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’ CHALLENGES: EDGE SAMPLING IS HARD!

Silhouette classification Occlusion Depth complexity



EDGE SAMPLING HAS TROUBLE WITH SPECULAR
REFLECTIONS

Rendering Caustics

(Near-)Perfect Mirror Manifold-Exploration
MLT

[Jakob 2012]

Natural Constraint Representation
- for MLT
[Kaplanyan 2014]
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SILHOUETTE EXTRACTION IS DIFFICULT FOR
IMPLICIT REPRESENTATIONS




CAN WE DESIGN AN UNBIASED AREA SAMPLING

METHOD?

Transform samples with 0. Avoids discontinuities.

Reparameterizing Discontinuous

[Loubet 2019]

Integrands for Differentiable Rendering
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Heuristic Approximation!
May not work for all samples.




OUR APPROACH



THE REYNOLDS TRANSPORT THEOREM
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CONVERTING EDGE SAMPLES TO AREA SAMPLES
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THE DIVERGENCE THEOREM
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APPLYING THE DIVERGENCE THEOREM TO THE EDGE

INTEGRAL

Goal: Rewrite

/ FV -1
oD

into area integral

Solution: Rewrite [ /8D fv-1 | into
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can be estimated through area samples O
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QUICK RECAP

e Used Reynolds transport theorem to find the boundary integral /(9D f\_f -1

* Rewrote fv-n
oD

* Have to define the vector field V@ over domain D

to

(/Dv-o?eff

using the divergence theorem.



A 2D EXAMPLE SCENE

j[ w € (), the domain of integration

[ w@, wéb) & 0S) , the discontinuous set ]




—

VELOCITY V : THE BOUNDARY DERIVATIVE

= P -
w;b)ﬁ{ < I[ 89(,02. : Derivative of boundary position w.r.t ©




WARP FIELD V) : EXTENSION OF V' TO ALL POINTS

‘ ' [ V@ : defined over D ]
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: - | 'V :defined over dD




.,
’ VALIDITY OF V@

Rule 1: Continuous

A V@(V

w . W




.,
’ VALIDITY OF V@

Rule 2: Boundary Consistent

N Vg(v




INTERPOLATION WITHOUT KNOWLEDGE OF
BOUNDARIES

4 )
Available quantities

Origin point

Ray

Intersection

Primitive

- /

No access to discontinuity points




.
CONSTRUCTING V@

Attempt 1 =mmmp Find 894,0 through implicit derivative (Incorrect)
a Av(direct) (w)
y = INTERSECT(w, ) C—) Jgw = Tw) 9
Opy
At all points (not just boundaries) /
. T,
+ Boundary consistent 0

- Not continuous




.
' CONSTRUCTING VQ

Attempt 2 =——mmp Filter Attempt 1 with a Gaussian filter (Incorrect)
% P
/ k(w7 wl) wy Végaussmn)(w)
QY Opy

k(.,.) = Gaussian filter

+ Continuous

- Not boundary consistent




BOUNDARY-AWARE WEIGHTING

Goal: Find weights[k(w’ w/)] ot [ ]}'H =

gy

at boundaries.

4 )
Ideal weighting function

A

g “ {} /

Approach Dirac delta near boundaries &




BOUNDARY-AWARE WEIGHTING

P ~

Implicit Boundary through geometric normals

— (w,n) =0

at boundaries

“““““

ry sampling)

boundary
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.
CONSTRUCTING V@

Our Approach === Filter Attempt 1 with harmonic weights

klw,w') =

D(w,w') | T

B(w')

=

Distance function

\

Boundary test

+ Boundary consistent

+ Continuous

[ v éharmonic) (w)




.
COMPUTING V@

1. Sample path using path tracer (N paths)

For each bounce:

\ 4

2. Sample auxiliary rays (N’ rays)

3. Compute boundary term B() locally

4. Compute weight k(.,.) and agw

5. Find weighted mean




QUICK RECAP

e Used Reynolds transport theorem to find the boundary integral /(9D f‘_; -1

* Rewrote fv-n
oD

to

(/Dv-o?eff

using the divergence theorem.

=
* Estimate consistent and continuous V(g over domain D using auxiliary rays



MORE INTUITION: WARP-AREA SAMPLING
CAN BE SEEN AS A CHANGE OF VARIABLE

A

integration variable u /

/

TRANSFORM SAMPLES
u=TwW,80)

differentiqfing pdrqmeter e (lIIII|II|I|IIII|IIII|IIIlllls,é\ll|IIIIIIIII|IIII|IIII|IIII|>



MORE INTUITION: WARP-AREA SAMPLING
CAN BE SEEN AS A CHANGE OF VARIABLE

%/Dfdu:/Dfe-l-v-(ﬁgf)du



MORE INTUITION: WARP-AREA SAMPLING
CAN BE SEEN AS A CHANGE OF VARIABLE

%/Dfdu:/ fe-l-v-(ﬁgf>du
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MORE INTUITION: WARP-AREA SAMPLING
CAN BE SEEN AS A CHANGE OF VARIABLE

%/Dfdu:/ fe-l-v-(ﬁgf>du
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RESULTS



VARIANCE COMPARISON WITH EDGE-SAMPLING
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BIAS COMPARISON WITH REPARAMETERIZATION

CORKSCREW

HCYLINDER

|
L—&

lllustration Image I Reference Ours Loubet et al. 2019

Rotating cylindrical objects present a complicated scenario for area-sampling




BIAS COMPARISON WITH REPARAMETERIZATION

HEDGE

PranT-PoT

lllustration Image I Reference Ours Loubet et al. 2019

Extremely complex geometry like foliage can cause heuristic to fail




POSE ESTIMATION CAN FAIL WITH BIASED

GRADIENTS

@ Reparameterization

Multiple Initializations

JZ@X




WARPED-AREA SAMPLING CAN BE USED FOR

SIGNED DISTANCE FIELDS RENDERING

Differentiable Signed Distance Function Rendering
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Computing A Consistent V(u) For An Arbitrary SDF

Find V for silhouette rays,
then interpolate.




Computing V By Ditferentiating The Silhouette Position u*




Computing V: Implicit Fn. Theorem + Chain Rule

1. Compute Vyx*(6) using implicit fn. theorem:
Derivative of any point in SDF can be computed by differentiating
SDF function f

4o

EI:] V@X(Q) = ng(X; 0) )




Computing V: Implicit Fn. Theorem + Chain Rule

2. Propagate G(x*) to sample space through chain rule (u - x):

= n)éx*(@)
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Computing V(u) For An Arbitrary Ray

-

Ray-SDF Intersection: Sphere Tracing

~

about
Ftte rays?




Can Compute V(u) using the Geometry Derivative G (x) of any
Sphere Tracer point

Can compute G(x)
for any point

AN
e )

G(x1) G(xz) G(X3) G(X4) G(X5) G(Xe)

Using a single point
can make V(u)
discontinuous in ul!




Computing V(u) as Weighted Mean of G(x) over Sphere
Tracer Points

Solution: Compute silhouette weights w(x)
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&ﬂ And use a weighted mean:

V@) = ) wx) - Gx) - Yy




Weighted-Mean V(u) Is Both Consistent And Continuous

« Continuous

See Paper: Harmonic & Quadrature Weighting

(a) harmonic weight (b) quadrature approximation (c) top-k subset weight
1z W ()

PROJECT PAGE




Simple 2D SDF

Scaling Up From Simple 2D To Neural 3D

fx0)

Neural 3D SDF

Single Parameter 6

100,000s of Parameters @

2D Points x : R?

3D Points x : R3

1D integration
coord u

2D integration
coords u

1D Scalar warp V(u)

2D Vector warp V(i)

Weight adjustment
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Putting It All Together: First, Render SDF As Usual

::—O—O—O—O—O—)
Parameters 6 > 1

0 oo
Samples v > I

SDF Renderer




Putting It All Together: Then, Reparameterize Samples

Parameters 0 >
4 oo
Samples v j‘> + j‘> I
"\
SDF Renderer

2

Calculate V(u) and J, from
sphere tracer points




Putting It All Together: Finally, Differentiate With AD

Parameters 6

2\

NS

Samples v

O

2\

-

SDF Renderer

2

Calculate V(u) and ], from
sphere tracer points

Gradient Image




Comparisons Against IDR (Yariv et al. 2020):
A Sharp-Surface Model With Segmentation Mask Inputs

IDR (RGB + Masks) Ours (RGB Only)
" 4 By Bhio—o—o—o
I

INPUTS INPUTS




Reconstructions On-Par With IDR Without Using Masks

IDR (RGB + Masks) Ours (RGB Only)
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Cleaner Reconstructions Than IDR On Real Data with
Poor Segmentation Masks

IDR (RGB + Masks) Ours (RGB Only)
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» Poor Masks can Lead IDR to
INPUT IMAGE IDR RADIANCE IDR DEPTH prOd UCe a n0|sy/|ncorrect Ours DEpTH ~ OURS 3D GEOMETRY
silhouette




CONCLUSIONS

Problem With Edge Sampling

Warped-Area Sampling

Future Directions

Depth
complexity

Implicit

Representations
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On-the-fly Warp Field
Estimation

More SDFs in
Physically-based Pipelines
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Boundary-Aware Reparameterization
For Other Domains
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