Stratification 1

UCSD CSE 272 Advanced Image Synthesis

Tzu-Mao Li

with slides & images from Wojciech Jarosz & Gurprit Singh

Sampling pattern matters

which one is better?

Noise v.s. aliasing trade-offs

A middle ground?

Comparison

per pixel (relative) error

Comparison

per pixel (relative) error

Questions

- Are there other ways to stratify?
- How do we generalize this to high-dimensional space?
- What are the mathematical tools we have for analyzing these patterns?
- Pros and cons between different patterns?

N $\int f(x) dx \approx \frac{1}{N} \sum_{i=0}^{N} f(x_i) = \int f(x) S(x) dx$ i=0

 $S(x) = \sum \delta(x - x_i)$

A Frequency Analysis of Monte-Carlo and other Numerical Integration Schemes

> Frédo Durand MIT CSAIL

Frequency analysis of Monte Carlo integration

frequency domain

ſ $f(x)S(x)dx = \hat{f} \otimes \hat{S}(0)$

A Frequency Analysis of Monte-Carlo and other Numerical Integration Schemes

> Frédo Durand MIT CSAIL

frequency domain

Frequency analysis of Monte Carlo integration

frequency domain

• numerical integration = taking DC of the convolution between sampling patterns & integrand in

Observation: S is a random variable

$f(x)S(x)dx = \hat{f} \otimes \hat{S}(0)$

mean square error = $bias^2$ + variance

$$E\left[\left(F_{\text{est}} - F\right)^2\right] = E\left[F_{\text{est}} - F\right]^2 + \text{Var}\left[F_{\text{est}} - F\right]^2 + \text{Var}\left[F_{\text{est}} - F\right]^2\right]$$

bi

$F = \int f(x)S(x)dx = \hat{f} \otimes \hat{S}(0)$

as =
$$\hat{f}(0) - \int \hat{f}^*(\omega) E[\hat{S}(\omega)] d\omega$$

variance = $\left[\left| \hat{f}(\omega) \right|^2 E \left| \left| \hat{S}(\omega) \right|^2 \right| d\omega$

(slightly simplified)

Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration

Kartic Subr* University College London

Jan Kautz† University College London

$F = \int f(x)S(x)dx = \hat{f} \otimes \hat{S}(0)$

var

as =
$$\hat{f}(0) - \int \hat{f}^*(\omega) E[\hat{S}(\omega)] d\omega$$

for many random samplers, $E[\hat{S}(\omega)] = 0$ iff $\omega \neq 0$

viance =
$$\int \left| \hat{f}(\omega) \right|^2 E\left[\left| \hat{S}(\omega) \right|^2 \right] d\omega$$

(slightly simplified)

Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration

Kartic Subr* University College London

Jan Kautz† University College London

bi

$F = \int f(x)S(x)dx = \hat{f} \otimes \hat{S}(0)$

var

the expected power spectrum of the sampling pattern $E[\hat{S}^2]$ is the key!!

as =
$$\hat{f}(0) - \int \hat{f}^*(\omega) E[\hat{S}(\omega)] d\omega$$

for many random samplers, $E[\hat{S}(\omega)] = 0$ iff $\omega \neq 0$

triance =
$$\int \left| \hat{f}(\omega) \right|^2 E\left[\left| \hat{S}(\omega) \right|^2 \right] d\omega$$

(slightly simplified)

Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration

Kartic Subr* University College London

Jan Kautz† University College London

Variance analysis =

multiplication of power spectrums

- natural signals/integrands usually have energy concentrated at low frequencies
 - **quiz**: what $E[\hat{S}^2]$ will lead to low variance?

Variance analysis =

multiplication of power spectrums

- natural signals/integrands usually have energy concentrated at low frequencies
 - sampling patterns with small low frequency energy are better!!

Let's look at different sampling patterns!

slides heavily borrowed from Wojciech Jarosz https://cs.dartmouth.edu/~wjarosz/publications/subr16fourier.html

Independent random sampling

for (int k = 0; k < num; k++)
{
 samples(k).x = randf();
 samples(k).y = randf();
}</pre>

quiz: pros and cons?

Independent random sampling

- for (int k = 0; k < num; k++)
 {
 samples(k).x = randf();
 samples(k).y = randf();
 }</pre>
- Trivially extends to higher dimensions
- Trivially progressive and memory-less
- X Big gaps
- **X** Clumping

Frequency analysis of independent random sampling

Frequency analysis of independent random sampling

Many sample set realizations

Expected power spectrum

Useful to visualize the radial mean of expected power spectrum

Regular sampling: high bias, zero variance

for (uint i = 0; i < numX; i++) for (uint j = 0; j < numY; j++) samples(i,j).x = (i + 0.5)/numX;samples(i,j).y = (j + 0.5)/numY;}

quiz: pros and cons?

Regular sampling: high bias, zero variance

for (uint i = 0; i < numX; i++) for (uint j = 0; j < numY; j++) samples(i,j).x = (i + 0.5)/numX;samples(i,j).y = (j + 0.5)/numY;

Extends to higher dimensions, but... **X** Curse of dimensionality **X** Aliasing

Jittered / stratified sampling: zero bias, low variance

for (uint i = 0; i < numX; i++) for (uint j = 0; j < numY; j++) samples(i,j).x = (i + randf())/numX; samples(i,j).y = (j + randf())/numY;

quiz: pros and cons?

Jittered / stratified sampling: zero bias, low variance

- for (uint i = 0; i < numX; i++) for (uint j = 0; j < numY; j++) samples(i,j).x = (i + randf())/numX; samples(i,j).y = (j + randf())/numY; }
 - Provably cannot increase variance
 - Extends to higher dimensions, but...
 - **X** Curse of dimensionality
 - X Not progressive

Random sampling vs jittered sampling

Samples

Power spectrum

Random sampling (16 samples per pixel)

Jittered sampling (16 samples per pixel)

High-dimensional stratification is hard

- Stratification requires O(N^d) samples
- e.q. pixel(2D) + lens(2D) + time(1D) = 5D
 - splitting 2 times in $5D = 2^5 = 32$ samples
 - splitting 3 times in $5D = 3^5 = 243$ samples!
- Inconvenient for large *d*
- cannot select sample count with fine granularity

Uncorrelated Jitter [Cook 1986]

Compute stratified samples in sub-dimensions

- 2D jittered (x,y) for pixel
- 2D jittered (u,v) for lens
- 1D jittered (t) for time
- combine dimensions in random order

Stochastic Sampling in Computer Graphics

ROBERT L. COOK Pixar

Not all dimensions are well stratified with uncorrelated jitter

XU

YV

4D integral with uncorrelated jitter

Reference

Random Sampling

Uncorrelated jitter is a special case of Latin hypercube sampling Stratify samples in each dimension separately

- for 5D: 5 separate 1D jittered point sets
- combine dimensions in random order

Х **x1** x2 x3 x4 y v2 vЗ v4 U u2 u3 **u**1 **u**4 V v2 v3 v1 v4

t2 t3 t4 t1

Uncorrelated jitter is a special case of Latin hypercube sampling Stratify samples in each dimension separately

- for 5D: 5 separate 1D jittered point sets
- combine dimensions in random order

Shuffle order

N-Rook: 2D version of Latin hypercube

- Stratify samples in each dimension separately
- for **2D**: **2** separate 1D jittered point sets
- combine dimensions in random order

[Shirley 91]

// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)
 for (uint i = 0; i < numS; i++)
 samples(d,i) = (i + randf())/numS;</pre>

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)
 shuffle(samples(d,:));</pre>

Initialize

// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)
 for (uint i = 0; i < numS; i++)
 samples(d,i) = (i + randf())/numS;</pre>

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)
 shuffle(samples(d,:));</pre>

Shuffle rows

// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)
 for (uint i = 0; i < numS; i++)
 samples(d,i) = (i + randf())/numS;</pre>

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)
 shuffle(samples(d,:));</pre>

Shuffle columns

// initialize the diagonal for (uint d = 0; d < numDimensions; d++)</pre> for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently for (uint d = 0; d < numDimensions; d++)</pre> shuffle(samples(d,:));

Latin-Hypercube (N-Rooks) Sampling: good 1D projections, gaps in 2D

Latin-Hypercube (N-Rooks) Sampling: good 1D projections, gaps in 2D

Power spectrum of N-Rooks sampling

Power Spectrum

Radial Power Spectrum

Along canonical axes

Frequency

Jittered Spectrum Profile

Other directions

Frequency

Random Spectrum Profile

Shufflitiælizeords

quiz: what is the difference between jittered & multi-jittered?

Progressive multi-jittered sampling

- don't need to know the number of samples in advance!
- idea: keep track of which strata is occupied by previous samples using trees (O(sqrt(N)))

Efficient Generation of Points that Satisfy Two-Dimensional Elementary Intervals Progressive Multi-Jittered Sample Sequences

Matt Pharr NVIDIA Research 2019

probably the best sampling pattern we discussed today!

Per Christensen

Andrew Kensler

Charlie Kilpatrick

Pixar Animation Studios

Progressive multi-jittered sampling first sample: randomly place in the unit square divide the unit square into 4 quadrants

Progressive multi-jittered sampling first sample: randomly place in the unit square divide the unit square into 4 quadrants

place the second sample at the diagonally opposite quadrant

divide the unit square into 4 quadrants

place the second sample at the diagonally opposite quadrant

divide the unit square into 16 regions

divide the unit square into 4 quadrants

place the second sample at the diagonally opposite quadrant

divide the unit square into 16 regions

choose an empty quadrant

divide the unit square into 4 quadrants

place the second sample at the diagonally opposite quadrant

divide the unit square into 16 regions

choose an empty quadrant, place a sample that follows the N-rook rule

divide the unit square into 4 quadrants

place the second sample at the diagonally opposite quadrant

divide the unit square into 16 regions

choose an empty quadrant, place a sample that follows the N-rook rule

place a sample at the diagonally opposite quadrant, following the N-rook rule

divide the unit square into 4 quadrants

place the second sample at the diagonally opposite quadrant

divide the unit square into 16 regions

choose an empty quadrant, place a sample that follows the N-rook rule

place a sample at the diagonally opposite quadrant, following the N-rook rule

repeat

first sample: randomly place in the unit square

divide the unit square into 4 quadrants

place the second sample at the diagonally opposite quadrant

divide the unit square into 16 regions

choose an empty quadrant, place a sample that follows the N-rook rule

place a sample at the diagonally opposite quadrant, following the N-rook rule

repeat

first sample: randomly place in the unit square

divide the unit square into 4 quadrants

place the second sample at the diagonally opposite quadrant

divide the unit square into 16 regions

choose an empty quadrant, place a sample that follows the N-rook rule

place a sample at the diagonally opposite quadrant, following the N-rook rule

repeat

Orthogonal array sampling

- stratify in all 2D projections
- need to know no. of samples in advance currently

(b) Multi-Jittered 2D projections

2019

Orthogonal Array Sampling for Monte Carlo Rendering

Wojciech Jarosz¹

Afnan Enayet¹ 🕩

Andrew Kensler² Charlie Kilpatrick²

¹Dartmouth College

²Pixar Animation Studios

Poisson-disk/blue noise sampling

• human eyes' sampling pattern!

https://www.csie.ntu.edu.tw/~cyy/courses/rendering/16fall/lectures/handouts/chap05_color_radiometry.pdf

Spectral Consequences of Photoreceptor Sampling in the Rhesus Retina

JOHN I. YELLOTT, JR

SCIENCE • 22 Jul 1983 • Vol 221, Issue 4608 • pp. 382-385 • DOI: 10.1126/science.6867716

Dart throwing algorithm [Cook 1986]

Power spectrum of Poisson disk

Samples

Lloyd relaxation for Poisson disc sampling

video from http://www.codeplastic.com/2017/12/30/voronoi-relaxation-lloyds-algorithm-in-processing/ developed at ~1957, published at 1982

Least Squares Quantization in PCM

STUART P. LLOYD

Samples

Theoretical convergence rate (in 2D)

• all sampling sequences work best for low frequency / smooth signals

Samplers	Worst Case	Bes
Random	$\mathcal{O}(N^{-1})$	\mathcal{O}
Jitter	$\mathcal{O}(N^{-1.5})$	\mathcal{O}
Poisson Disk	$\mathcal{O}(N^{-1})$	\mathcal{O}
CCVT	$\mathcal{O}(N^{-1.5})$	\mathcal{O}

quiz: what is the downside of CCVT compared to jittered sampling?

Curse of dimensionality

• in high-dimensional space with high frequency between dimensions, all methods fail

best possible worst case convergence rate (with C1 continuity)

 $O(n^{-\frac{2}{d}-1})$

Stochastic Quadrature Formulas

By Seymour Haber

Big picture: numerical integration is about placing samples to measure integrals

don't get stuck by things like unbiasedness!

Next: low-discrepancy sampling

https://perso.liris.cnrs.fr/david.coeurjolly/publication/cascaded2021/

