Diffusion approximation

UCSD CSE 272
Advanced Image Synthesis

Tzu-Mao Li

Today: multiple-scattering approximation

$\underline{\text { https://blog.selfshadow.com/publications/s2015-shading-course/burley/s2015 pbs disney bsdf notes.pdf }}$

Challenge: multiple-scattering in dense media requires many bounces

these images usually require hundreds of bounces

Trick: aggregate multiple scattering events using a "BSSRDF"

$$
f\left(\omega, \omega^{\prime}\right)
$$

$f\left(p, \omega, p^{\prime}, \omega^{\prime}\right)$
BSSRDF

Bidirectional Subsurface Scattering
Reflectance Distribution Function

BRDF vs BSSRDF

BRDF

BSSRDF

Cool Vox video!

https://www.youtube.com/watch?v=NvFoKkWyZ5Y

Goal: deriving BSSRDF from radiative transfer equation

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} t} L(\mathbf{p}(t), \omega)=-\sigma_{t} L(\mathbf{p}(t), \omega)+L_{e}(\mathbf{p}(t), \omega)+\sigma_{s} \int_{S^{2}} \rho\left(\omega, \omega^{\prime}\right) L\left(\mathbf{p}(t), \omega^{\prime}\right) \mathrm{d} \omega^{\prime} \\
\downarrow \\
f\left(p, \omega, p^{\prime}, \omega^{\prime}\right)
\end{gathered}
$$

Simple BSSRDFs

$$
\begin{gathered}
f\left(p, \omega, p^{\prime}, \omega^{\prime}\right)= \\
(1-F(\omega)) R\left(\left\|p-p^{\prime}\right\|\right)\left(1-F\left(\omega^{\prime}\right)\right) \\
\\
R(r) \propto e^{-\frac{r^{2}}{\sigma^{2}}}
\end{gathered}
$$

R: "diffuse reflectance profile"

Sampling BSSRDFs

$R(r) \propto e^{-\frac{r^{2}}{\sigma^{2}}}$
quiz: how would you do it?

Sampling BSSRDFs

1. sample on a disk using $R(r)$
$R(r) \propto e^{-\frac{r^{2}}{\sigma^{2}}}$

BSSRDF Importance Sampling

Alan King Solid Angle

Christopher Kulla Sony Pictures Imageworks
ty
Alejandro Conty Sony Pictures Imageworks

Sampling BSSRDFs

$R(r) \propto e^{-\frac{r^{2}}{\sigma^{2}}}$

1. sample on a disk using $R(r)$
2. project onto the surface

BSSRDF Importance Sampling

Alan King Solid Angle

Christopher Kulla Sony Pictures Imageworks

Alejandro Conty Sony Pictures Imageworks

Sampling BSSRDFs

$R(r) \propto e^{-\frac{2}{\sigma^{2}}}$

1. sample on a disk using $R(r)$
2. project onto the surface
3. repeat this for different axes, combine with MIS

How do we know if simple BSSRDFs are sufficient?

$$
\begin{gathered}
f\left(p, \omega, p^{\prime}, \omega^{\prime}\right)=(1-F(\omega)) R\left(\left\|p-p^{\prime}\right\|\right)\left(1-F\left(\omega^{\prime}\right)\right) \\
\\
R(r) \propto e^{-\frac{r^{2}}{\sigma^{2}}}
\end{gathered}
$$

R: "diffuse reflectance profile"

Goal: deriving BSSRDF from radiative transfer equation

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} t} L(\mathbf{p}(t), \omega)=-\sigma_{t} L(\mathbf{p}(t), \omega)+L_{e}(\mathbf{p}(t), \omega)+\sigma_{s} \int_{S^{2}} \rho\left(\omega, \omega^{\prime}\right) L\left(\mathbf{p}(t), \omega^{\prime}\right) \mathrm{d} \omega^{\prime} \\
\downarrow \\
f\left(p, \omega, p^{\prime}, \omega^{\prime}\right)
\end{gathered}
$$

Intuition: volumetric path tracing looks like Brownian motion

Physics: expectation of Brownian motions is a solution to a PDE

- c.f. Fick, Einstein, Feynman-Kac formula

Heat equation

$$
\underset{\substack{\text { spatial } \\ \text { diffusion }}}{\frac{\partial u}{\partial \tau}=\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)}+Q(x, y, z)
$$

Equilibrium of heat equation: Poisson equation

Poisson equation is also the equilibrium of a electric field assuming no magnetic field

$$
\frac{\partial u}{\partial \tau}=\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)+Q(x, y, z)
$$

$$
\begin{aligned}
0 & =\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)+Q(x, y, z) \\
& =\Delta u+Q
\end{aligned}
$$

What is the connection between radiative transfer equation \& Poisson equation?

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} t} L(\mathbf{p}(t), \omega)=-\sigma_{t} L(\mathbf{p}(t), \omega)+L_{e}(\mathbf{p}(t), \omega)+\sigma_{s} \int_{S^{2}} \rho\left(\omega, \omega^{\prime}\right) L\left(\mathbf{p}(t), \omega^{\prime}\right) \mathrm{d} \omega^{\prime} \\
\text { v.s. }
\end{gathered}
$$

$$
\Delta u+Q=0
$$

Assumption 1: isotropic phase function

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} L(\mathbf{p}(t), \omega)=-\sigma_{t} L(\mathbf{p}(t), \omega)+L_{e}(\mathbf{p}(t), \omega)+\sigma_{s} \int_{S^{2}} \rho\left(\omega, \omega^{\prime}\right) L\left(\mathbf{p}(t), \omega^{\prime}\right) \mathrm{d} \omega^{\prime} \\
& \frac{\mathrm{d}}{\mathrm{~d} t} L(\mathbf{p}(t), \omega)=-\sigma_{t} L(\mathbf{p}(t), \omega)+L_{e}(\mathbf{p}(t), \omega)+\frac{\sigma_{s}}{4 \pi} \int_{S^{2}} L\left(\mathbf{p}(t), \omega^{\prime}\right) \mathrm{d} \omega^{\prime}
\end{aligned}
$$

Assumption 2:

first-order spherical moment expansion on L

$$
\begin{aligned}
& L(\mathbf{p}, \omega) \approx \frac{1}{4 \pi} \int_{S^{2}} L\left(\mathbf{p}, \omega^{\prime}\right) \mathrm{d} \omega^{\prime}+\frac{3}{4 \pi} \omega \cdot \int_{S^{2}} \omega^{\prime} L\left(\mathbf{p}, \omega^{\prime}\right) \mathrm{d} \omega^{\prime} \\
& \begin{array}{c}
\text { zero-th order } \\
\text { moment } \\
\text { (total mass) } \\
\text { first order } \\
\text { moment } \\
\text { (center of mass) }
\end{array} \\
&= \frac{1}{4 \pi} \boldsymbol{p}(\mathbf{p})+\frac{3}{4 \pi} \omega \cdot \mathbf{E}(\mathbf{p})
\end{aligned}
$$

Assumption 3:

matching spherical moments of RTE

plug in $L(\mathbf{p}, \omega) \approx \frac{1}{4 \pi} \phi(\mathbf{p})+\frac{3}{4 \pi} \omega \cdot \mathbf{E}(\mathbf{p})$
take 0 -th order moment take 0 -th order moment

$$
\frac{\mathrm{d}}{\mathrm{~d} t} L(\mathbf{p}(t), \omega)=-\sigma_{t} L(\mathbf{p}(t), \omega)+L_{e}(\mathbf{p}(t), \omega)+\frac{\sigma_{s}}{4 \pi} \int_{S^{2}} L\left(\mathbf{p}(t), \omega^{\prime}\right) \mathrm{d} \omega^{\prime}
$$

plug in $L(\mathbf{p}, \omega) \approx \frac{1}{4 \pi} \phi(\mathbf{p})+\frac{3}{4 \pi} \omega \cdot \mathbf{E}(\mathbf{p})$
take 1st order moment
take 1st order moment

$$
\frac{\mathrm{d}}{\mathrm{~d} t} L(\mathbf{p}(t), \omega)=-\sigma_{t} L(\mathbf{p}(t), \omega)+L_{e}(\mathbf{p}(t), \omega)+\frac{\sigma_{s}}{4 \pi} \int_{S^{2}} L\left(\mathbf{p}(t), \omega^{\prime}\right) \mathrm{d} \omega^{\prime}
$$

Diffusion approximation through

 plug in $L(\mathbf{p}, \omega) \approx \frac{1}{4 \pi} \phi(\mathbf{p})+\frac{3}{4 \pi} \omega \cdot \mathbf{E}(\mathbf{p})$take 0-th order moment
take 0-th order moment

$$
\frac{\mathrm{d}}{\mathrm{~d} t} L(\mathbf{p}(t), \omega)=-\sigma_{t} L(\mathbf{p}(t), \omega)+L_{e}(\mathbf{p}(t), \omega)+\frac{\sigma_{s}}{4 \pi} \int_{S^{2}} L\left(\mathbf{p}(t), \omega^{\prime}\right) \mathrm{d} \omega^{\prime}
$$

$$
\nabla \cdot \mathbf{E}(\mathbf{p})=-\sigma_{a} \phi(\mathbf{p})+Q_{0}(\mathbf{p})
$$

$$
Q_{0}(\mathbf{p})=\int L_{e}\left(\mathbf{p}, \omega^{\prime}\right) \mathrm{d} \omega^{\prime}
$$

Diffusion approximation through moment matching

 plug in $L(\mathbf{p}, \omega) \approx \frac{1}{4 \pi} \phi(\mathbf{p})+\frac{3}{4 \pi} \omega \cdot \mathbf{E}(\mathbf{p})$take 1st order moment
take 1st order moment
$\frac{\mathrm{d}}{\mathrm{d} t} L(\mathbf{p}(t), \omega)=-\sigma_{t} L(\mathbf{p}(t), \omega)+L_{e}(\mathbf{p}(t), \omega)+\frac{\sigma_{s}}{4 \pi} \int_{S^{2}} L\left(\mathbf{p}(t), \omega^{\prime}\right) \mathrm{d} \omega^{\prime}$

$$
\begin{gathered}
\downarrow \\
\frac{1}{3} \nabla \phi(\mathbf{p})=-\sigma_{t} \mathbf{E}(\mathbf{p})+Q_{1}(\mathbf{p}) \\
Q_{1}(\mathbf{p})=\int \omega^{\prime} \cdot L_{e}\left(\mathbf{p}, \omega^{\prime} \mathrm{d} \omega^{\prime}\right.
\end{gathered}
$$

Diffusion approximation through moment matching

$$
\begin{aligned}
\nabla \cdot \mathbf{E}(\mathbf{p}) & =-\sigma_{a} \phi(\mathbf{p})+Q_{0}(\mathbf{p}) \\
\frac{1}{3} \nabla \phi(\mathbf{p}) & =-\sigma_{t} \mathbf{E}(\mathbf{p})+Q_{1}(\mathbf{p})
\end{aligned}
$$

$$
Q_{0}(\mathbf{p})=\int L_{e}\left(\mathbf{p}, \omega^{\prime}\right) \mathrm{d} \omega^{\prime} \quad Q_{1}(\mathbf{p})=\int \omega^{\prime} \cdot L_{e}\left(\mathbf{p}, \omega^{\prime}\right) \mathrm{d} \omega^{\prime} \quad L(\mathbf{p}, \omega) \approx \frac{1}{4 \pi} \int_{S^{2}} L\left(\mathbf{p}, \omega^{\prime}\right) \mathrm{d} \omega^{\prime}+\frac{3}{4 \pi} \omega \cdot \int_{S^{2}} \omega^{\prime} L\left(\mathbf{p}, \omega^{\prime}\right) \mathrm{d} \omega^{\prime}=\frac{1}{4 \pi} \phi(\mathbf{p})+\frac{3}{4 \pi} \omega \cdot \mathbf{E}(\mathbf{p})
$$

Diffusion approximation through moment matching

$$
\begin{aligned}
& \nabla \cdot \mathbf{E}(\mathbf{p})=-\sigma_{a} \phi(\mathbf{p})+Q_{0}(\mathbf{p}) \\
& \frac{1}{3} \nabla \phi(\mathbf{p})=-\sigma_{t} \mathbf{E}(\mathbf{p})+Q_{1}(\mathbf{p}) \\
& \text { solve for } \phi \quad \frac{1}{3 \sigma_{t}} \Delta \phi(\mathbf{p})=\sigma_{a} \phi(\mathbf{p})-Q_{0}(\mathbf{p})+\frac{1}{\sigma_{t}} \nabla \cdot Q_{1}(\mathbf{p}) \\
& Q_{0}(\mathbf{p})=\int L_{e}\left(\mathbf{p}, \omega^{\prime}\right) \mathrm{d} \omega^{\prime} \quad Q_{1}(\mathbf{p})=\int \omega^{\prime} \cdot L_{e}\left(\mathbf{p}, \omega^{\prime}\right) \mathrm{d} \omega^{\prime} \quad L(\mathbf{p}, \omega) \approx \frac{1}{4 \pi} \int_{S^{2}} L\left(\mathbf{p}, \omega^{\prime}\right) \mathrm{d} \omega^{\prime}+\frac{3}{4 \pi} \omega \cdot \int_{S^{2}} \omega^{\prime} L\left(\mathbf{p}, \omega^{\prime}\right) \mathrm{d} \omega^{\prime}=\frac{1}{4 \pi} \phi(\mathbf{p})+\frac{3}{4 \pi} \omega \cdot \mathbf{E}(\mathbf{p})
\end{aligned}
$$

Diffusion approximation through moment matching

$$
\begin{aligned}
\nabla \cdot \mathbf{E}(\mathbf{p}) & =-\sigma_{a} \phi(\mathbf{p})+Q_{0}(\mathbf{p}) \\
\frac{1}{3} \nabla \phi(\mathbf{p}) & =-\sigma_{t} \mathbf{E}(\mathbf{p})+Q_{1}(\mathbf{p})
\end{aligned}
$$

solve for ϕ

$$
\frac{1}{3 \sigma_{t}} \Delta \phi(\mathbf{p})=\sigma_{a} \phi(\mathbf{p})-Q_{0}(\mathbf{p})+\frac{1}{\sigma_{t}} \nabla \cdot Q_{1}(\mathbf{p})
$$

$$
L(\mathbf{p}, \omega) \approx \frac{1}{4 \pi} \int_{S^{2}} L\left(\mathbf{p}, \omega^{\prime}\right) \mathrm{d} \omega^{\prime}+\frac{3}{4 \pi} \omega \cdot \int_{S^{2}} \omega^{\prime} L\left(\mathbf{p}, \omega^{\prime}\right) \mathrm{d} \omega^{\prime}=\frac{1}{4 \pi} \phi(\mathbf{p})+\frac{3}{4 \pi} \omega \cdot \mathbf{E}(\mathbf{p})
$$

What is the connection between radiative transfer equation \& Poisson equation?

$$
\frac{\mathrm{d}}{\mathrm{~d} t} L(\mathbf{p}(t), \omega)=-\sigma_{t} L(\mathbf{p}(t), \omega)+L_{e}(\mathbf{p}(t), \omega)+\sigma_{s} \int_{S^{2}} \rho\left(\omega, \omega^{\prime}\right) L\left(\mathbf{p}(t), \omega^{\prime}\right) \mathrm{d} \omega^{\prime}
$$

v.s.

$$
\Delta u+Q=0
$$

What is the connection between radiative transfer equation \& Poisson equation?

$$
\frac{1}{3 \sigma_{t}} \Delta \phi(\mathbf{p})=\sigma_{a} \phi(\mathbf{p})-Q_{0}(\mathbf{p})+\frac{1}{\sigma_{t}} \nabla \cdot Q_{1}(\mathbf{p})
$$

v.s.

$$
\Delta u+Q=0
$$

What is the connection between radiative transfer equation \& Poisson equation?

$$
\frac{1}{3 \sigma_{t}} \Delta \phi(\mathbf{p})=\sigma_{a} \phi(\mathbf{p})-Q_{0}(\mathbf{p})+\frac{1}{\sigma_{t}} \nabla \cdot Q_{1}(\mathbf{p})
$$

energy loss due to absorption
v.s.

$$
\Delta u+Q=0
$$

Solving for ϕ in diffusion approximation

- ϕ depends on the choice of $Q \&$ boundary condition
- goal: setup $Q \&$ boundary conditions so that we have efficient solutions

$$
\frac{1}{3 \sigma_{t}} \Delta \phi(\mathbf{p})=\sigma_{a} \phi(\mathbf{p})-Q_{0}(\mathbf{p})+\frac{1}{\sigma_{t}} \nabla \cdot Q_{1}(\mathbf{p})
$$

Monopole solution: a single point light source without boundary

$$
\frac{1}{3 \sigma_{t}} \Delta \phi(\mathbf{p})=\sigma_{a} \phi(\mathbf{p})-Q_{0}(\mathbf{p})+\frac{1}{\sigma_{t}} \nabla \cdot Q_{1}(\mathbf{p})
$$

Monopole solution: a single point light source without boundary

$$
\frac{1}{3 \sigma_{t}} \Delta \phi(\mathbf{p})=\sigma_{a} \phi(\mathbf{p})-Q_{0}(\mathbf{p})+\frac{1}{\sigma_{t}} \nabla \cdot Q_{1}(\mathbf{p})
$$

$$
\phi_{m}(\mathbf{p})=\frac{3 \sigma_{t}}{4 \pi} \frac{e^{-\sqrt{3 \sigma_{\sigma_{i}} \|}\|\mathbf{p}\|}}{\|\mathbf{p}\|}
$$

Monopole fails to account for the boundary

air
surface
medium
point light source

Idea: put a negative light source to cancel out contribution

- "dipole approximation"

negative point light source

air
surface
medium
point light source

Idea: put a negative light source to cancel out contribution

- "dipole approximation"

negative point light source

air
surface
medium
point light source

$$
\phi_{d}(\mathbf{p})=\frac{3 \sigma_{t}}{4 \pi} \frac{e^{-\sqrt{3 \sigma_{a} \sigma_{t}}\left\|\mathbf{p}-\mathbf{p}_{r}\right\|}}{\left\|\mathbf{p}-\mathbf{p}_{r}\right\|}-\frac{3 \sigma_{t}}{4 \pi} \frac{e^{-\sqrt{3 \sigma_{a} \sigma_{t}}\left\|\mathbf{p}-\mathbf{p}_{v}\right\|}}{\left\|\mathbf{p}-\mathbf{p}_{v}\right\|}
$$

Choose z_{v} to cancel out contribution at z_{e}

read pbrt for how z_{e} is chosen

- "dipole approximation"

Using dipole solutions for BSSRDF

- place point "light sources" along the incoming ray (using reciprocity of light transport)

Using dipole solutions for BSSRDF

- place point "light sources" along the incoming ray (using reciprocity of light transport)
- BSSRDF is defined as the sum of dipoles to all of them (multiply with Fresnel)

$f\left(p, \omega, p^{\prime}, \omega^{\prime}\right)$

Dipole vs volumetric path tracing

dipole (photon beam diffusion)

path tracing

Dipole vs volumetric path tracing

dipole
path tracing

"Hacks" to improve dipoles

$$
\begin{aligned}
& \phi_{m}(\mathbf{p})=\frac{3 \sigma_{t}}{4 \pi} \frac{e^{-\sqrt{3 \sigma_{a} \sigma_{t}}\|\mathbf{p}\|}}{\|\mathbf{p}\|} \\
& \phi_{g}(\mathbf{p})=\frac{e^{-\sigma_{t}\|p\|}}{4 \pi\|p\|^{2}}-\phi_{m}(\mathbf{p})
\end{aligned}
$$

Grosjean's correction [1956]

............. Monte Carlo
classical dipole
$\mp \quad \begin{aligned} & \text { Grosjean's } \\ & \text { correction }\end{aligned}$
https://www.pbr-book.org/3ed-2018/Light Transport II Volume Rendering/

"Hacks" to improve dipoles

Christensen \& Burley's empirical model

$$
\phi_{d}(\mathbf{p})=A \frac{e^{-\frac{s r}{l}}-e^{-\frac{s r}{8 l}}}{8 \pi l r}
$$

$$
\begin{aligned}
& \text { A: albedo } \frac{\sigma_{s}}{\sigma_{t}} \\
& s=1.85-A+7|A-0.8|^{3}
\end{aligned}
$$

Dual-beam diffusion

A Dual-Beam 3D Searchlight BSSRDF (Supplementary Doc)

Eugene d'Eon
Jig Lab

Directional dipole [Frisvad 2014]

Data-driven BSSRDFs

An Empirical BSSRDF Model

Craig Donner* Jason Lawrence ${ }^{\dagger} \quad$ Ravi Ramamoorthi Toshiya Hachisuka ${ }^{\S} \quad$ Henrik Wann Jensen ${ }^{\S} \quad$ Shree Nayar*

* Columbia University ${ }^{\dagger}$ University of Virginia ${ }^{\ddagger}$ UC Berkeley ${ }^{\S}$ UC San Diego

Diffusion Dipole + Single Scattering (10 min)

Our Model + Single Scattering (30 min)

Single Scattering Only

A Learned Shape-Adaptive Subsurface Scattering Model
DELIO VICINI, Ecole Polytechnique Fédérale de Lausanne (EPFL)
VLADLEN KOLTUN, Intel Labs
WENZEL JAKOB, Ecole Polytechnique Fédérale de Lausanne (EPFL)

neural net solution
tabular solution

Similarity relation for converting non-isotropic phase functions to isotropic ones

Figure 15.15: Representative Light Paths for Highly Anisotropic Scattering Media. (a) Forwardscattering medium, with $g=0.9$. Light generally scatters in the same direction it was originally traveling. (b) Backward-scattering medium, with $g=-0.9$. Light frequently bounces back and forth, making relatively little forward progress with respect to its original direction.
https://www.pbr-book.org/3ed-2018/Light Transport II Volume Rendering/ Subsurface_Scattering_Using the Diffusion Equation\#Non-classicalDiffusion

Shell tracing: BSSRDF for discrete media

photograph

path tracing (28 hours)

shell tracing (1 hour)

Rendering Discrete Random Media Using Precomputed Scattering Solutions

$$
f\left(x, \omega, x^{\prime}, \omega^{\prime}\right)
$$

Hybrid method: combining volumetric path tracing \& BSSRDF

Multi-scale methods: granular media rendering

Multi-Scale Modeling and Rendering of Granular Materials

Johannes Meng ${ }^{2,1}$
Marios Papas ${ }^{1,3}$
Ralf Habel ${ }^{1}$
Carsten Dachsbacher ${ }^{2} \quad$ Steve Marschner ${ }^{4} \quad$ Markus Gross ${ }^{1,3}$ Wojciech Jarosz ${ }^{1,5 *}$
${ }^{1}$ Disney Research Zürich $\quad{ }^{2}$ Karlsruhe Institute of Technology $\quad{ }^{3}$ ETH Zürich $\quad{ }^{4}$ Cornell University $\quad{ }^{5}$ Dartmouth College

Multi-scale methods: granular media rendering

Multi-Scale Modeling and Rendering of Granular Materials

Johannes Meng ${ }^{2,1}$ Marios Papas ${ }^{1,3}$ Ralf Habel ${ }^{1}$
Carsten Dachsbacher ${ }^{2}$ Steve Marschner ${ }^{4}$ Markus Gross ${ }^{1,3}$ Wojciech Jarosz ${ }^{1.5}$

```
Disney Research Zürich ' }\mp@subsup{}{}{2}\mathrm{ Karlsruhe Institute of Technology
```


BSSRDF for fur rendering

A BSSRDF Model for Efficient Rendering of Fur with Global Illumination

LING-QI YAN, University of California, Berkeley
WEILUN SUN, University of California, Berkeley
HENRIK WANN JENSEN, University of California, San Diego
RAVI RAMAMOORTHI, University of California, San Diego

Next: differentiable rendering

Differentiable Monte Carlo Ray Tracing through Edge Sampling

TZU-MAO LI, MIT CSAIL MIIKA AITTALA, MIT CSAIL
FRÉDO DURAND, MIT CSAIL
JAAKKO LEHTINEN, Aalto University \& NVIDIA

(a) initial guess

(f) our fitted result

