Diffusion approximation

UCSD CSE 272 Advanced Image Synthesis

Tzu-Mao Li

Today: multiple-scattering approximation

https://blog.selfshadow.com/publications/s2015-shading-course/burley/s2015_pbs_disney_bsdf_notes.pdf https://naml.us/paper/deon2011_subsurface.pdf

http://graphics.ucsd.edu/~henrik/papers/bssrdf/

Challenge: multiple-scattering in dense media requires many bounces

these images usually require hundreds of bounces

<u>https://rgl.epfl.ch/publications/Jakob2010Radiative</u> <u>https://cs.dartmouth.edu/~wjarosz/publications/bitterli18framework.html</u>

https://www.cs.cornell.edu/projects/translucency/#acquisition-sa13

Trick: aggregate multiple scattering events using a "BSSRDF"

Bidirectional Subsurface Scattering Reflectance Distribution Function

 $f(\omega, \omega')$

BRDF/BSDF

 $f(p, \omega, p', \omega')$ BSSRDF

BRDF vs BSSRDF

BRDF

BSSRDF

http://graphics.ucsd.edu/~henrik/papers/bssrdf/bssrdf.pdf

Cool Vox video!

https://www.youtube.com/watch?v=NvFoKkWyZ5Y

Goal: deriving BSSRDF from radiative transfer equation

 $\frac{\mathrm{d}}{\mathrm{d}t}L(\mathbf{p}(t),\omega) = -\sigma_t L(\mathbf{p}(t),\omega) + L$

 $f(p, \omega, p', \omega')$

$$L_{e}(\mathbf{p}(t),\omega) + \sigma_{s} \int_{S^{2}} \rho(\omega,\omega') L(\mathbf{p}(t),\omega') d\omega'$$

 $f(p, \omega, p',$

Simple BSSRDFs

$$(\omega) = (1 - F(\omega)) R \left(\| p - p' \| \right) (1 - F(\omega))$$

$$R(r) \propto e^{-\frac{r^2}{\sigma^2}}$$

R: "diffuse reflectance profile"

$R(r) \propto e^{-\frac{r^2}{\sigma^2}}$

1. sample on a disk using R(r)

$R(r) \propto e^{-\frac{r^2}{\sigma^2}}$

BSSRDF Importance Sampling

Alan King Solid Angle

Christopher Kulla Sony Pictures Imageworks

Alejandro Conty Sony Pictures Imageworks

- 1. sample on a disk using R(r)
- 2. project onto the surface

$R(r) \propto e^{-\frac{r}{\sigma^2}}$

BSSRDF Importance Sampling

Alan King Solid Angle

Christopher Kulla Sony Pictures Imageworks

Alejandro Conty Sony Pictures Imageworks

- 1. sample on a disk using R(r)
- 2. project onto the surface
- 3. repeat this for different axes, combine with MIS

 $R(r) \propto e^{-\frac{r}{\sigma^2}}$

BSSRDF Importance Sampling

Alan King Solid Angle

Christopher Kulla Sony Pictures Imageworks

Alejandro Conty Sony Pictures Imageworks

How do we know if simple BSSRDFs are sufficient?

 $f(p, \omega, p', \omega)$

$$(\omega') = (1 - F(\omega)) R \left(\| p - p' \| \right) (1 - F(\omega))$$

$$R(r) \propto e^{-\frac{r^2}{\sigma^2}}$$

R: "diffuse reflectance profile"

Goal: deriving BSSRDF from radiative transfer equation

 $\frac{\mathrm{d}}{\mathrm{d}t}L(\mathbf{p}(t),\omega) = -\sigma_t L(\mathbf{p}(t),\omega) + L$

 $f(p, \omega, p', \omega')$

$$L_{e}(\mathbf{p}(t),\omega) + \sigma_{s} \int_{S^{2}} \rho(\omega,\omega') L(\mathbf{p}(t),\omega') d\omega'$$

Intuition: volumetric path tracing looks like Brownian motion

https://en.wikipedia.org/wiki/Brownian_motion

Physics: expectation of Brownian motions is a solution to a PDE

• c.f. Fick, Einstein, Feynman-Kac formula

https://en.wikipedia.org/wiki/Brownian_motion

Heat equation

$\frac{\partial l}{\partial t}$

time derivative

$$\frac{u}{\tau} = \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right) + Q(x, y, z)$$

spatial diffusion

heat source

Equilibrium of heat equation: Poisson equation

time derivative

Poisson equation is also the equilibrium of a electric field assuming no magnetic field

 $\frac{\partial u}{\partial \tau} = \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right) + Q(x, y, z)$ spatial heat source diffusion $\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right) + Q(x, y, z)$ 0 =Poisson equation $= \Delta u + Q$

V.S.

 $\frac{\mathrm{d}}{\mathrm{d}t}L(\mathbf{p}(t),\omega) = -\sigma_t L(\mathbf{p}(t),\omega) + L_e(\mathbf{p}(t),\omega) + \sigma_s \int_{S^2} \rho(\omega,\omega') L(\mathbf{p}(t),\omega') \mathrm{d}\omega'$

Assumption 1: isotropic phase function

 $\frac{\mathrm{d}}{\mathrm{d}t}L(\mathbf{p}(t),\omega) = -\sigma_t L(\mathbf{p}(t),\omega) + \varepsilon_t L(\mathbf{p}(t),\omega)$

 $\frac{\mathrm{u}}{\mathrm{d}t}L(\mathbf{p}(t),\omega) = -\sigma_t L(\mathbf{p}(t),\omega) +$

$$-L_{e}(\mathbf{p}(t),\omega) + \sigma_{s} \int_{S^{2}} \rho(\omega,\omega') L(\mathbf{p}(t),\omega') d\omega$$

$$-L_{e}(\mathbf{p}(t),\omega) + \frac{\sigma_{s}}{4\pi} \int_{S^{2}} L(\mathbf{p}(t),\omega') d\omega'$$

Assumption 2: first-order spherical moment expansion on L

$$L(\mathbf{p},\omega) \approx \frac{1}{4\pi} \int_{S^2} L(\mathbf{p},\omega') \mathrm{d}\omega' + \frac{3}{4\pi} \omega \cdot \int_{S^2} \omega' L(\mathbf{p},\omega') \mathrm{d}\omega'$$

zero-th order moment (total mass)

first order moment (center of mass)

$$\frac{3}{4\pi}\omega\cdot\mathbf{E}(\mathbf{p})$$

 $\frac{\mathrm{d}}{\mathrm{d}t}L(\mathbf{p}(t),\omega) = -\sigma_t L(\mathbf{p}(t),\omega) + L_e(\mathbf{p}(t),\omega) + \frac{\sigma_s}{4\pi} \int_{S^2} L(\mathbf{p}(t),\omega')\mathrm{d}\omega'$

Assumption 3: matching spherical moments of RTE

plug in
$$L(\mathbf{p}, \omega) \approx \frac{1}{4\pi} \phi(\mathbf{p}) + \frac{3}{4\pi} \omega \cdot \mathbf{E}(\mathbf{p})$$

take 0-th order moment

take 0-th order moment

$$\frac{\mathrm{d}}{\mathrm{d}t}L(\mathbf{p}(t),\omega) = -\sigma_t L(\mathbf{p}(t),\omega) + L_e(\mathbf{p}(t),\omega) + \frac{\sigma_s}{4\pi} \int_{S^2} L(\mathbf{p}(t),\omega')\mathrm{d}\omega'$$

plug in
$$L(\mathbf{p}, \omega) \approx \frac{1}{4\pi} \phi(\mathbf{p}) + \frac{3}{4\pi} \omega \cdot \mathbf{E}(\mathbf{p})$$

take 1st order moment

take 1st order moment

$$\frac{\mathrm{d}}{\mathrm{d}t}L(\mathbf{p}(t),\omega) = -\sigma_t L(\mathbf{p}(t),\omega) + L_e(\mathbf{p}(t),\omega) + \frac{\sigma_s}{4\pi} \int_{S^2} L(\mathbf{p}(t),\omega')\mathrm{d}\omega'$$

Diffusion approximation through moment matching plug in $L(\mathbf{p}, \omega) \approx \frac{1}{4\pi} \phi(\mathbf{p}) + \frac{3}{4\pi} \omega \cdot \mathbf{E}(\mathbf{p})$ take 0-th order moment take 0-th order moment

$$\frac{\mathrm{d}}{\mathrm{d}t}L(\mathbf{p}(t),\omega) = -\sigma_t L(\mathbf{p}(t),\omega) + L_e(\mathbf{p}(t),\omega) + \frac{\sigma_s}{4\pi} \int_{S^2} L(\mathbf{p}(t),\omega')\mathrm{d}\omega'$$

$$\nabla \cdot \mathbf{E}(\mathbf{p}) = -\sigma_a \mathbf{e}$$
$$Q_0(\mathbf{p}) = \int L_e(\mathbf{p}, \omega')$$

See Sec. 5.1 of the tech report for the full derivation https://rgl.epfl.ch/publications/Jakob2010Radiative

 $\phi(\mathbf{p}) + Q_0(\mathbf{p})$

 $d\omega$

Diffusion approximation through $plug \text{ in } L(\mathbf{p}, \omega) \approx \frac{1}{4\pi} \phi(\mathbf{p}) + \frac{3}{4\pi} \omega \cdot \mathbf{E}(\mathbf{p})$ moment matching

take 1st order moment

take 1st order moment

$$\frac{\mathrm{d}}{\mathrm{d}t}L(\mathbf{p}(t),\omega) = -\sigma_t L(\mathbf{p}(t),\omega) + L_e(\mathbf{p}(t),\omega) + \frac{\sigma_s}{4\pi} \int_{S^2} L(\mathbf{p}(t),\omega')\mathrm{d}\omega'$$

$$\frac{1}{3} \nabla \phi(\mathbf{p}) =$$
$$Q_1(\mathbf{p}) = \int \omega' \cdot L_e(\mathbf{p})$$

See Sec. 5.1 of the tech report for the full derivation https://rgl.epfl.ch/publications/Jakob2010Radiative

$$\sigma_t \mathbf{E}(\mathbf{p}) + Q_1(\mathbf{p})$$

 $\mathbf{y}, \omega' \mathbf{d} \omega'$

Diffusion approximation through moment matching

$$Q_0(\mathbf{p}) = \int L_e(\mathbf{p}, \omega') d\omega' \qquad Q_1(\mathbf{p}) = \int \omega' \cdot L_e(\mathbf{p}, \omega') d\omega'$$

 $\nabla \cdot \mathbf{E}(\mathbf{p}) = -\sigma_a \phi(\mathbf{p}) + Q_0(\mathbf{p})$

$$L(\mathbf{p},\omega) \approx \frac{1}{4\pi} \int_{S^2} L(\mathbf{p},\omega') \mathrm{d}\omega' + \frac{3}{4\pi} \omega \cdot \int_{S^2} \omega' L(\mathbf{p},\omega') \mathrm{d}\omega' = \frac{1}{4\pi} \phi(\mathbf{p}) + \frac{3}{4\pi} \omega' \mathrm{d}\omega'$$

Diffusion approximation through moment matching

 $\nabla \cdot \mathbf{E}(\mathbf{p}) =$ $\frac{1}{3}\nabla\phi(\mathbf{p}) =$

solve for ϕ

 $\frac{1}{3\sigma_t}\Delta\phi(\mathbf{p}) = \sigma_a\phi(\mathbf{p})$

$$-\sigma_a \phi(\mathbf{p}) + Q_0(\mathbf{p})$$

$$-\sigma_t \mathbf{E}(\mathbf{p}) + Q_1(\mathbf{p})$$

$$(\mathbf{p}) - Q_0(\mathbf{p}) + \frac{1}{\sigma_t} \nabla \cdot Q_1(\mathbf{p})$$

 $Q_0(\mathbf{p}) = \begin{bmatrix} L_e(\mathbf{p}, \omega') d\omega' & Q_1(\mathbf{p}) = \begin{bmatrix} \omega' \cdot L_e(\mathbf{p}, \omega') d\omega' & L(\mathbf{p}, \omega) \approx \frac{1}{4\pi} \int_{S^2} L(\mathbf{p}, \omega') d\omega' + \frac{3}{4\pi} \omega \cdot \int_{S^2} \omega' L(\mathbf{p}, \omega') d\omega' = \frac{1}{4\pi} \phi(\mathbf{p}) + \frac{3}{4\pi} \omega \cdot \mathbf{E}(\mathbf{p}) \end{bmatrix}$

Diffusion approximation through moment matching

 $\frac{1}{3}\nabla\phi(\mathbf{p}) = -$

solve for ϕ

 $\frac{1}{3\sigma_t}\Delta\phi(\mathbf{p}) = \sigma_a\phi(\mathbf{p})$

E can be computed from ϕ and Q

 $\nabla \cdot \mathbf{E}(\mathbf{p}) = -\sigma_a \phi(\mathbf{p}) + Q_0(\mathbf{p})$

$$-\sigma_t \mathbf{E}(\mathbf{p}) + Q_1(\mathbf{p})$$

$$(\mathbf{p}) - Q_0(\mathbf{p}) + \frac{1}{\sigma_t} \nabla \cdot Q_1(\mathbf{p})$$

 $L(\mathbf{p},\omega) \approx \frac{1}{4\pi} \int_{\mathbf{S}^2} L(\mathbf{p},\omega') d\omega' + \frac{3}{4\pi} \omega \cdot \int_{\mathbf{S}^2} \omega' L(\mathbf{p},\omega') d\omega' = \frac{1}{4\pi} \phi(\mathbf{p}) + \frac{3}{4\pi} \omega \cdot \mathbf{E}(\mathbf{p})$

V.S.

 $\Delta u + Q = 0$

 $\frac{\mathrm{d}}{\mathrm{d}t}L(\mathbf{p}(t),\omega) = -\sigma_t L(\mathbf{p}(t),\omega) + L_e(\mathbf{p}(t),\omega) + \sigma_s \int_{\mathbb{S}^2} \rho(\omega,\omega') L(\mathbf{p}(t),\omega') \mathrm{d}\omega'$

 $\frac{1}{3\sigma_t}\Delta\phi(\mathbf{p}) = \sigma_a\phi(\mathbf{p})$

V.S.

 $\Delta u + Q = 0$

$$(\mathbf{p}) - Q_0(\mathbf{p}) + \frac{1}{\sigma_t} \nabla \cdot Q_1(\mathbf{p}) + \frac{1}{\sigma_t} \nabla \cdot Q_1(\mathbf{p})$$

$$\frac{1}{3\sigma_t}\Delta\phi(\mathbf{p}) = \sigma_a\phi(\mathbf{p}) - Q_0(\mathbf{p}) + \frac{1}{\sigma_t}\nabla \cdot Q_1(\mathbf{p})$$

energy loss due to absorption

V.S.

 $\Delta u + Q = 0$

aka "screened Poisson equation" or Yukawa equation https://en.wikipedia.org/wiki/Screened_Poisson_equation

Solving for ϕ in diffusion approximation

- ϕ depends on the choice of Q & boundary condition
- goal: setup Q & boundary conditions so that we have efficient solutions

$$\frac{1}{3\sigma_t}\Delta\phi(\mathbf{p}) = \sigma_a\phi(\mathbf{p}) - Q_0(\mathbf{p}) + \frac{1}{\sigma_t}\nabla \cdot Q_1(\mathbf{p})$$

Monopole solution: a single point light source without boundary

$\frac{1}{3\sigma_t}\Delta\phi(\mathbf{p}) = \sigma_a\phi(\mathbf{p}) - Q_0(\mathbf{p}) + \frac{1}{\sigma_t}\nabla \cdot Q_1(\mathbf{p})$

 $\phi(\mathbf{p})$

 $Q_0 = \delta(\mathbf{p})$

 $Q_1 = 0$

point light source

Monopole solution: a single point light source without boundary

$$\frac{1}{3\sigma_t}\Delta\phi(\mathbf{p}) = \sigma_a\phi(\mathbf{p}) - Q$$

 $\phi(\mathbf{p})$

$$\phi_m(\mathbf{p}) = \frac{3\sigma_t}{4\pi} \frac{e^{-\sqrt{3\sigma_a\sigma_t}} \|\mathbf{p}\|}{\|\mathbf{p}\|}$$

"Green's function"

https://en.wikipedia.org/wiki/Green%27s_function

<u>https://www.youtube.com/watch?v=ism2SfZgFJg</u> (super cool video about Green's function)

 $2_0(\mathbf{p}) + \frac{1}{\sigma_t} \nabla \cdot Q_1(\mathbf{p})$

 $Q_0 = \delta(\mathbf{p})$

 $Q_1 = 0$

point light source

Monopole fails to account for the boundary

point light source

no scattering here

specular reflection

air

surface

Idea: put a **negative** light source to cancel out contribution

"dipole approximation"

point light source

negative point light source

air

surface

Idea: put a **negative** light source to cancel out contribution

"dipole approximation"

 Z_{ν}

Zr

negative point light source

air

surface

 $\phi_d(\mathbf{p}) = \frac{3\sigma_t}{4\pi} \frac{e^{-\sqrt{3\sigma_a\sigma_t}} \|\mathbf{p} - \mathbf{p}_r\|}{\|\mathbf{p} - \mathbf{p}_r\|} - \frac{3\sigma_t}{4\pi} \frac{e^{-\sqrt{3\sigma_a\sigma_t}} \|\mathbf{p} - \mathbf{p}_v\|}{\|\mathbf{p} - \mathbf{p}_v\|}$

Choose z_v to cancel out contribution at z_{ρ}

"dipole approximation"

point light source

read <u>pbrt</u> for how z_{ρ} is chosen

negative point light source

air

zero contribution

surface

 $\phi_d(\mathbf{p}) = \frac{3\sigma_t}{4\pi} \frac{e^{-\sqrt{3\sigma_a\sigma_t} \|\mathbf{p}-\mathbf{p}_r\|}}{\|\mathbf{p}-\mathbf{p}_r\|} - \frac{3\sigma_t}{4\pi} \frac{e^{-\sqrt{3\sigma_a\sigma_t} \|\mathbf{p}-\mathbf{p}_v\|}}{\|\mathbf{p}-\mathbf{p}_v\|}$

Using dipole solutions for BSSRDF

• place point "light sources" along the incoming ray (using reciprocity of light transport)

Photon Beam Diffusion: A Hybrid Monte Carlo Method for Subsurface Scattering

Ralf Habel¹

Per H. Christensen²

Wojciech Jarosz¹

¹Disney Research Zürich

²Pixar Animation Studios

Using dipole solutions for BSSRDF

- BSSRDF is defined as the sum of dipoles to all of them (multiply with Fresnel)

• place point "light sources" along the incoming ray (using reciprocity of light transport)

Ralf Habel¹

Per H. Christensen²

Wojciech Jarosz¹

¹Disney Research Zürich

²Pixar Animation Studios

Dipole vs volumetric path tracing

dipole (photon beam diffusion)

path tracing

<u>https://cs.dartmouth.edu/~wjarosz/publications/habel13pbd.html</u>

Dipole vs volumetric path tracing

dipole

path tracing

"Hacks" to improve dipoles

$$\phi_{m}(\mathbf{p}) = \frac{3\sigma_{t}}{4\pi} \frac{e^{-\sqrt{3\sigma_{a}\sigma_{t}}} \|\mathbf{p}\|}{\|\mathbf{p}\|}$$

$$\phi_{g}(\mathbf{p}) = \frac{e^{-\sigma_{t}} \|p\|}{4\pi \|p\|^{2}} - \phi_{m}(\mathbf{p})$$

$$0.08$$

$$0.06$$

$$0.06$$

$$0.06$$

$$0.04$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

$$0.00$$

$$0.02$$

Grosjean's correction [1956]

<u>Subsurface_Scattering_Using_the_Diffusion_Equation#Non-classicalDiffusion</u>

"Hacks" to improve dipoles

Christensen & Burley's empirical model

A: albedo
$$\frac{\sigma_s}{\sigma_t}$$

 $s = 1.85 - A + 7 |A - 0.8|^3$

https://graphics.pixar.com/library/ApproxBSSRDF/paper.pdf

Dual-beam diffusion

Eugene d'Eon Jig Lab

Directional dipole [Frisvad 2014]

(highly recommend Toshiya (UCSD phd!)'s slides!!) https://cs.uwaterloo.ca/~thachisu/dirpole_slides.pdf

Data-driven BSSRDFs

An Empirical BSSRDF Model

Craig Donner*Jason Lawrence†Ravi RamamoorthiToshiya HachisukaHenrik Wann JensenShree Nayar** Columbia University† University of Virginia‡ UC Berkeley§ UC San Diego

Diffusion Dipole + Single Scattering (10 min)

Our Model + Single Scattering (30 min)

Monte Carlo Path Tracing (30 hours)

Single Scattering Only

tabular solution

A Learned Shape-Adaptive Subsurface Scattering Model

DELIO VICINI, Ecole Polytechnique Fédérale de Lausanne (EPFL) VLADLEN KOLTUN, Intel Labs WENZEL JAKOB, Ecole Polytechnique Fédérale de Lausanne (EPFL)

neural net solution

Similarity relation for converting non-isotropic phase functions to isotropic ones

Figure 15.15: Representative Light Paths for Highly Anisotropic Scattering Media. (a) Forwardscattering medium, with g = 0.9. Light generally scatters in the same direction it was originally traveling. (b) Backward-scattering medium, with q = -0.9. Light frequently bounces back and forth, making relatively little forward progress with respect to its original direction.

High-Order Similarity Relations in Radiative Transfer

Shuang Zhao **Cornell University**

Ravi Ramamoorthi University of California, Berkeley

Kavita Bala **Cornell University**

(b)

<u>https://www.pbr-book.org/3ed-2018/Light_Transport_II_Volume_Rendering/</u> <u>Subsurface_Scattering_Using_the_Diffusion_Equation#Non-classicalDiffusion</u>

Shell tracing: BSSRDF for discrete media

 $f(x, \omega, x', \omega')$

photograph

path tracing (28 hours)

shell tracing (1 hour)

Rendering Discrete Random Media Using Precomputed Scattering Solutions

Jonathan T. Moon, Bruce Walter, and Stephen R. Marschner

Department of Computer Science and Program of Computer Graphics, Cornell University

Hybrid method: combining volumetric path tracing & BSSRDF

path tracing

a. Monte Carlo (246 min)

b. Hybrid method (33 min)

A Hybrid Monte Carlo Method for Accurate and Efficient **Subsurface Scattering**

Hongsong Li[†] Fabio Pellacini[†] Kenneth Torrance[†]

Multi-scale methods: granular media rendering

Johannes Meng^{2,1} Marios Papas^{1,3} Ralf Habel¹ Steve Marschner⁴ Markus Gross^{1,3} Carsten Dachsbacher² Wojciech Jarosz^{1,5}* ¹Disney Research Zürich ²Karlsruhe Institute of Technology ³ETH Zürich ⁴Cornell University ⁵Dartmouth College

Multi-Scale Modeling and Rendering of Granular Materials

Multi-scale methods: granular media rendering

Multi-Scale Modeling and Rendering of Granular Materials

Johannes Meng^{2,1} Marios Papas^{1,3} Ralf Habel¹ Carsten Dachsbacher² Steve Marschner⁴ Markus Gross^{1,3} Wojciech Jarosz^{1,5}

> ¹Disney Research Zürich ²Karlsruhe Institute of Technology ³ETH Zürich ⁴Cornell University ⁵Dartmouth College

C DISNEP

College

BSSRDF for fur rendering

A BSSRDF Model for Efficient Rendering of Fur with Global Illumination

LING-QI YAN, University of California, Berkeley WEILUN SUN, University of California, Berkeley HENRIK WANN JENSEN, University of California, San Diego RAVI RAMAMOORTHI, University of California, San Diego

(a) Local illumination + Classic dual scattering 16spp, 54s

(b) Local illumination + Extended dual scattering 87spp, 7.2min

(c) Photon mapped Left: equal quality, 174.1min Right: equal time, 6.8min

(e) Path traced reference Left: 1200spp, 72.9min Right: 85spp, 7.6min

Next: differentiable rendering

Differentiable Monte Carlo Ray Tracing through Edge Sampling

TZU-MAO LI, MIT CSAIL MIIKA AITTALA, MIT CSAIL FRÉDO DURAND, MIT CSAIL JAAKKO LEHTINEN, Aalto University & NVIDIA

(a) initial guess

(b) real photograph

(c) camera gradient

(per-pixel contribution)

(d) table albedo gradient (e) light gradient (per-pixel contribution) (per-pixel contribution) (f) our fitted result