
The lajolla renderer

UCSD CSE 272
Advanced Image Synthesis

Tzu-Mao Li

From smallpt to lajolla

Smallpt: hope to hit light with directional sampling

if mirror, sample the
mirror direction

if glass, sample
reflection/refraction

if diffuse, sample on the
cosine weighted hemisphere

Next event estimation
• in addition to cosine-weighted hemisphere sampling, also sample a point on light

Next event estimation is also a
change of variable

focus on the rays that hit the light source

∬ L′ e(ω′) |ω′ ⋅ n |dω′

Next event estimation is also a
change of variable

∬ L′ e(ω′) |ω′ ⋅ n |dω′

∬ L′ e(ω′ (p′)) |ω′ (p′) ⋅ np |
|ω′ (p′) ⋅ np′

|

∥p − p′ ∥2
visible(p, p′)dp′

p
p′

the Jacobian (often called “geometry term”)

focus on the rays that hit the light source

Handling multiple bounces

Handling multiple bounces

Handling multiple bounces

Triangle-mesh light sampling:
1. pick a light based on their intensities

2. pick a triangle based on its area

3. pick a point on the triangle

b1

b2
1 − b1

see https://cseweb.ucsd.edu/~tzli/cse272/wi2023/lectures/triangle_sampling.pdf
for notes on triangle sampling

https://cseweb.ucsd.edu/~tzli/cse272/wi2023/lectures/triangle_sampling.pdf

Next event estimation is good at small lights

cosine weighted hemispherenext event estimation
(64 samples per pixel) (64 samples per pixel)

When the point is close to the light,
cosine-weighted hemisphere sampling is better

“Robust Monte Carlo Methods for Light Transport Simulation”, Eric Veach

next event estimation cosine-weighted
hemisphere sampling

Multiple importance sampling:
combining next event estimation and hemisphere sampling

∬ L′ (ω′) |ω′ ⋅ n |dω′

≈
1
N

N

∑
i=1

L′ (ω′ i) |ω′ i ⋅ n |
pnee(ω′ i)

≈
1
N

N

∑
j=1

L′ (ω′ j) |ω′ j ⋅ n |

phemi(ω′ j)

?

?

Multiple importance sampling:
combining next event estimation and hemisphere sampling
• idea: assign higher weight when p is high

1
N

N

∑
i=1

wn
i

L′ (ω′ i) |ω′ i ⋅ n |
pnee(ω′ i)

+
N

∑
j=1

wh
j

L′ (ω′ j) |ω′ j ⋅ n |

phemi(ω′ j)

Multiple importance sampling:
combining next event estimation and hemisphere sampling

1
N

N

∑
i=1

wn
i

L′ (ω′ i) |ω′ i ⋅ n |
pnee(ω′ i)

+
N

∑
j=1

wh
j

L′ (ω′ j) |ω′ j ⋅ n |

phemi(ω′ j)

• idea: assign higher weight when p is high

wn
i =

pnee(ωi)
pnee(ωi) + phemi(ωi)

Multiple importance sampling:
combining next event estimation and hemisphere sampling

1
N

N

∑
i=1

wn
i

L′ (ω′ i) |ω′ i ⋅ n |
pnee(ω′ i)

+
N

∑
j=1

wh
j

L′ (ω′ j) |ω′ j ⋅ n |

phemi(ω′ j)

• idea: assign higher weight when p is high

wn
i =

pnee(ωi)
pnee(ωi) + phemi(ωi)

wh
j =

phemi(ωj)

pnee(ωj) + phemi(ωj)

Multiple importance sampling:
combining next event estimation and hemisphere sampling

1
N

N

∑
i=1

wn
i

L′ (ω′ i) |ω′ i ⋅ n |
pnee(ω′ i)

+
N

∑
j=1

wh
j

L′ (ω′ j) |ω′ j ⋅ n |

phemi(ω′ j)

• idea: assign higher weight when p is high

wn
i =

pnee(ωi)
pnee(ωi) + phemi(ωi)

wh
j =

phemi(ωj)

pnee(ωj) + phemi(ωj)
see https://github.com/BachiLi/lajolla_public/blob/main/src/path_tracing.h for the implementation

https://cseweb.ucsd.edu/~tzli/cse168/lectures/12_multiple_importance_sampling.pdf for the math

https://github.com/BachiLi/lajolla_public/blob/main/src/path_tracing.h
https://cseweb.ucsd.edu/~tzli/cse168/lectures/12_multiple_importance_sampling.pdf

MIS combines the best of both worlds

“Robust Monte Carlo Methods for Light Transport Simulation”, Eric Veach

next event estimation cosine-weighted
hemisphere sampling multiple importance sampling

Smallpt: sphere geometry only
1. Sphere spheres[] = {//Scene: radius, position, emission, color, material
2. Sphere(1e5, Vec(1e5+1,40.8,81.6), Vec(),Vec(.75,.25,.25),DIFF),//Left
3. Sphere(1e5, Vec(-1e5+99,40.8,81.6),Vec(),Vec(.25,.25,.75),DIFF),//Rght
4. Sphere(1e5, Vec(50,40.8, 1e5), Vec(),Vec(.75,.75,.75),DIFF),//Back
5. Sphere(1e5, Vec(50,40.8,-1e5+170), Vec(),Vec(), DIFF),//Frnt
6. Sphere(1e5, Vec(50, 1e5, 81.6), Vec(),Vec(.75,.75,.75),DIFF),//Botm
7. Sphere(1e5, Vec(50,-1e5+81.6,81.6),Vec(),Vec(.75,.75,.75),DIFF),//Top
8. Sphere(16.5,Vec(27,16.5,47), Vec(),Vec(1,1,1)*.999, SPEC),//Mirr
9. Sphere(16.5,Vec(73,16.5,78), Vec(),Vec(1,1,1)*.999, REFR),//Glas
10. Sphere(600, Vec(50,681.6-.27,81.6),Vec(12,12,12), Vec(), DIFF) //Lite
11. };

More commonly used geometry primitive:
triangle mesh

quiz: why?

Ray-triangle intersection

x = o + t ⋅ d
x = (1 − b1 − b2)P0 + b1P1 + b2P2

P0

P1

P2

https://en.wikipedia.org/wiki/Barycentric_coordinate_system

quiz: how do we solve for intersection?

https://en.wikipedia.org/wiki/Barycentric_coordinate_system

Ray-triangle intersection

o + t ⋅ d = (1 − b1 − b2)P0 + b1P1 + b2P2

ox + t ⋅ dx = (1 − b1 − b2)P0x + b1P1x + b2P2x

oy + t ⋅ dy = (1 − b1 − b2)P0y + b1P1y + b2P2y

oz + t ⋅ dz = (1 − b1 − b2)P0z + b1P1z + b2P2z

3 unknowns (t, b1, b2), 3 linear equations

“Moller-Trumbore algorithm”

Lajolla supports triangle meshes and spheres

A triangle mesh representing a quad:

positions = {{-1, -1, 0},
 { 1, -1, 0},
 {-1, 1, 0},
 { 1, 1, 0}};
indices = {{0, 1, 2},
 {2, 1, 3}}

(-1, -1, 0) (1, -1, 0)

(1, 1, 0)(-1, 1, 0)

https://github.com/BachiLi/lajolla_public/blob/main/src/shape.h

quiz: why don’t we just represent everything as individual triangles?

https://github.com/BachiLi/lajolla_public/blob/main/src/shape.h

Lajolla supports triangle meshes and spheres
<shape type="sphere">
 <point name="center" x="0" y="0" z="0"/>
 <float name="radius" value="1.0"/>
 <!-- ... -->
</shape>

<shape type="obj">
 <string name="filename" value="meshes/cbox_floor.obj"/>
 <!-- ... -->
</shape>

Mitsuba scene format

Wavefront obj file (ASCII)

struct ShapeBase {
 int material_id = -1;
 // …
};

struct Sphere : public ShapeBase {
 Vector3 position;
 Real radius;
};

struct TriangleMesh : public ShapeBase {
 std::vector<Vector3> positions;
 std::vector<Vector3i> indices;
 std::vector<Vector3> normals;
 std::vector<Vector2> uvs;
 // …
};

using Shape = std::variant<Sphere, TriangleMesh>;

https://en.wikipedia.org/wiki/Wavefront_.obj_file

<shape type="serialized">
 <string name="filename" value="matpreview.serialized"/>
 <integer name="shapeIndex" value="2"/>
 <transform name="toWorld">
 <matrix value="0.614046 0.614047 0 -1.78814e-07 -0.614047 0.614046 0 2.08616e-07 0 0 0.868393 1.02569 0 0 0 1"/>
 <translate z="0.01"/>
 </transform>
 <!-- ... -->
</shape>

Mitsuba serialized mesh (binary)

see HW0 for the reasoning of using std::variant

https://en.wikipedia.org/wiki/Wavefront_.obj_file

Smallpt: loop over all spheres to test
intersections

1.inline bool intersect(const Ray &r, double &t, int &id){
2. double n=sizeof(spheres)/sizeof(Sphere), d, inf=t=1e20;
3. for(int i=int(n);i--;) if((d=spheres[i].intersect(r))&&d<t){t=d;id=i;}
4. return t<inf;
5.}

Lots of triangles:
how to go through them efficiently?

x = o + t ⋅ d

Bounding Volumes Hierarchy
• idea: test a group of triangles at a time by looking at their bounding volumes

Bounding Volumes Hierarchy
• idea: test a group of triangles at a time by looking at their bounding volumes

skip testing the whole branch if ray miss

Bounding Volumes Hierarchy
• idea: test a group of triangles at a time by looking at their bounding volumes

skip testing the whole branch if ray miss

Decades of research on acceleration structures
• optimized to death, though still an active research area

Lajolla uses the Embree library
• highly-optimized ray intersection routines

• used by almost all production ray tracers

/* Intersects a single ray with the scene. */
void rtcIntersect1(RTCScene scene, RTCIntersectContext* context, RTCRayHit* rayhit);

https://github.com/BachiLi/lajolla_public/blob/main/src/intersection.h

https://github.com/BachiLi/lajolla_public/blob/main/src/intersection.h

Intersection function in lajolla
/// Intersect a ray with a scene. If the ray doesn't hit anything,
/// returns an invalid optional output.
std::optional<PathVertex> intersect(const Scene &scene,
 const Ray &ray,
 const RayDifferential &ray_diff = RayDifferential{});

Intersection function in lajolla

struct PathVertex {
 Vector3 position;
 Vector3 geometry_normal; // always face at the same direction at shading_frame.n
 Frame shading_frame;
 Vector2 st; // A 2D parametrization of the surface. Irrelavant to UV mapping.
 // for triangle this is the barycentric coordinates, which we use
 // for interpolating the uv map.
 Vector2 uv; // The actual UV we use for texture fetching.
 // For texture filtering, stores approximatedly min(abs(du/dx), abs(dv/dx), abs(du/dy), abs(dv/dy))
 Real uv_screen_size;
 Real mean_curvature; // For ray differential propagation.
 Real ray_radius; // For ray differential propagation.
 int shape_id = -1;
 int primitive_id = -1; // For triangle meshes. This indicates which triangle it hits.
 int material_id = -1;

 // …
};

/// Intersect a ray with a scene. If the ray doesn't hit anything,
/// returns an invalid optional output.
std::optional<PathVertex> intersect(const Scene &scene,
 const Ray &ray,
 const RayDifferential &ray_diff = RayDifferential{});

Smallpt: constant color across the surface
1. Sphere spheres[] = {//Scene: radius, position, emission, color, material
2. Sphere(1e5, Vec(1e5+1,40.8,81.6), Vec(),Vec(.75,.25,.25),DIFF),//Left
3. Sphere(1e5, Vec(-1e5+99,40.8,81.6),Vec(),Vec(.25,.25,.75),DIFF),//Rght
4. Sphere(1e5, Vec(50,40.8, 1e5), Vec(),Vec(.75,.75,.75),DIFF),//Back
5. Sphere(1e5, Vec(50,40.8,-1e5+170), Vec(),Vec(), DIFF),//Frnt
6. Sphere(1e5, Vec(50, 1e5, 81.6), Vec(),Vec(.75,.75,.75),DIFF),//Botm
7. Sphere(1e5, Vec(50,-1e5+81.6,81.6),Vec(),Vec(.75,.75,.75),DIFF),//Top
8. Sphere(16.5,Vec(27,16.5,47), Vec(),Vec(1,1,1)*.999, SPEC),//Mirr
9. Sphere(16.5,Vec(73,16.5,78), Vec(),Vec(1,1,1)*.999, REFR),//Glas
10. Sphere(600, Vec(50,681.6-.27,81.6),Vec(12,12,12), Vec(), DIFF) //Lite
11. };

Real-world surfaces are colorful!

https://www.sandiegouniontribune.com/sdut-snake-path-2012jan20-htmlstory.html
photo from K.C. Alfred

https://www.sandiegouniontribune.com/sdut-snake-path-2012jan20-htmlstory.html

An option: assign a color to each triangle

quiz: what are the pros and cons?

An option: assign a color to each triangle
• pros

• simple
• easy to edit (just paint on triangles)

• cons
• couples geometric complexity with

color complexity
• hard to filter

• more on this later

In practice: texture mapping

image
(texture from pbrt-v2 pbrt.org/scenes-v2)

lookup

• assign a “UV” 2D vector to each point on the surface

v

u

http://pbrt.org/scenes-v2

UV mapping
• “unwrap” a surface and map it to a 2D square

• automatic UV mapping is an active research area

http://staff.ustc.edu.cn/~fuxm/projects/Peeling/index.html

http://staff.ustc.edu.cn/~fuxm/projects/Peeling/index.html

In lajolla

struct TriangleMesh : public ShapeBase {
 std::vector<Vector3> positions;
 std::vector<Vector3i> indices;
 std::vector<Vector3> normals;
 std::vector<Vector2> uvs;
 // …
}; uv per-vertex

// Barycentric coordinates are stored in vertex.st
Vector2 uv = (1 - vertex.st[0] - vertex.st[1]) * uvs[0] +
 vertex.st[0] * uvs[1] +
 vertex.st[1] * uvs[2];

struct PathVertex {
 // …
 Vector2 st; // A 2D parametrization of the surface. Irrelavant to UV mapping.
 // for triangle this is the barycentric coordinates, which we use
 // for interpolating the uv map.
 Vector2 uv; // The actual UV we use for texture fetching.
 // …
};

Obtain UV by interpolating values from vertices

uv = (1 − b1 − b2)uv0 + b1uv1 + b2uv2

uv0

uv1

uv2uv

Texture mapping
quiz: what are the pros and cons?

Texture mapping: pros and cons
• pros

• different sampling rates for geometry and color
• much easier to filter

• cons
• uv mapping is hard

Texture mapping: pros and cons
• pros

• different sampling rates for geometry and color
• much easier to filter

• cons
• uv mapping is hard

A pixel can cover a large region in the
texture

Fail to account for all texels in the region
can lead to noise/aliasing

example from pbrt-v3 https://www.pbr-book.org/3ed-2018/Texture
no filtering with filtering

https://www.pbr-book.org/3ed-2018/Texture

Goal: average all texture values inside the region

The filtering region is determined by the
mapping between image space and texture space

x

y

u

v

u, v = T(x, y)

problem: T can be complicated

We can approximate the local mapping
using first-order Taylor expansion

x

y

u

v

u, v = T(x, y)

u, v ≈ T(x0, y0) +
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

[Δx
Δy]

Δx

Δy

∂u
∂x
∂v
∂x

∂u
∂y
∂v
∂y

We can approximate the local mapping
using first-order Taylor expansion

x

y

u

v

u, v = T(x, y)

u, v ≈ T(x0, y0) +
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

[Δx
Δy]

Δx

Δy

∂u
∂x
∂v
∂x

∂u
∂y
∂v
∂y

approximate local
regions using an ellipse

“Creating Raster Omnimax Images from Multiple Perspective Views
Using the Elliptical Weighted Average Filter”, Greene and Heckbert 1986

Goal: average all texture values inside the region

Downsample the texture for fast average
• usually called “mipmapping”

Elliptical weighted averaging algorithm

Elliptical weighted averaging algorithm
1. approximate the ellipse with circles

Elliptical weighted averaging algorithm
1. approximate the ellipse with circles 2. find two appropriate mipmap levels s.t.

each circle maps to ~1 texel

Elliptical weighted averaging algorithm
1. approximate the ellipse with circles 2. find two appropriate mipmap levels s.t.

each circle maps to ~1 texel

3. linearly interpolate between pixels and
mipmap levels

Modern video games/renderers use
EWA filtering!

https://www.techspot.com/review/336-cod-black-ops-performance/page3.html

https://www.techspot.com/review/336-cod-black-ops-performance/page3.html

How do we obtain the derivatives?

x

y

u

v

u, v = T(x, y)

u, v = T(x0, y0) +
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

[Δx
Δy]

Δx

Δy

∂u
∂x
∂v
∂x

∂u
∂y
∂v
∂y

The mapping T is the ray casting function

u, v = T(x0, y0) +
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

[Δx
Δy]

• so we can simply apply chain rule and differentiate ray casting

T(x, y)

The mapping T is the ray casting function

u, v = T(x0, y0) +
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

[Δx
Δy]

• so we can simply apply chain rule and differentiate ray casting

T(x, y)

Lajolla uses a heuristic method to
approximate the ellipse with a circle

• see homework 0 for more details and the reasoning

radius

radius + t * spread

t

initial spread = (pixel size) / 4

more about texture filtering next Monday! https://github.com/BachiLi/lajolla_public/blob/main/src/ray.h
https://github.com/BachiLi/lajolla_public/blob/main/src/texture.h

https://github.com/BachiLi/lajolla_public/blob/main/src/ray.h
https://github.com/BachiLi/lajolla_public/blob/main/src/texture.h

Texture mapping: pros and cons
• pros

• different sampling rates for geometry and color
• much easier to filter

• cons
• uv mapping is hard

In movie production: use
UV generated by mesh subdivision

• will talk more about this in the later lectures

https://www.youtube.com/watch?v=GxNlAlOuQQQ

https://www.youtube.com/watch?v=GxNlAlOuQQQ

Shading normals
• triangle meshes are planar approximations of a smooth surface: can look faceted.

quiz: how would you solve this?

Trick: assign a normal per vertex, then
interpolate

n = normalize ((1 − b1 − b2)n0 + b1n1 + b2n2)

n0

n1

n2n

w/o per-vertex normal w/ per-vertex normal

How to get vertex normal?
• weighted average of normals of nearby faces

Alternative: normal mapping

Discrepancies between
shading normal and real geometry can lead to artifacts

From “Hacking the Shadow Terminator”, Johannes Hanika
https://jo.dreggn.org/home/2021_terminator.pdf

https://jo.dreggn.org/home/2021_terminator.pdf

From “Hacking the Shadow Terminator”, Johannes Hanika
https://jo.dreggn.org/home/2021_terminator.pdf

Hanika’s Hanika’sLajolla doesn’t implement this!

Discrepancies between
shading normal and real geometry can lead to artifacts

https://jo.dreggn.org/home/2021_terminator.pdf

For shading, we need a local coordinate basis

n
(shading normal)

p
dp
du

dp
du

− n(n ⋅
dp
du

)

tangent

bitangent

in lajolla, stored in
PathVertex::shading_frame

In lajolla
struct PathVertex {
 // …
 Vector3 geometry_normal; // always face at the same direction at shading_frame.n
 Frame shading_frame;
 // …
};

Environment maps
• an infinitely far area light source represented as an image

azimuth

elevation

azimuth

elevation

Environment maps
• an infinitely far area light source represented as an image

azimuth

elevation

azimuth

elevation

Environment maps sampling:
treat it as a big discrete 2D table

see https://www.pbr-book.org/3ed-2018/Light_Transport_I_Surface_Reflection/Sampling_Light_Sources#InfiniteAreaLights for more details

• first sample a row, then sample a column

images from https://www.pbr-book.org/3ed-2018/Monte_Carlo_Integration/2D_Sampling_with_Multidimensional_Transformations

https://www.pbr-book.org/3ed-2018/Light_Transport_I_Surface_Reflection/Sampling_Light_Sources#InfiniteAreaLights
https://www.pbr-book.org/3ed-2018/Monte_Carlo_Integration/2D_Sampling_with_Multidimensional_Transformations

Blender-Mitsuba converter

Next time:
bidirectional scattering distribution function

L(p, ω) = Le(p, ω) + ∫ fp(ω, ω′)L(p′ , − ω′) |np ⋅ ω′ |dω′

