Bidirectional Scattering Distribution Functions

UCSD CSE 272
Advanced Image Synthesis

Tzu-Mao Li

BSDFs describe reflection/transmission properties

BSDFs describe reflection/transmission properties

BSDFs describe reflection/transmission properties

BSDFs describe reflection/transmission properties

ω ω^{\prime}

$$
f_{\mathbf{p}}\left(\omega, \omega^{\prime}\right)
$$

beautiful illustrations from Jonathan Dupuy
http:/ / onrendering.com/data/papers/powitacq/slides/powitacq.html

BSDFs describe reflection/transmission properties

BSDFs describe reflection/transmission properties

Isotropic BRDFs vs anisotropic BRDFs

- isotropic BRDFs: reduces 4D BRDFs to 3D by only considering differences in azimuth angles

$$
f_{r}\left(\theta^{\prime}, \phi^{\prime}, \theta, \phi\right)=f_{r}\left(\theta^{\prime}, \theta, \phi^{\prime}-\phi\right)
$$

elevation
θ

Isotropic BRDFs vs anisotropic BRDFs

isotropic: circular highlights

anisotropic: "directional" highlights

Reciprocity of BSDFs

quiz 1: why and when will this hold?

$$
f_{\mathbf{p}}\left(\omega, \omega^{\prime}\right)=f_{\mathbf{p}}\left(\omega^{\prime}, \omega\right)
$$

Reciprocity of BSDFs

quiz 1: why and when will this hold?
quiz 2: what is the consequence of a non-reciprocal BSDF?

$$
f_{\mathbf{p}}\left(\omega, \omega^{\prime}\right)=f_{\mathbf{p}}\left(\omega^{\prime}, \omega\right)
$$

\square

Sidetrack: exceptions of reciprocity

Figure 5.2: When light enters a medium with a higher refractive index, the same light energy is squeezed into a smaller volume. This causes the radiance along each ray to increase.

Sidetrack: exceptions of reciprocity

"real" reciprocity principle:

Figure 5.2: When light enters a medium with a higher refractive index, the same light energy is squeezed into a smaller volume. This causes the radiance along each ray to increase.

Eric Veach

Sidetrack: exceptions of reciprocity

Figure 6.2: When absorbing media such as metals are present, the path of a light beam is not always reversible. For example, when a light beam A_{i} is transmitted from air into some metals, there is a non-zero angle of incidence θ_{0} for which the beam does not change its direction of propagation (Figure (a)). However, a beam of light B_{i} traveling in the reverse direction (from metal into air) is refracted at the surface, and follows a different path (Figure (b)).

Sidetrack: exceptions of reciprocity

Eric Veach
(rotates the electric field oscillation regardless of the polarization direction)

Energy conservation of BSDFs

$$
\int f_{\mathbf{p}}\left(\omega, \omega^{\prime}\right)\left|n_{\mathbf{p}} \cdot \omega^{\prime}\right| \mathrm{d} \omega^{\prime} \leq 1
$$

quiz: what happens if your BSDF is not energy conserving?

How to obtain a BSDF?

- we can actually measure it!

real material
quiz: how would you design a device for this?
https://icons8.com/icons/set/flashlight $\underline{\text { https://icons8.com/icons/set/camera }}$

How to obtain a BSDF?

- we can actually measure it!

How to obtain a BSDF?

- we can actually measure it!

robot arm for BSDF measurement @ UCSD

How to obtain a BSDF?

- we can actually measure it!

the robot arm in action @ EPFL
video from Wenzel Jakob
https://rgl.epfl.ch/pages/lab/pgII

Measuring BRDFs is time / memory consuming

need to measure a 4D domain
100 samples at each dimension:
$100^{\wedge} 4=100,000,000$ (100 million samples)
1 second per sample: 3 years 380 MB per wavelength
amazing illustrations \& numbers from Jonathan Dupuy
http:/ / onrendering.com/data/papers/powitacq/slides/powitacq.html

Trick 1: focus on mirror reflection direction

Szymon Rusinkiewicz, "A New Change of Variables for Efficient BRDF Representation", 1998

- by applying a change of variable (again!)

amazing illustrations from Jonathan Dupuy
http://onrendering.com/data/papers/powitacq/slides/powitacq.html

Trick 1: focus on mirror reflection direction

Szymon Rusinkiewicz, "A New Change of Variables for Efficient BRDF Representation", 1998

- by applying a change of variable (again!)

$$
\text { define half-vector } H=\text { normalize }\left(\omega+\omega^{\prime}\right)
$$

when $H=n_{\mathbf{p}}$
ω and ω^{\prime} are mirror reflection directions
idea:
measure differences between normals/directions \& the half-vector

Trick 1: focus on mirror reflection direction

Szymon Rusinkiewicz, "A New Change of Variables for Efficient BRDF Representation", 1998

- by applying a change of variable (again!)
idea:
measure differences between normals / directions \& the half-vector
change of variable:
$\left(\theta, \phi, \theta^{\prime}, \phi^{\prime}\right) \rightarrow\left(\theta_{h}, \phi_{h}, \theta_{d}, \phi_{d}\right)$

Trick 2: focus on elevation, ignore azimuth

- assume the BSDF does not change over azimuthal angles (not always true)
- "isotropic BSDF"

amazing illustrations from Jonathan Dupuy

Trick 3: estimate the roughness

Jonathan Dupuy and Wenzel Jakob, "An Adaptive Parameterization for Efficient Material Acquisition and Rendering", 2018

- and apply another change of variable to scale the samples!
(still need ~ 2 hours to measure a material after all these tricks)

amazing illustrations from Jonathan Dupuy
http://onrendering.com/data/papers/powitacq/slides/powitacq.html

The MERL BSDF dataset [Matusik 2003]

most popular data 100 isotropic BRDFs
warning: not a perfect dataset! lots of camera artifacts
(defocus/bokeh/lens flare)

MERL anisotropic extension

4 anisotropic BRDFs
renderings

satin

velvet

Experimental Analysis of BRDF Models

Brushed metal: common anisotropic material

real photograph

EPFL material database [2018]

50 isotropic BRDFs
12 anisotropic BRDFs (probably much higher quality than MERL)

Downsides of measured BSDFs

quiz: what are they?

Downsides of measured BSDFs

- capturing is time consuming
- very few of them
- does not support texturing

can't support spatially varying roughness with measured BSDF

Remedy: let's fit a model to the data!

$f_{\mathbf{p}}\left(\omega, \omega^{\prime}\right)=$ some parametric function

Remedy: let's fit a model to the data!

$f_{\mathbf{p}}\left(\omega, \omega^{\prime}\right)=$ some parametric function
quiz: would neural nets be a good idea? why? why not?

How to build a model: make physical assumptions

- explain and predict the behavior of our data
$f_{\mathbf{p}}\left(\omega, \omega^{\prime}\right)=$ some parametric function
based on derivations from simple physical assumptions

Microfacet theory

- assumption: surfaces are made of infinitely many little mirrors (microfacets)

Microfacet theory

- assumption: surfaces are made of infinitely many little mirrors (microfacets)
- BSDF directions ω and ω^{\prime} are treated as parallel rays to the microsurface

microsurface

Microfacet theory

- assumption: surfaces are made of infinitely many little mirrors (microfacets)
- BSDF directions ω and ω^{\prime} are treated as parallel rays to the microsurface quiz: given directions ω and ω^{\prime}, which microfacet mirror will reflect light?

Microfacet theory

- assumption: surfaces are made of infinitely many little mirrors (microfacets)
- BSDF directions ω and ω^{\prime} are treated as parallel rays to the microsurface
- given ω and ω^{\prime}, only microsurfaces with normal $m=H=$ normalize $\left(\omega+\omega^{\prime}\right)$ will reflect light

Microfacet theory

- flat microsurfaces correspond to ...?
- bumpy microsurfaces correspond to ...?

[^0]

Microfacet theory

- flat microsurfaces correspond to shiny surfaces
- bumpy microsurfaces correspond to ...?
flat microsurface

bumpy microsurface

Microfacet theory

- flat microsurfaces correspond to shiny surfaces
- bumpy microsurfaces correspond to rough, diffusive surfaces
flat microsurface

bumpy microsurface

Describing microsurfaces using statistical distributions

- the normal distribution function $D(m)$ describes the probability density of micronormals
- for flat microsurfaces, $D\left(m=n_{\mathbf{p}}\right)$ is very high, and $D\left(m \neq n_{\mathbf{p}}\right)$ is low

m

Popular normal distribution function: Beckmann NDF

- assumption: microfacets are from a heightfield with Gaussian "slopes" $\frac{m_{y}}{m_{z}}$

$$
\begin{aligned}
-\frac{m_{x}}{m_{z}} & =\frac{\partial z}{\partial x} \sim N\left(0, \alpha_{x}^{2}\right) \\
-\frac{m_{y}}{m_{z}} & =\frac{\partial z}{\partial y} \sim N\left(0, \alpha_{y}^{2}\right)
\end{aligned}
$$

Popular normal distribution function: Beckmann NDF

- assumption: microfacets are from a heightfield with Gaussian "slopes" $\frac{m_{y}}{m_{z}}$

quiz: what does large alpha mean?

$$
\begin{aligned}
-\frac{m_{x}}{m_{z}} & =\frac{\partial z}{\partial x} \sim N\left(0, \alpha_{x}^{2}\right) \\
-\frac{m_{y}}{m_{z}} & =\frac{\partial z}{\partial y} \sim N\left(0, \alpha_{y}^{2}\right)
\end{aligned}
$$

Popular normal distribution function:

 Beckmann NDF- assumption: microfacets are from a heightfield with Gaussian "slopes" $\frac{m_{y}}{m_{z}}$

$$
D(m) \propto \exp \left(-\frac{1}{2}\left[\begin{array}{ll}
\frac{m_{x}}{m_{z}} & \frac{m_{y}}{m_{z}}
\end{array}\right]\left[\begin{array}{cc}
\alpha_{x}^{2} & 0 \\
0 & \alpha_{y}^{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
\frac{m_{x}}{m_{z}} \\
\frac{m_{y}}{m_{z}}
\end{array}\right]\right)
$$

Popular normal distribution function: Trowbridge-Reitz [1975] (aka GGX [Walter 2007])

Ground Glass Unknown

- geometric intuition: the distribution of normals of an ellipsoid

shading frame

ellipsoid

GGX NDF
(Normal Distribution Function)

Popular normal distribution function: Trowbridge-Reitz [1975] (aka GGX [Walter 2007])

Ground Glass Unknown

$$
\left.\left.D_{\mathrm{GGX}}(m) \propto \frac{1}{\left(1+\frac{1}{2}\left[\frac{m_{x}}{m_{2}}\right.\right.} \frac{\left.\frac{m_{y}}{m_{z}}\right]}{}\right]\left[\begin{array}{cc}
\alpha_{x}^{2} & 0 \\
0 & \alpha_{y}^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
\frac{m_{z}}{m_{i}} \\
\frac{m_{y}}{m_{z}}
\end{array}\right]\right)^{2}
$$

Popular normal distribution function: Trowbridge-Reitz [1975] (aka GGX [Walter 2007])

Ground Glass Unknown

(multivariate student-t distribution with $\nu=2 \longrightarrow$ heavy tailed Gaussian)

$$
\left.\left.\left.D_{\mathrm{GGX}}(m) \propto \frac{1}{\left(1+\frac{1}{2}\left[\frac{m_{x}}{m_{z}}\right.\right.} \frac{\frac{m_{y}}{m_{z}}}{}\right]\left[\begin{array}{cc}
\alpha_{x}^{2} & 0 \\
0 & \alpha_{y}^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
\frac{m_{x}}{m_{z}} \\
\frac{m_{y}}{m_{z}}
\end{array}\right]\right)^{2}\right)
$$

$\nu=\infty->$ normal Gaussian $=$ Beckmann
see https: / /en.wikipedia.org/wiki/Student\%27s t-distribution for intuition

Beckmann vs GGX

Beckmann

quiz: what would GGX look like?

Beckmann vs GGX

Microfacets can block each other

- normal distribution function D alone is not enough to determine how many mirrors are blocked
- need to specify the microsurface geometry profile

Smith microsurface profile [1960]

- most popular profile in graphics
- alternative: V-cavity [Cook and Torrence 1982]
- Smith's assumption: microsurfaces are spatially uncorrelated

We can compute the portion of

blocked microsurfaces \hat{G} under Smith's assumption

$$
\hat{G}(\omega, m)= \begin{cases}0 & \text { if } \omega \cdot m \leq 0 \\ \frac{\omega \cdot n_{\mathrm{p}}}{\int(\omega \cdot m) D(m) \mathrm{d} m} & \text { otherwise }\end{cases}
$$

often call the "shadowing masking term"

We can compute the portion of

blocked microsurfaces \hat{G} under Smith's assumption

$$
\hat{G}(\omega, m)= \begin{cases}0 & \text { if } \omega \cdot m \leq 0 \\ \frac{\omega \cdot n_{\mathrm{p}}}{\int(\omega \cdot m) D(m) \mathrm{d} m} & \text { otherwise }\end{cases}
$$

often call the "shadowing masking term"

derivation: Smith's assumption implies
(read at home)
$\hat{G}(w, m)= \begin{cases}0 & \text { if } \omega \cdot m \leq 0 \\ \hat{G}^{\prime}(\omega) & \text { otherwise }\end{cases}$
we also know projected area conserves $\omega \cdot n_{\mathbf{p}}=\int \hat{G}(\omega, m) D(m) \omega \cdot m \mathrm{~d} m$
see "Understanding the Masking-Shadowing Function in Microfacet-based BRDFs", Eric Heitz
https://jcgt.org/published/0003/02/03/

The microfacet BRDF:

counting visible micronormals at the half vector

$$
f_{\mathbf{p}}\left(\omega, \omega^{\prime}\right)
$$

$$
H=\operatorname{normalize}\left(\omega+\omega^{\prime}\right)
$$

The microfacet BRDF:

counting visible micronormals at the half vector

$$
f_{\mathbf{p}}\left(\omega, \omega^{\prime}\right) \quad D(H) \hat{G}(\omega, H) \hat{G}\left(\omega^{\prime}, H\right)
$$

$$
H=\operatorname{normalize}\left(\omega+\omega^{\prime}\right)
$$

The microfacet BRDF:

counting visible micronormals at the half vector

$$
D(H) G\left(\omega, \omega^{\prime}, H\right) \quad G\left(\omega, \omega^{\prime}, H\right)=\hat{G}(\omega, H) \hat{G}\left(\omega^{\prime}, H\right)
$$

$$
f_{\mathbf{p}}\left(\omega, \omega^{\prime}\right)
$$

$$
H=\operatorname{normalize}\left(\omega+\omega^{\prime}\right)
$$

The microfacet BRDF:

counting visible micronormals at the half vector

$$
\begin{aligned}
& f_{\mathbf{p}}\left(\omega, \omega^{\prime}\right) \quad \frac{D(H) G\left(\omega, \omega^{\prime}, H\right)}{4\left|\omega \cdot n_{\mathbf{p}}\right|\left|\omega^{\prime} \cdot n_{\mathbf{p}}\right|} \\
& H=\operatorname{normalize}\left(\omega+\omega^{\prime}\right)
\end{aligned}
$$

from analytically integrating over mirrors (lots of different Jacobians)

(again, see Heitz https://jcgt.org/published/0003/02/03/)

The microfacet BRDF:

counting visible micronormals at the half vector

$$
f_{\mathbf{p}}\left(\omega, \omega^{\prime}\right)=\frac{D(H) G\left(\omega, \omega^{\prime}, H\right) F(\omega, H)}{4\left|\omega \cdot n_{\mathbf{p}}\right|\left|\omega^{\prime} \cdot n_{\mathbf{p}}\right|}{ }_{H=\text { normalize }(\omega+\omega)}^{\text {Fienelequation }}
$$

The Cook-Torrance-Sparrow BRDF $[1967,1982]$

$$
f_{\mathbf{p}}\left(\omega, \omega^{\prime}\right)=\frac{D(H) G\left(\omega, \omega^{\prime}, H\right) F(\omega, H)}{4\left|\omega \cdot n_{\mathbf{p}}\right|\left|\omega^{\prime} \cdot n_{\mathbf{p}}\right|} \quad \underset{H=\text { normalize }(\omega+\omega)}{ }
$$

A Reflectance Model for Computer Graphics

The refraction extension [Walter 2007]

$$
f_{\mathbf{p}}\left(\omega, \omega^{\prime}\right)= \begin{cases}\frac{D(H) G\left(\omega, \omega^{\prime}, H\right) F(\omega, H)}{4\left|\omega \cdot n_{\mathbf{p}}\right|\left|\omega^{\prime} \cdot n_{\mathbf{p}}\right|} & \text { if reflect } \\ \frac{D\left(H_{r}\right) G\left(\omega, \omega^{\prime}, H_{r}\right)\left(1-F\left(\omega, H_{r}\right)\right)}{\text { scary Jacobians }} & \text { if refract }\end{cases}
$$

$$
H_{r}=\text { normalize }\left(\eta \omega+\eta^{\prime} \omega^{\prime}\right)
$$

Fresnel equation

- light as wave behaves differently for glass-like materials (dielectrics) and metal-like materials (conductors)

real number η, η^{\prime}

complex number η, η^{\prime}

For metals, the complex index of refraction varies with wavelength

(a) Measured copper material (the default), rendered using 30 spectral samples between 360 and 830 nm

(b) Measured gold material (Listing 17)

Fresnel equation for metal-like interfaces is scary \& unintuitive

- also we don't have a lot of spectral data

complex number η, η^{\prime}

$$
\begin{aligned}
& a^{2}=\frac{1}{2 n_{n}}\left(\sqrt{\left.\left(l_{i}^{2}-k_{t}^{2}-n_{i}^{2} \sin ^{2} \theta\right)^{2}+4 n_{i}^{2} k_{i}^{2}+n_{i}^{2}-k_{t}^{2}-n_{i}^{2} \sin ^{2} \theta\right)}\right. \\
& b^{2}=\frac{1}{2 n_{i}^{2}\left(\sqrt{ }\left(n_{i}^{2}-k_{i}^{2}-n_{i}^{2} \sin ^{2} \theta\right)^{2}+4 n_{i}^{2} k_{i}^{2}-n_{i}^{2}+k_{t}^{2}+n_{i}^{2} \sin ^{2} \theta\right)}
\end{aligned}
$$

using a^{2} and b^{2} with η and η_{k} as follow give the same result:
$a^{2}=\frac{1}{2}\left(\sqrt{\left(\eta^{2}-\eta_{k}^{2}-\sin ^{2} \theta\right)^{2}+4 \eta^{2} \eta_{k}^{2}}+\eta^{2}-\eta_{k}^{2}-\sin ^{2} \theta\right)$
$b^{2}=\frac{1}{2}\left(\sqrt{\left(\eta^{2}-\eta_{k}^{2}-\sin ^{2} \theta\right)^{2}+4 \eta^{2} \eta_{k}^{2}}-\eta^{2}+\eta_{k}^{2}+\sin ^{2} \theta\right)$
Derivation from conductor Fresnel equation can be found in [5] (p.111) and use
$\left(n_{t}-\mathrm{i} k_{t}\right) \cos \theta_{t}=\left(n_{t}-\mathrm{i} \mathrm{i}_{t}\right) \sqrt{1-\left(\frac{n_{n}}{\left(m_{t}-k_{k}\right)^{2}} \sin \theta\right)^{2}}=\sqrt{\left(n_{t}-\mathrm{i} k_{t}\right)^{2}-n_{i}^{2} \sin ^{2} \theta}$
$a-\mathrm{i} b=\sqrt{\left.\left(n_{t}-\mathrm{i} k_{i}\right)^{2}-n_{i}^{2} \sin ^{2} \theta\right)}$
In practice there is some simplification possible:
$a^{2}+b^{2}=\sqrt{\left(\eta^{2}-\eta_{k}^{2}-\sin ^{2} \theta\right)^{2}+4 \eta^{2} \eta_{k}^{2}}$
$\tan \theta=\frac{\sin \theta}{\cos \theta}$
$R_{p}=R_{s} \frac{\cos ^{2} \theta\left(a^{2}+b^{2}\right)-2 a \cos \theta \sin ^{2} \theta+\sin ^{4} \theta}{\cos ^{2} \theta\left(a^{2}+b^{2}\right)+2 a \cos \theta \sin ^{2} \theta+\sin ^{4} \theta}$

Graphics people use Schlick's approximation

Graphics people use Schlick's approximation

Cook-Torrance-Sparrow BSDF fits well to MERL measured data!

measured (nickel material)

Cook-Torrance-Sparrow

Limitations of microfacet models

- from the EPFL dataset

aniso_brushed_aluminium
strongly anisotropic but "hazy"

satin_purple
iridescence?

aniso_morpho_melenaus
???

(butterfly wings)

Multiple scattering

- Cook-Torrance-Sparrow BSDF ignores multiple bounces inside the microsurfaces

Multiple scattering

- ignoring multiple bounces lead to energy loss, esp. at high roughness

images from Heitz et al.

Remedy: simulate multiple bounces inside the microsurfaces

Remedy: simulate multiple bounces inside the microsurfaces

- or not, see "Misunderstanding multiscattering" by Angelo Pesce https://c0de517e.blogspot.com/2019/08/misunderstanding-multiscattering.html

Next time: Uber BSDF

- one BSDF to rule them all?
next Monday is MLK, so see you next Wednesday!

[^0]: flat microsurface

