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organization of the slides heavily borrowed from the SIGGRAPH course “Monte Carlo methods for physically-based volume rendering”
https://cs.dartmouth.edu/~wjarosz/publications/novak18monte-sig.html

https://cs.dartmouth.edu/~wjarosz/publications/novak18monte-sig.html


HW2 is out

• START EARLY

• ASK QUESTIONS



Today: foggy and transparent stuff 

https://en.wikipedia.org/wiki/Sunbeam

https://en.wikipedia.org/wiki/Sunbeam




Foundation of modern rendering physics: 
radiative transfer [Chandrasekhar 1960]

• what happens when light hits particles in the space?

???



Infinitely many particles:  
use ordinary differential equation to describe light’s behavior

L(p(t), ω)

d
dt

L(p(t), ω) = ?



Three volumetric phenomenon

https://www.pbr-book.org/3ed-2018/Volume_Scattering/Volume_Scattering_Processes
(smoke data from Duc Nguyen & Ron Fedkiw)

absorption emission scattering

https://www.pbr-book.org/3ed-2018/Volume_Scattering/Volume_Scattering_Processes


Absorption

d
dt

L(p(t), ω) = − σaL(p(t), ω)

the particles absorb light’s energy

(assumption: particles are independent to each other)



Emission

d
dt

L(p(t), ω) = Le(p(t), ω)

the particles add to light’s energy

sometimes this is formulated as  
d
dt

L(p(t), ω) = σaLe(p(t), ω)



Scattering

d
dt

L(p(t), ω) = − σsL(p(t), ω)

out-scattering

in-scattering

d
dt

L(p(t), ω) = σs ∫S2

ρ(ω, ω′ )L(p(t), ω′ )dω′ 

: “phase function” (volume BSDF)ρ



Radiative Transfer Equation

d
dt

L(p(t), ω) = −σaL(p(t), ω) − σsL(p(t), ω)

+Le(p(t), ω) + σs ∫S2

ρ(ω, ω′ )L(p(t), ω′ )dω′ 

loss

gain

absorption out-scattering

emission in-scattering



Radiative Transfer Equation

d
dt

L(p(t), ω) = −σtL(p(t), ω)

+Le(p(t), ω) + σs ∫S2

ρ(ω, ω′ )L(p(t), ω′ )dω′ 

loss

extinction

emission in-scattering

σt = σa + σs

gain



A simpler case: volume without scattering

d
dt

L(p(t), ω) = −σtL(p(t), ω)

+Le(p(t), ω) + σs ∫S2

ρ(ω, ω′ )L(p(t), ω′ )dω′ 

let σs = 0

How would you solve for ?L



A simpler case: volume without scattering

d
dt

L(p(t), ω) = − σtL(p(t), ω) + Le(p(t), ω)
let σs = 0

d
dt

L(t) = a(t)L(t) + b(t)

it’s a linear ODE that has an analytical solution (quiz: what is it?)



A simpler case: volume without scattering

d
dt

L(p(t), ω) = − σtL(p(t), ω) + Le(p(t), ω)
let σs = 0

d
dt

L(t) = a(t)L(t) + b(t)

L(t) = ∫
t

0
T(t)Le(t)dt T(t) = exp (−∫

t

0
σt(t′ )dt′ )



A simpler case: volume without scattering

d
dt

L(p(t), ω) = − σtL(p(t), ω) + Le(p(t), ω)
let σs = 0

d
dt

L(t) = a(t)L(t) + b(t)

L(t) = ∫
t

0
T(t)Le(t)dt T(t) = exp (−∫

t

0
σt(t′ )dt′ )

“transmittance”



A simpler case: volume without scattering

L

L(t) = ∫
t

0
T(t)Le(t)dt T(t) = exp (−∫

t

0
σt(t′ )dt′ )

T
Le



The full radiative transfer equation is still a 
linear ODE

d
dt

L(t) = a(t)L(t) + b(t)

d
dt

L(p(t), ω) = − σtL(p(t), ω) + Le(p(t), ω) + σs ∫S2

ρ(ω, ω′ )L(p(t), ω′ )dω′ 



Integral form of radiative transfer equation

L(p(0), ω) = ∫
t

0
T (p(0), p(t′ )) [Le(p(t′ ), ω) + σs ∫S2

ρ(ω, ω′ )L(p(t′ ), ω′ )dω′ ] dt′ 

T(p(0), p(t)) = exp (−∫
t

0
σt(t′ )dt′ )

d
dt

L(p(t), ω) = − σtL(p(t), ω) + Le(p(t), ω) + σs ∫S2

ρ(ω, ω′ )L(p(t), ω′ )dω′ 



Volumetric path tracing

L(p(0), ω) = ∫
t

0
T (p(0), p(t′ )) [Le(p(t′ ), ω) + σs ∫S2

ρ(ω, ω′ )L(p(t′ ), ω′ )dω′ ] dt′ 

• the inclusion of the transmittance is the main difference to surface rendering equation

T(p(0), p(t)) = exp (−∫
t

0
σt(t′ )dt′ )quiz: how would you do it?



Volumetric path tracing

L(p(0), ω) = ∫
t

0
T (p(0), p(t′ )) [Le(p(t′ ), ω) + σs ∫S2

ρ(ω, ω′ )L(p(t′ ), ω′ )dω′ ] dt′ 

T

• the inclusion of the transmittance is the main difference to surface rendering equation

T(p(0), p(t)) = exp (−∫
t

0
σt(t′ )dt′ )

sample

will talk about how to 
sample T next time



Volumetric path tracing

T

• the inclusion of the transmittance is the main difference to surface rendering equation

T(p(0), p(t)) = exp (−∫
t

0
σt(t′ )dt′ )

σsρsample

L(p(0), ω) = ∫
t

0
T (p(0), p(t′ )) [Le(p(t′ ), ω) + σs ∫S2

ρ(ω, ω′ )L(p(t′ ), ω′ )dω′ ] dt′ 



Volumetric path tracing

T

• the inclusion of the transmittance is the main difference to surface rendering equation

T(p(0), p(t)) = exp (−∫
t

0
σt(t′ )dt′ )

sample

T
σsρ

L(p(0), ω) = ∫
t

0
T (p(0), p(t′ )) [Le(p(t′ ), ω) + σs ∫S2

ρ(ω, ω′ )L(p(t′ ), ω′ )dω′ ] dt′ 



Volumetric path tracing

T

• the inclusion of the transmittance is the main difference to surface rendering equation

T(p(0), p(t)) = exp (−∫
t

0
σt(t′ )dt′ )

T
T

Le
σsρ

σsρ

L(p(0), ω) = ∫
t

0
T (p(0), p(t′ )) [Le(p(t′ ), ω) + σs ∫S2

ρ(ω, ω′ )L(p(t′ ), ω′ )dω′ ] dt′ 



Next event estimation in volumetric path tracing

L(p(0), ω) = ∫
t

0
T (p(0), p(t′ )) [Le(p(t′ ), ω) + σs ∫S2

ρ(ω, ω′ )L(p(t′ ), ω′ )dω′ ] dt′ 

T

T(p(0), p(t)) = exp (−∫
t

0
σt(t′ )dt′ )

T
Le

sample

T ⋅ G
eval

σsρ

σsρ
G: geometry term

will talk about how to 
eval T next time



Inclusion surface lighting in volume rendering

T T

T

• treat surface lighting as part of the volume “emission”

T

σsρ

σsρ

ρBRDF

Llight

L(p(0), ω) = ∫
t

0
T (p(0), p(t′ )) [Le(p(t′ ), ω) + σs ∫S2

ρ(ω, ω′ )L(p(t′ ), ω′ )dω′ ] dt′ 

T(p(0), p(t)) = exp (−∫
t

0
σt(t′ )dt′ )



Typical volume data structures in a path tracer
• use geometry as boundaries, store a medium inside each geometry

index-matching surface
material_id = -1

interior_medium_id = 1
exterior_medium_id = 0

medium_id = 1

camera
medium_id = 0

dielectric surface
material_id = 0

interior_medium_id = 2
exterior_medium_id = 0

medium_id = 2

di!use surface
material_id = 1

interior_medium_id = -1
exterior_medium_id = 0

di!use surface
material_id = 2

interior_medium_id = 0
exterior_medium_id = 0



Smallvpt: volume path tracing in 150 lines

https://github.com/seifeddinedridi/smallvpt

https://github.com/seifeddinedridi/smallvpt


Types of media

homogeneous medium heterogeneous medium isotropic phase function anisotropic phase function



Homogeneous medium:  is constantσt

T(p(0), p(t)) = exp (−∫
t

0
σt(p(t′ ))dt′ ) = exp(−tσt)

• significantly simplifies transmittance sampling/evaluation



Heterogeneous medium: 
 varies spatiallyσt(p)

T(p(0), p(t)) = exp (−∫
t

0
σt(p(t′ ))dt′ )



Data structures for storing  
heterogeneous media

https://yuanming.taichi.graphics/publication/2019-taichi/

• hierarchical sparse arrays: exploiting spatial coherent sparsity

https://developer.nvidia.com/nanovdb

https://yuanming.taichi.graphics/publication/2019-taichi/
https://developer.nvidia.com/nanovdb


NeRF: spatial-directionally varying 
emission-absorption only volumes (no scattering)

d
dt

L(p(t), ω) = −σtL(p(t), ω)

+Le(p(t), ω) + σs ∫S2

ρ(ω, ω′ )L(p(t), ω′ )dω′ 

neural networks (sparse grids are also good)

https://alexyu.net/plenoxels/?s=09

https://www.matthewtancik.com/nerf

https://alexyu.net/plenoxels/?s=09
https://www.matthewtancik.com/nerf


Me in 2019, after submitted the Taichi paper
• I still think this is a cool direction!!



Phase function
• very little work on this!

• in physics:

• very very small particles: Rayleigh scattering

• very small particles: Mie scattering

• large particles: just treat them as surfaces…

• phenomenological model: Henyey-Greenstein

http://homework.uoregon.edu/pub/class/atm/scatter.html

http://homework.uoregon.edu/pub/class/atm/scatter.html


Rayleigh scattering
• based on “dipole approximation” of electromagnetic fields

https://en.wikipedia.org/wiki/Dipole#Dipole_radiation

ρ(ω, ω′ ) =
8π4α2

λ4 (1 + (ω ⋅ ω′ )2)
: “polarizibility”  

(https://en.wikipedia.org/wiki/Polarizability)
: wavelength

α

λ

https://en.wikipedia.org/wiki/Dipole#Dipole_radiation
https://en.wikipedia.org/wiki/Polarizability


Rayleigh scattering explains the color of sky

ρ(ω, ω′ ) =
8π4α2

λ4 (1 + (ω ⋅ ω′ )2)

http://hyperphysics.phy-astr.gsu.edu/hbase/atmos/blusky.html

http://hyperphysics.phy-astr.gsu.edu/hbase/atmos/blusky.html


Phase function
• very little work on this!

• in physics:

• very very small particles: Rayleigh scattering

• very small particles: Mie scattering

• large particles: just treat them as surfaces…

• phenomenological model: Henyey-Greenstein

http://homework.uoregon.edu/pub/class/atm/scatter.html

http://homework.uoregon.edu/pub/class/atm/scatter.html


Mie scattering

https://en.wikipedia.org/wiki/Mie_scattering

• derive the electric field by solving Maxwell’s equation directly on a spherical particle

• less wavelength dependent

https://en.wikipedia.org/wiki/Mie_scattering


Mie-scattering exhibits “forward scattering”

http://homework.uoregon.edu/pub/class/atm/scatter.html

https://cs.dartmouth.edu/~wjarosz/publications/novak18monte-sig-slides-2-fundamentals-notes.pdf

http://homework.uoregon.edu/pub/class/atm/scatter.html
https://cs.dartmouth.edu/~wjarosz/publications/novak18monte-sig-slides-2-fundamentals-notes.pdf


Rayleigh and Mie scattering

http://hyperphysics.phy-astr.gsu.edu/hbase/atmos/blusky.html

http://hyperphysics.phy-astr.gsu.edu/hbase/atmos/blusky.html


Phase function
• very little work on this!

• in physics:

• very very small particles: Rayleigh scattering

• very small particles: Mie scattering

• large particles: just treat them as surfaces…

• phenomenological model: Henyey-Greenstein

http://homework.uoregon.edu/pub/class/atm/scatter.html

http://homework.uoregon.edu/pub/class/atm/scatter.html


Henyey-Greeinstein phase function [1944]

ρ(ω, ω′ ) =
1

4π
1 − g2

(1 + g2 + 2gω ⋅ ω′ )
3
2

g = − 0.35
g = 0.67

g = − 0.7

g = 0.7

https://www.pbr-book.org/3ed-2018/Volume_Scattering/Phase_Functions

https://www.pbr-book.org/3ed-2018/Volume_Scattering/Phase_Functions


Microflake: microfacets for phase functions
• more about it in the future



Phase function
• very little work on this!

• in physics:

• very very small particles: Rayleigh scattering

• very small particles: Mie scattering

• large particles: just treat them as surfaces…

• phenomenological model: Henyey-Greenstein

http://homework.uoregon.edu/pub/class/atm/scatter.html

http://homework.uoregon.edu/pub/class/atm/scatter.html


Shell tracing: precomputed phase function
• also more about this in the future, probably



Other fun research:  
non-exponential radiative transfer

d
dt

L(p(t), ω) = −σtL(p(t), ω)

+Le(p(t), ω) + σs ∫S2

ρ(ω, ω′ )L(p(t), ω′ )dω′ 

traditional RTE assumes linear ODEs, can we use arbitrary ODEs?



Other fun research:  
non-exponential radiative transfer

traditional RTE assumes linear ODEs, can we use arbitrary ODEs?

L(p(0), ω) = ∫
t

0
T (p(0), p(t′ )) [Le(p(t′ ), ω) + σs ∫S2

ρ(ω, ω′ )L(p(t′ ), ω′ )dω′ ] dt′ 

T: arbitrary functions!



Other fun research:  
non-exponential radiative transfer

non exponential T corresponds to correlated particles

exponential non-exponential



Other fun research: beyond Mie scattering



Other fun research:  
phase functions for rainbows



Other fun research: 
perception study of phase functions



Other fun research: 
acquiring phase functions



Next time:  
Monte Carlo evaluation of transmittance

exp (−∫
t

0
σt(t′ )dt)


