of Monte Carlo integration

̂SFourier
integrand

Fourier
sampling pattern ̂S ⊗ ̂f (convolution)

• numerical integration = taking DC of the convolution between sampling patterns & integrand in 
frequency domain

̂f
high sampling 

rate

low sampling 
rate error in integration

quiz: when will we have perfect reconstruction?



Frequency analysis of Monte Carlo integration

̂SFourier
integrand

Fourier
sampling pattern ̂S ⊗ ̂f (convolution)

• numerical integration = taking DC of the convolution between sampling patterns & integrand in 
frequency domain

̂f
regular  

sampling

Monte Carlo  
sampling

want to avoid low 
frequency spikes!



Observation:  is a random variableS

∫ f(x)S(x)dx = ̂f ⊗ ̂S(0)



Bias-variance analysis in Fourier domain

mean square error = bias2 + variance

E [(Fest − F)2] = E [Fest − F]2 + Var [Fest − F]

Fest = ∫ f(x)S(x)dx = ̂f ⊗ ̂S(0)

F = ∫ f(x)dx



Bias-variance analysis in Fourier domain

F = ∫ f(x)S(x)dx = ̂f ⊗ ̂S(0)

bias = ̂f(0) − ∫ ̂f*(ω)E[ ̂S(ω)]dω

variance = ∫ ̂f(ω)
2

E [ ̂S(ω)
2] dω

(slightly simplified)
2013
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variance = ∫ ̂f(ω)
2

E [ ̂S(ω)
2] dω
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for many random samplers, E[ ̂S(ω)] = 0 iff ω ≠ 0
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Bias-variance analysis in Fourier domain

F = ∫ f(x)S(x)dx = ̂f ⊗ ̂S(0)

bias = ̂f(0) − ∫ ̂f*(ω)E[ ̂S(ω)]dω

variance = ∫ ̂f(ω)
2

E [ ̂S(ω)
2] dω

(slightly simplified)the expected power spectrum of 
the sampling pattern  is the key!!E[ ̂S2]

for many random samplers, E[ ̂S(ω)] = 0 iff ω ≠ 0

2013



Variance analysis = 
multiplication of power spectrums

variance = ∫ ̂f(ω)
2

E [ ̂S(ω)
2] dω

̂f(ω)
2

E [ ̂S(ω)
2]

• natural signals/integrands usually have energy concentrated at low frequencies

• quiz: what  will lead to low variance?E[ ̂S2]

ω



Variance analysis = 
multiplication of power spectrums

variance = ∫ ̂f(ω)
2

E [ ̂S(ω)
2] dω

̂f(ω)
2

E [ ̂S(ω)
2]

• natural signals/integrands usually have energy concentrated at low frequencies

• sampling patterns with small low frequency energy are better!!

ω



Let’s look at different 
sampling patterns!

slides heavily borrowed from Wojciech Jarosz
https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier.html

https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier.html


Independent random sampling
for (int k = 0; k < num; k++) 
{ 

samples(k).x = randf(); 
samples(k).y = randf(); 

}

quiz: pros and cons?



Independent random sampling
for (int k = 0; k < num; k++) 
{ 

samples(k).x = randf(); 
samples(k).y = randf(); 

}

✔Trivially extends to higher dimensions 

✔Trivially progressive and memory-less 

✘ Big gaps 

✘ Clumping



Frequency analysis of independent 
random sampling24 Chapter 5. Popular sampling patterns
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at
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sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at

~!
~xk

E

2

4
�����
1

N

NX

k=1

e�2⇡ ı (~!·~xk)

�����

2
3

5E

2

4
�����
1

N

NX

k=1

e�2⇡ ı (~!·~xk)

�����

2
3

5



Frequency analysis of independent 
random sampling

E

2

4
�����
1

N

NX

k=1

e�2⇡ ı (~!·~xk)

�����

2
3

5

24 Chapter 5. Popular sampling patterns

Samples Power spectrum Radial mean
R

an
do

m

� � � � �

���	
���

�

�

�

�
�
�
�
�

Ji
tte

r

� � � � �

���	
���

�

�

�

�
�
�
�
�

M
ul

ti-
jit

te
r

� � � � �

���	
���

�

�

�
�
�
�
�
�

N
-r

oo
ks

� � � � �

���	
���

�

�

�

�
�
�
�
�

Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at
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Useful to visualize the radial mean 
of expected power spectrum24 Chapter 5. Popular sampling patterns
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at
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corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at



Regular sampling: high bias, zero variance
for (uint i = 0; i < numX; i++) 

for (uint j = 0; j < numY; j++) 
{ 

samples(i,j).x = (i + 0.5)/numX; 
samples(i,j).y = (j + 0.5)/numY; 

}

quiz: pros and cons?



Regular sampling: high bias, zero variance
for (uint i = 0; i < numX; i++) 

for (uint j = 0; j < numY; j++) 
{ 

samples(i,j).x = (i + 0.5)/numX; 
samples(i,j).y = (j + 0.5)/numY; 

}

✔Extends to higher dimensions, but… 

✘ Curse of dimensionality 

✘ Aliasing



Jittered/stratified sampling:  
zero bias, low variance

for (uint i = 0; i < numX; i++) 
for (uint j = 0; j < numY; j++) 
{ 

samples(i,j).x = (i + randf())/numX; 
samples(i,j).y = (j + randf())/numY; 

}

quiz: pros and cons?



Jittered/stratified sampling:  
zero bias, low variance

for (uint i = 0; i < numX; i++) 
for (uint j = 0; j < numY; j++) 
{ 

samples(i,j).x = (i + randf())/numX; 
samples(i,j).y = (j + randf())/numY; 

}

✔Provably cannot increase variance 

✔Extends to higher dimensions, but… 

✘ Curse of dimensionality 

✘ Not progressive



Power spectrum of jittered sampling
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at
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Random sampling vs jittered sampling
24 Chapter 5. Popular sampling patterns
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corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at

24 Chapter 5. Popular sampling patterns

Samples Power spectrum Radial mean

R
an

do
m

� � � � �

���	
���

�

�

�

�
�
�
�
�

Ji
tte

r

� � � � �

���	
���

�

�

�

�
�
�
�
�

M
ul

ti-
jit

te
r

� � � � �

���	
���

�

�

�

�
�
�
�
�

N
-r

oo
ks

� � � � �

���	
���

�

�

�

�
�
�
�
�

Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at

Samples Power spectrum Radial mean



Random sampling (16 samples per pixel)



Jittered sampling (16 samples per pixel)



High-dimensional stratification is hard
Stratification requires O(Nd) samples 
- e.g. pixel (2D) + lens (2D) + time (1D) = 5D 

• splitting 2 times in 5D = 25 = 32 samples 

• splitting 3 times in 5D = 35 = 243 samples! 

Inconvenient for large d
- cannot select sample count with fine granularity



Uncorrelated Jitter [Cook 1986]

Compute stratified samples in sub-dimensions 
- 2D jittered (x,y) for pixel 

- 2D jittered (u,v) for lens 

- 1D jittered (t) for time 

- combine dimensions 
in random order



Not all dimensions are well stratified
with uncorrelated jitter



4D integral with uncorrelated jitter
Reference Random Sampling Uncorrelated Jitter



Uncorrelated jitter is a special case 
of Latin hypercube sampling

Stratify samples in each dimension separately 
- for 5D: 5 separate 1D jittered point sets 

- combine dimensions 
in random order

x1 x2 x3 x4
x

y1 y2 y3 y4
y

u1 u2 u3 u4
u

v1 v2 v3 v4
v

t1 t2 t3 t4
t



x1 x2 x3 x4

y4 y2 y1 y3

u3 u4 u2 u1

v2 v1 v3 v4

t2 t1 t4 t3

x

y

u

v

t

Shuffle order

Stratify samples in each dimension separately 
- for 5D: 5 separate 1D jittered point sets 

- combine dimensions 
in random order

Uncorrelated jitter is a special case 
of Latin hypercube sampling



N-Rook: 2D version of Latin hypercube
Stratify samples in each dimension separately 
- for 2D: 2 separate 1D jittered point sets 

- combine dimensions 
in random order

x1 x2 x3 x4

y4 y2 y1 y3

x

y



Latin-Hypercube (N-Rooks) Sampling

[Shirley 91]



// initialize the diagonal 
for (uint d = 0; d < numDimensions; d++) 

for (uint i = 0; i < numS; i++) 
samples(d,i) = (i + randf())/numS; 

// shuffle each dimension independently 
for (uint d = 0; d < numDimensions; d++) 

shuffle(samples(d,:));

Initialize

Latin-Hypercube (N-Rooks) Sampling



// initialize the diagonal 
for (uint d = 0; d < numDimensions; d++) 

for (uint i = 0; i < numS; i++) 
samples(d,i) = (i + randf())/numS; 

// shuffle each dimension independently 
for (uint d = 0; d < numDimensions; d++) 

shuffle(samples(d,:));

Shuffle rows

Latin-Hypercube (N-Rooks) Sampling



Shuffle columns

// initialize the diagonal 
for (uint d = 0; d < numDimensions; d++) 

for (uint i = 0; i < numS; i++) 
samples(d,i) = (i + randf())/numS; 

// shuffle each dimension independently 
for (uint d = 0; d < numDimensions; d++) 

shuffle(samples(d,:));

Latin-Hypercube (N-Rooks) Sampling



// initialize the diagonal 
for (uint d = 0; d < numDimensions; d++) 

for (uint i = 0; i < numS; i++) 
samples(d,i) = (i + randf())/numS; 

// shuffle each dimension independently 
for (uint d = 0; d < numDimensions; d++) 

shuffle(samples(d,:));

Latin-Hypercube (N-Rooks) Sampling



Latin-Hypercube (N-Rooks) Sampling:
good 1D projections, gaps in 2D



Latin-Hypercube (N-Rooks) Sampling:
good 1D projections, gaps in 2D



Evenly distributed in each 
individual dimension

Unevenly distributed 
in n-dimensions

Latin-Hypercube (N-Rooks) Sampling:
good 1D projections, gaps in 2D



Power spectrum of N-Rooks sampling



Shuffle x-coordsInitialize

Multi-jittered sampling [Chiu 1994]



Multi-jittered sampling [Chiu 1994]

Shuffle x-coords



Shuffle x-coords

Multi-jittered sampling [Chiu 1994]



Shuffle x-coords

Multi-jittered sampling [Chiu 1994]



Shuffle x-coordsShuffle y-coords

Multi-jittered sampling [Chiu 1994]



Shuffle y-coords

Multi-jittered sampling [Chiu 1994]



Shuffle y-coords

Multi-jittered sampling [Chiu 1994]



Shuffle y-coords

Multi-jittered sampling [Chiu 1994]



Shuffle y-coords

Multi-jittered sampling [Chiu 1994]



Multi-jittered sampling [Chiu 1994]



Multi-jittered sampling [Chiu 1994]



Multi-jittered sampling [Chiu 1994]



Evenly distributed in each 
individual dimension

Evenly distributed in 2D!

Multi-jittered sampling [Chiu 1994]



Power spectrum of multi-jittered sampling

24 Chapter 5. Popular sampling patterns
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at
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Multi-jittered vs N-Rooks vs jittered

24 Chapter 5. Popular sampling patterns
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at

quiz: what is the difference between jittered & multi-jittered?



Progressive multi-jittered sampling

• don’t need to know the number of samples in advance!

• idea: keep track of which strata is occupied by previous samples using trees 
(O(sqrt(N)))

20182019

probably the best sampling pattern we discussed today!



Progressive multi-jittered sampling
first sample: randomly place in the unit square



Progressive multi-jittered sampling
first sample: randomly place in the unit square

divide the unit square into 4 quadrants



Progressive multi-jittered sampling
first sample: randomly place in the unit square
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place the second sample at the  
diagonally opposite quadrant
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choose an empty quadrant



Progressive multi-jittered sampling
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diagonally opposite quadrant

divide the unit square into 16 regions

choose an empty quadrant, place a sample
that follows the N-rook rule



Progressive multi-jittered sampling
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divide the unit square into 16 regions
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Progressive multi-jittered sampling
first sample: randomly place in the unit square

divide the unit square into 4 quadrants

place the second sample at the  
diagonally opposite quadrant

divide the unit square into 16 regions

choose an empty quadrant, place a sample
that follows the N-rook rule

place a sample at the diagonally  
opposite quadrant, following the N-rook rule

repeat



Orthogonal array sampling
• stratify in all 2D projections

• need to know no. of samples 
in advance currently

2019



Poisson-disk/blue noise sampling
• human eyes’ sampling pattern!

https://www.csie.ntu.edu.tw/~cyy/courses/rendering/16fall/lectures/handouts/chap05_color_radiometry.pdf

https://www.csie.ntu.edu.tw/~cyy/courses/rendering/16fall/lectures/handouts/chap05_color_radiometry.pdf


Dart throwing algorithm [Cook 1986]



Power spectrum of Poisson disk
5.4 Interpreting and exploiting knowledge of the sampling spectra 27
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Figure 5.9: Illustration of some well known blue noise samplers with the corresponding Fourier
expected power spectra and the corresponding radial mean of their expected power spectra.

5.3.3 Tiling-based methods
There are some tile-based approaches that can be used to generate blue noise samples Tile-based
methods overcome the computational complexity of dart-throwing and/or relaxation based ap-
proaches in generating blue noise sampling patterns. In computer graphics community, two
tile-based approaches are well known: First approach uses a set of precomputed tiles [10, 25], with
each tile composed of multiple samples, and later use these tiles, in a sophisticated way, to pave the
sampling domain. Second approach employed tiles with one sample per tile [34, 33, 49] and uses
some relaxation-based schemes, with look-up tables, to improve the over all quality of samples.
Although many blue noise sample generation algorithms exist, none of them are easily extendable
to higher dimensions (> 3).

5.4 Interpreting and exploiting knowledge of the sampling spectra

Recently [39], it has been shown that the low frequency region of the radial power spectrum (of a
given sampling pattern) plays a crucial role in deciding the overall variance convergence rates of
sampling patterns used for Monte Carlo integration. Since blue noise sampling patterns contains
almost no radial energy in the low frequency region, they are of great interest for future research
to obtain fast results in rendering problems. Surprisingly, Poisson Disk samples have shown the
convergence rate of O

�
N�1� which is the same as given by purely random samples. This can

be explained by looking at the low frequency region in the radial power spectrum of Poisson
Disk samples (Fig. 5.9) which is not zero. The importance of the shape of the radial mean power
spectrum in the low frequency region demands methods and algorithms that could eventually allow
sample generation directly from a target Fourier spectrum.

5.4.1 Radially-averaged periodograms
Figures 5.6, 5.8 and 5.9 depict radially averaged periodograms of the various sampling strategies
described in this chapter. These spectra reveal two important characteristics of estimators built
using the corresponding sampling strategies.

Samples Radial meanExpected power spectrum



Lloyd relaxation for Poisson disc sampling

developed at ~1957, published at 1982

video from
http://www.codeplastic.com/2017/12/30/voronoi-relaxation-lloyds-algorithm-in-processing/

http://www.codeplastic.com/2017/12/30/voronoi-relaxation-lloyds-algorithm-in-processing/


Power spectrum of CCVT sampling  
[Balzer et al. 2009]

5.4 Interpreting and exploiting knowledge of the sampling spectra 27
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Figure 5.9: Illustration of some well known blue noise samplers with the corresponding Fourier
expected power spectra and the corresponding radial mean of their expected power spectra.

5.3.3 Tiling-based methods
There are some tile-based approaches that can be used to generate blue noise samples Tile-based
methods overcome the computational complexity of dart-throwing and/or relaxation based ap-
proaches in generating blue noise sampling patterns. In computer graphics community, two
tile-based approaches are well known: First approach uses a set of precomputed tiles [10, 25], with
each tile composed of multiple samples, and later use these tiles, in a sophisticated way, to pave the
sampling domain. Second approach employed tiles with one sample per tile [34, 33, 49] and uses
some relaxation-based schemes, with look-up tables, to improve the over all quality of samples.
Although many blue noise sample generation algorithms exist, none of them are easily extendable
to higher dimensions (> 3).

5.4 Interpreting and exploiting knowledge of the sampling spectra

Recently [39], it has been shown that the low frequency region of the radial power spectrum (of a
given sampling pattern) plays a crucial role in deciding the overall variance convergence rates of
sampling patterns used for Monte Carlo integration. Since blue noise sampling patterns contains
almost no radial energy in the low frequency region, they are of great interest for future research
to obtain fast results in rendering problems. Surprisingly, Poisson Disk samples have shown the
convergence rate of O

�
N�1� which is the same as given by purely random samples. This can

be explained by looking at the low frequency region in the radial power spectrum of Poisson
Disk samples (Fig. 5.9) which is not zero. The importance of the shape of the radial mean power
spectrum in the low frequency region demands methods and algorithms that could eventually allow
sample generation directly from a target Fourier spectrum.

5.4.1 Radially-averaged periodograms
Figures 5.6, 5.8 and 5.9 depict radially averaged periodograms of the various sampling strategies
described in this chapter. These spectra reveal two important characteristics of estimators built
using the corresponding sampling strategies.

Samples Radial meanExpected power spectrum



Theoretical convergence rate (in 2D)

Samplers Worst Case Best Case

Random

Jitter

Poisson Disk

CCVT

O(N�1)

O(N�1.5) O(N�2)

O(N�1)

O(N�1) O(N�1)

O(N�1.5) O(N�3)

• all sampling sequences work best for low frequency/smooth signals

quiz: what is the downside of CCVT compared to  
jittered sampling?



Curse of dimensionality
• in high-dimensional space with high frequency between dimensions, all methods fail

best possible worst case convergence rate (with C1 continuity)

O(n− 2
d −1)



Big picture: numerical integration 
is about placing samples to measure integrals

∫
don’t get stuck by  

things like unbiasedness!



Next: low-discrepancy sampling

https://perso.liris.cnrs.fr/david.coeurjolly/publication/cascaded2021/

https://perso.liris.cnrs.fr/david.coeurjolly/publication/cascaded2021/

