UNBIASED WARPED-AREA SAMPLING FOR DIFFERENTIABLE RENDERING

UCSD CSE 272 Advanced Image Synthesis

Tzu-Mao Li

with slides from Sai Bangaru

CHALLENGES: EDGE SAMPLING IS HARD!

Silhouette classification

Occlusion

Depth complexity

EDGE SAMPLING HAS TROUBLE WITH SPECULAR REFLECTIONS

SILHOUETTE EXTRACTION IS DIFFICULT FOR IMPLICIT REPRESENTATIONS

CAN WE DESIGN AN UNBIASED AREA SAMPLING METHOD?

Transform samples with $\boldsymbol{\theta}$. Avoids discontinuities.

Heuristic Approximation!

May not work for all samples.

OUR APPROACH

THE REYNOLDS TRANSPORT THEOREM

CONVERTING EDGE SAMPLES TO AREA SAMPLES

THE DIVERGENCE THEOREM

[Gauss 1813]

APPLYING THE DIVERGENCE THEOREM TO THE EDGE INTEGRAL

Solution: Rewrite
$$\int_{\partial D} f \vec{\mathbf{v}} \cdot \vec{\mathbf{n}}$$
 into $\int_{D} \nabla \cdot (\vec{\mathcal{V}}_{\theta} f)$

QUICK RECAP

• Used *Reynolds transport theorem* to find the boundary integral

• Rewrote
$$\int_{\partial D} f \vec{\mathbf{v}} \cdot \vec{\mathbf{n}}$$
 to $\int_{D} \nabla \cdot (\vec{\mathcal{V}}_{\theta} f)$

using the *divergence theorem*.

• Have to define the *vector field* $ec{\mathcal{V}}_{ heta}$ over domain D

A 2D EXAMPLE SCENE

VELOCITY $\vec{\mathbf{V}}$: THE BOUNDARY DERIVATIVE

WARP FIELD \mathcal{V}_{θ} : EXTENSION OF $\vec{\mathbf{v}}$ to all points

Rule 1: Continuous

Rule 2: Boundary Consistent

INTERPOLATION WITHOUT KNOWLEDGE OF BOUNDARIES

CONSTRUCTING
$$ec{\mathcal{V}}_{ heta}$$

CONSTRUCTING
$$ec{\mathcal{V}}_{ heta}$$

Attempt 2

Filter *Attempt 1* with a Gaussian filter

(Incorrect)

$$\int_{\Omega'} k(\boldsymbol{\omega},\boldsymbol{\omega'}) \frac{\partial_{\boldsymbol{\omega}} \mathbf{y}}{\partial_{\boldsymbol{\theta}} \mathbf{y}}$$

k(.,.) = Gaussian filter

+ Continuous - Not boundary consistent

BOUNDARY-AWARE WEIGHTING

BOUNDARY-AWARE WEIGHTING

CONSTRUCTING
$$ec{\mathcal{V}}_{ heta}$$

1. Sample **path** using path tracer

(N paths)

For each bounce:

2. Sample auxiliary rays

```
(N' rays)
```

3. Compute boundary term *B()* locally

4. Compute weight **k(.,.)** and $\partial_{ heta} \boldsymbol{\omega}$

5. Find weighted mean

QUICK RECAP

• Used *Reynolds transport theorem* to find the boundary integral

$$\int_{\partial \mathbf{D}} f \vec{\mathbf{v}} \cdot \vec{\mathbf{n}} \quad \text{to} \quad \int_{\mathbf{D}} \nabla \cdot (\vec{\mathcal{V}}_{\theta} f)$$

using the *divergence theorem*.

• Estimate **consistent** and **continuous** $ec{\mathcal{V}}_{ heta}$ over domain D using auxiliary rays

integration variable u

TRANSFORM SAMPLES $u = T(u'; \theta)$

$$\frac{\partial}{\partial \theta} \int_D f \mathrm{d}u = \int_D f_\theta + \nabla \cdot \left(\vec{\mathcal{V}}_\theta f \right) \mathrm{d}u$$

$$\frac{\partial}{\partial \theta} \int_{D} f du = \int_{D} f_{\theta} + \nabla \cdot \left(\vec{\mathcal{V}}_{\theta} f \right) du$$
$$= \int_{D} \frac{\partial}{\partial \theta} \left(f \left(T(u'; \theta) \right) J_{T} \right) du'$$

$$\frac{\partial}{\partial \theta} \int_{D} f du = \int_{D} f_{\theta} + \nabla \cdot \left(\vec{\mathcal{V}}_{\theta} f \right) du$$
$$= \int_{D} \frac{\partial}{\partial \theta} \left(f \left(T(u'; \theta) \right) J_{T} \right) du'$$

$$T = u' + (\theta - \theta_0) \mathcal{V}_{\theta}$$

RESULTS

VARIANCE COMPARISON WITH EDGE-SAMPLING

BIAS COMPARISON WITH REPARAMETERIZATION

Rotating cylindrical objects present a complicated scenario for area-sampling

BIAS COMPARISON WITH REPARAMETERIZATION

Extremely complex geometry like foliage can cause heuristic to fail

POSE ESTIMATION CAN FAIL WITH BIASED GRADIENTS

Multiple Initializations

WARPED-AREA SAMPLING CAN BE USED FOR SIGNED DISTANCE FIELDS RENDERING

Differentiable Signed Distance Function Rendering

DELIO VICINI, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland SÉBASTIEN SPEIERER, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland WENZEL JAKOB, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Differentiable Rendering of Neural SDFs through Reparameterization

Sai Praveen Bangaru MIT CSAIL USA sbangaru@mit.edu	Michaël Gharbi Adobe Research USA mgharbi@adobe.com	Tzu-Mao Li UC San Diego USA tzli@ucsd.edu	Fujun Luan Adobe Research USA fluan@adobe.com	Kalyan Sunkavalli Adobe Research USA sunkaval@adobe.com
Miloš Hašan Adobe Research USA mihasan@adobe.com	Sai Bi Adobe Research USA sbi@adobe.com	Zexiang Xu Adobe Research USA zexu@adobe.com	Gilbert Bernstein MIT CSAIL & UC Berkeley USA gilbo@berkeley.edu	Frédo Durand MIT CSAIL USA fredo@mit.edu

Computing A Consistent $\mathcal{V}(u)$ For An Arbitrary SDF

Computing \mathcal{V} By Differentiating The Silhouette Position u^*

Computing \mathcal{V} : Implicit Fn. Theorem + Chain Rule

1. Compute $\nabla_{\theta} \mathbf{x}^*(\theta)$ **using implicit fn. theorem:** Derivative of any point in SDF can be computed by differentiating SDF function **f**

Computing \mathcal{V} : Implicit Fn. Theorem + Chain Rule

1. Compute $\nabla_{\theta} \mathbf{x}^*(\theta)$ using Implicit Fn. Theorem:

2. Propagate $G(\mathbf{x}^*)$ to sample space through chain rule ($u \rightarrow \mathbf{x}$):

Computing $\mathcal{V}(u)$ For An Arbitrary Ray

Ray-SDF Intersection: Sphere Tracing

about ette rays?

Can Compute $\mathcal{V}(u)$ using the Geometry Derivative $G(\mathbf{x})$ of any Sphere Tracer point

Computing $\mathcal{V}(u)$ as Weighted Mean of $G(\mathbf{x})$ over Sphere Tracer Points

Weighted-Mean $\mathcal{V}(u)$ Is Both Consistent And Continuous

Scaling Up From Simple 2D To Neural 3D

Putting It All Together: First, Render SDF As Usual

Putting It All Together: Then, Reparameterize Samples

Putting It All Together: Finally, Differentiate With AD

Comparisons Against IDR (Yariv et al. 2020): A Sharp-Surface Model With Segmentation Mask Inputs

Reconstructions On-Par With IDR *Without* Using Masks

Cleaner Reconstructions Than IDR On Real Data with Poor Segmentation Masks

CONCLUSIONS

