UCSD CSE 272 Assignment 2:

Volumetric Path Tracing

Figure 1: The figure shows a heterogeneous volume with a spectrally varying density over space, rendered
with multiple-scattering. Smoke data are generated using Wenzel Jakob’s fsolver.

In this homework, we will build a volumetric path tracer that can handle scattering and absorption inside
participating media inside lajolla. We will split the development into 6 steps and build 6 volumetric path
tracers. Each has more features than the previous ones.! Your n-th volumetric path tracer should be able to
render all scenes the (n — 1)-th one can handle. If you want, you can only submit the final volumetric path
tracer and let all the rest call the final code. This process is for helping you to slowly and steadily build
up your rendering algorithm. You will notice that the scores sum up to more than 100%. This is because
the last volumetric path tracer is a bit more mathematically involved (the implementation is not too bad
though), so if you only did the first fifth, you still get 90% of the scores. If you do all of them, you get 110%.

This SIGGRAPH course note is a good reference if you fail to understand the handout. Steve Marschner’s
course note in the footnote is also very useful. Most of the math in the last part is from Miller et al. [3] and
Georgiev et al. [1]’s articles.

Submission and grading. Please upload a zip file to Canvas including your code, and a text file
(readme.txt) answering the questions below. For the questions, as long as you say something plausible,

IThis approach is inspired by Steve Marschner’s course note on volumetric path tracing.

http://www.mitsuba-renderer.org/misc.html
https://cs.dartmouth.edu/~wjarosz/publications/novak18monte-sig.html
https://www.cs.cornell.edu/courses/cs6630/2015fa/notes/10volpath.pdf

you will get full scores. As usual, think hard about the questions. We want you to get the high-level
concepts correct, rather than trying to match every single detail.

Participating media are volumes with many infinitesimal particles absorbing and scattering lights. Given
a ray inside the volume parametrized by distance p(t), the radiance along the ray is modeled by the radiative
transfer equation:

d

T LP).w) = —(Ua(p(t))+05(P(t)))L(p(t)7w)+Le(p(t)7w)+Us(p(t))/52 p(p(t),w,w)L(p(t),w')dw’, (1)

where L is the radiance, o, is the absorption coefficient, o4 is the scattering coefficient, L. is the (volumetric)
emission, p is the phase function that is akin to BSDFs in surface rendering, and S is the spherical domain.

This looks a bit scary, so let’s break it down. For now, we’ll drop the arguments for o, and o, but
in general, they can still be spatially varying. The radiative transfer equation is made of four components:
absorption, emission, in-scattering, and out-scattering. Absorption and emission handle particles that
absorb and emit lights:

La(p(1),) = ~0aLa(p().) + Lo(p(1).). @

Notice how this is a linear ordinary differential equation ' = ax + b, where o, attenuates lights and L. is
the gain.

The in-scattering accounts for all the lights bounce between the particles along the ray, just like the
surface rendering equation:

d

g Lis(P(1),w) =Us/ p(p(t),w, w)L(p(t),w')dw’. (3)

S2

However, the light does not just bounce into the ray, it also bounces out. That’s what the out-scattering
considers:

%Los(p(t),w) = 0. Los(p(t)). (4)

Combining all these components, we get the full radiative transfer equation (Equation 1). Notice that
the full radiative transfer equation is also like a linear ODE: —(o,, 4+ o)L attenuates light, and L. and the
spherical integral are the gain that makes things brighter. For this reason, we often let 0; = 0, 4+ 05 and call
it the extinction coefficient.

We'll start from a simplified version of the radiative transfer equation, then slowly handle more complex
situations. To make things simpler, we will throughout assume our medium does not emit light itself: it will
receive lighting from other surfaces in the scene.

Before that, let’s introduce lajolla’s data structures for storing the participating media.

1 Lajolla’s participating media data structures and interfaces

The Medium struct in lajolla. Lajolla’s medium interface is for querying the media parameters o,, o,
phase function p, and the majorant which is the upper bound of the extinction coefficient o, = o, + 05 — we
will need the majorant in our final renderer.

struct MediumBase {
PhaseFunction phase_function;

I

struct HomogeneousMedium : public MediumBase {
Spectrum sigma_a, sigma_s;

};

struct HeterogeneousMedium : public MediumBase {

2Some text will formulate the emission as %La(p(t), w) = oqLe(p(t),w). This is effectively the same with a slight reparam-
eterization Le — 0qLe.

‘ ‘ index-matching surface . dielectric surface

- - material_id = -1 o material_id =0
. a interior_m‘edium_id =1 interior_medium_id =2
| w exterior_medium_id=0 + - exterior_medium_id =0
“ camera “ P o e e - 1“ ‘
medium.id=0. . ‘
‘ 1 I.
. i medium_id = 1 l‘ ‘
a i I
‘ o 1 1
3 K b e

diffuse surface

'material_-id=1 -
inténior_medium_id =-1
‘ exterior_medium_id =0

diffuse surface
material_id = 2
interior_medium_id =0
exterior_medium_id =0

Figure 2: Lajolla assumes that media are separated by closed surface boundaries. At the object surface,
we store the ID of the interior and exterior media (if both of them are vacuum, set the ID to -1). The
outmost medium is specified at the camera (and can be accessed through camera.medium_id). A surface can
be inder-matching meaning that light passes through without changing direction or losing energy. In this
case, the material_id of the surface is set to -1. A surface can also be transmissive. In this case, it is assigned
a transmissive material like roughdielectric.

VolumeSpectrum albedo, density;

3
using Medium = std::variant<HomogeneousMedium, HeterogeneousMedium>;

/// the maximum of sigma_t = sigma_s + sigma_a over the whole space
Spectrum get_majorant(const Medium &medium, const Ray &ray) ;
Spectrum get_sigma_s(const Medium &medium, const Vector3 &p);
Spectrum get_sigma_a(const Medium &medium, const Vector3 &p);

inline PhaseFunction get_phase_function(const Medium &medium) {
return std::visit([&] (const auto &m) { return m.phase_function; }, medium);

}

You will need these functions to obtain the necessary quantities in the homework.

A HomogeneousMedium should be straightforward: it contains constant o, and o,. We will talk more about
HeterogeneousMedium and PhaseFunction later.

Lajolla assumes that the media are separated by surface boundaries (Figure 2). It’s up to the upstream
users to make sure they are consistent with each other, and the surfaces are closed (if they are not, the
results are undefined).?

In the scene file, each objects are marked with corresponding exterior and interior media:

<medium type="homogeneous" id="medium">
<rgb name="sigmaA" value="0.5 0.5 0.5"/>
<rgb name="sigmaS" value="0.0 0.0 0.0"/>

3Modern production volume renderers have paid special attention to make sure the renderers can handle all sorts of inputs,
including nested volumes. See here for more information.

https://graphics.pixar.com/library/ProductionVolumeRendering/index.html

+

+

e + P N + + + + + + 4+ 4+ 4+ o+ o+ o+ 4+ 4+ o+ o+ o+ o+ o+ o+
absorption-only medium- - - 5
+ + B 4 +H Ly 4 &+ 4+ 4+ +

+ + 4+ + o+ & 4+ o+ o+ o+ 4+ o+ o+ T 4+ o+ o+ 4+ 4+ o+ 4+ 4+ 4+ 4+ + o+
+ + 4+ + + + 4+ + + 4+ 4+ o+ + 4+ 4+ o+ o+ 4+ o+ o+ 4+ 4+ o+ 4+ +
+ 4+ + 4+ 4+ + + 4+ + + + + + + o+ o+ + o+ o+ + o+ o+ o+ o+ + o+
+ + 0+ 4+ o+ 4+ o+ o+ o+ o+ o+ o+ o+ o+ o+ + o+
T+ + +

+ + o+ o+ o+ o+ 4+ + o+
s a!lt+ N

+ + 4+ + + + o+ o+ o+ o+ + + +¥ o+ +‘ + o+
+ + 4+ + + + 4+ o+ o+ 4 + 0+ + 4+ 4+ 4+ o+ 4+ 4+ o+ o+ +
+ + 4+ o+ o+ o+ 4+ o+ o+ 4+ + 0+ o+ 4+ 4+ o+ + 4+ o+ + o+
+ + 4+ + + + + o+ + 4 + 4+ + 4+ 4+ 4+ o+ 4+ 4+ + o+ +
+ 4+ + 4+ 4+ + + 4+ + + o+ o+ + + o+ o+ o+ o+ o+ o+ + o+ o+ o+ + o+

Figure 3: The setup of our first volumetric renderer.

<float name="scale" value="3"/>
</medium>

<shape type="sphere">

<l== .. ==
<ref name="exterior" id="medium"/>
</shape>

<sensor type='"perspective'">
<l—= .. -

<ref id="medium"/>
</sensor>

If an object has the same interior and exterior media, then it does not need to specify them.

The Mediums are stored in scene.media which you can access through scene.media[medium_id]. The

intersection routine in lajolla returns a PathVertex object which contains relevant information of the inter-
section:

struct PathVertex {

Vector3 position;
Vector3 geometry_normal;

/7 ...

int shape_id = -1;

int primitive_id = -1; // For triangle meshes. This indicates which triangle it hits.
int material_id = -1;

// If the path vertex is inside a medium, these two IDs
// are the same.

int interior_medium_id =
int exterior_medium_id

[
| |
(SN

2

Single monochromatic absorption-only homogeneous volume

Our first volume renderer will make four assumptions.

e There is only a single, homogeneous (o, and o, are constants over space) volume.

e The volume does not scatter light: o, = 0.

Figure 4: How Figure 3 would be rendered like.

e The surfaces in the scene only emit lights (with intensity L.) and do not reflect/transmit lights.
e The volume is monochromatic: the three color channels of o and o, have the same values.

Under these assumptions, the radiative transfer equation becomes

d

&Ll(p(t%w) = _UaLl(p(t)7w>7 (5)

and we know L (p(thit),w) = Le(p(tnit)) where tpi is the distance between the origin of the ray and the
emissive surface.
This ordinary differential equation has a simple closed-form:

L1(p(0),w) = exp (—0atnit) Le(P(tnit))- (6)

Figure 3 illustrates the setup. In volume rendering the exponential term exp (—o,thit) is often called the
“transmittance”.
Our rendering algorithm (that generates a sample for a pixel) is as follows (in Python-style pseudo-code).

def L(screen_pos, rng):
camera_ray = sample_primary(camera, screen_pos, rng)
isect = intersect(scene, camera_ray)
if isect:
transmittance = exp(-sigma_a * t)
Le = 0
if is_light(isect):
Le = isect.Le
return transmittance * Le
return 0O

While our volumes are monochromatic, the light can be colored, so the final results can still have color.

Question(s) (8%). Answer these questions in a text file:

o+ o+ 4 L S R T T S T S e S S S S S S S S S S S

L S T S A S S + + o+t
L A o+ f t 4+ tet t t e t f f + + + + 4+ + + + + + £ + 4+ + + + 4+ + o+ o+ o+ o+ o+ o+ 4+
+ o+]+ tt + L R S N
csingle scatterng in:..oc
o+ o+ 4 E S S S T S S S A T T T T T S SO
+ + o+ o+ 4+ o+t

gt + o+ o+ o+ o+ o+ 4+ o+ + f + o gre t t o+ o+ o+t

+ ot T4 + L R

. hOHIOQGﬂEOUS medium.. . Lo
o+ o+ o+ o+ o+ el e S S S S S +
L T S S +o+r o+ o+t +

+ + o+ o+ o+
+ o+ 4 + + o+ o+ o+
o+ o+ 4+ + o+ 4+ o+ o+t 4+ o+ 4+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+t
o+t
+ o+ o+ 4
o+t

+
o+ o+ 4+
+or o+ o+ o+t
o4+ o+
+

+

Figure 5: The figure shows the setup of our second volumetric renderer. Light can now scatter inside the
medium once, and we need to account for the phase function p and the extra transmittance exp —ost’ We
need to integrate over the camera ray to account for all scattering.

1. Change the absorption parameters to zero in scenes/volpath_test/volpath_testl.xml. What do you
see? Why?

2. In the homework, we assume the volume being not emissive. If you were tasked to modify the pseudo
code above to add volume emission, how would you do it? Briefly describe your approach.

Think about these questions as you write the code.

Task (10%). You will implement the algorithm above in the vol_path_tracing_1 function in vol_path_tracing.h.
You might want to first look at the surface path tracing code in path_tracing.h to understand lajolla’s API
better. Test your rendering using the scene scenes/volpath_test/volpath_testl.xml. You should get an
image that looks like Figure 4.

Ray differentials. In the surface path tracer, lajolla uses ray differential for texture lookup. Determining
ray differentials for volumetric scattering is an unsolved problem. For this homework, we will disable ray
differentials by setting it to 0 and do not change it:

RayDifferential ray_diff = RayDifferential{Real(0), Real(0)};

Environment maps. Throughout the homework, we assume there is no environment map in the scene.

3 Single monochromatic homogeneous volume with absorption
and single-scattering, no surface lighting
Our next renderer adds single scattering to the volume (Figure 5). We still assume:
e There is only a single, homogeneous (o, and o, are constants over space) volume.

e The surfaces in the scene only emit lights (with intensity L.) and do not reflect/transmit lights.

e The volume is monochromatic: the three color channels of o, and o, have the same values.
e Light only scatters (changes direction) once in the volume.

Now we need to solve the radiative transfer equation (Equation 1), except the spherical integral only
recurse once:

w’ Ny .. ’
MVlSlble(P(t)’ p)dp’, (7)

instead of integrating over the sphere S?, we apply a change of variable to integrate over the scene manifold

Lscatter1 (P, w) = /M p(P(t),w, W) Le(p',w') exp (=0t [[p(t) — P'l])

M for all points on surfaces p’. ”Ilu(;if‘;,uzvisible(p(t), p’) is the Jacobian of the transformation and w’ =

Hg::%' exp (—oy ||p(t) — p’||) is the transmittance between p(t) and p’(¢) that represents energy loss due
to absorption and out-scattering (hence it uses the extinction coefficient oy = o, + o, instead of o, or o).
s1 stands for “scattering once”.

The radiative transfer equation is then

4 o (p(t),w) = ~1La(D(t), w) + 7 Lacattert (s). (8)

dt
We no longer have a simple closed-form solution and resort to Monte Carlo sampling. To make the
differential equation more familiar to us who are more used to Monte Carlo rendering, let’s convert the
equation above into an integral:

thit
L2 (p(o)a W) = / exp (_Utt) UsLscatterl (p7 w)dt + €xXp (_Utthit) Le(p(thit)) (9)
0

To sample this integral, we importance sample the transmittance exp (—ot). To do this we need to
sample ¢ such that p(t) o< exp (—oyt). This can be done by the standard inverse tranform sampling. We first
integrate exp (—oyt):

t
— t 1
/ exp (—oys)ds = _cap(zoixt) +—. (10)
0 gt Ot
We thus know that p(t) = oy exp (—ot) (why?). Integrating p(¢) to get the CDF we get
Top(t) = —exp (—o¢ xt) + 1 =u. (11)
Inverting Te;%) we get
log (1 —
g s (12)
—o,

Now, note that our integral is only in [0, thit]. Our sampling above can generate ¢ > tnir. In this case,
we hit a surface and account for the surface emission L. (p(thit)) in Equation 9. We need to account for the
probability of that:

P(t 2 thit) = / gt €XP (—Utt) = exp (—O't * thit) (13)

thit

Thus our rendering algorithm (that generates a sample for a pixel) looks like this:

def L(screen_pos, rng):
camera_ray = sample_primary(camera, screen_pos, rng)
isect = intersect(scene, camera_ray)

u = next(rng) # u \in [0, 1]

t = -log(l - u) / sigma_t

if t < isect.t_hit:
trans_pdf = exp(-sigma_t * t) * sigma_t
transmittance = exp(-sigma_t * t)
compute L_sl using Monte Carlo sampling

Figure 6: How a scene like the setup in Figure 5 would be rendered like. Now there is scattering, the area
surrounding the solid sphere can have non-zero radiance.

p = camera_ray.org + t * camera_ray.dir

Equation 7

L_sl_estimate, L_s1_pdf = L_s1(p, sample_point_on_light(rng))

return (transmittance / trans_pdf) * sigma_s * (L_sl_estimate / L_s1_pdf)
else:

hit a surface, account for surface emission

trans_pdf = exp(-sigma_t * isect.t_hit)

transmittance = exp(-sigma_t * isect.t_hit)

Le =0

if is_light(isect):

Le = isect.Le
return (transmittance / trans_pdf) * Le

Question(s) (8%). Answer these questions in a text file:
1. In the derivation above, how did we get from p(t) o exp(—ot) to p(t) = o exp(ot)?
2. How was Equation (13) incorporated into the pseudo code above? Why is it done this way?

3. Play with the parameters o5 and o,, how do they affect the final image? Why? (we assume monochro-
matic volumes, so don’t set the parameters to be different for each channel.)

4. Change the phase function from isotropic (the default one) to Henyey-Greenstein by uncommenting
the phase function specification in the scene scenes/volpath_test/volpath_test2.xml. Play with the
parameter g (the valid range is (—1,1)). What does g mean? How does the g parameter change the
appearance? Why?

Task (10%). You will implement the algorithm above in the vol_path_tracing_2 function in vol_path_tracing.h.
For evaluating the phase function p, use the eval function in phase_function.h. Test your rendering using
the scene scenes/volpath_test/volpath_test2.xml. You should get an image that looks like Figure 6. Note
that the rendered image will be a bit noisy even a high sampling count. This is expected, since we are

o+ o+ 4+ 4+ + 0+ o+ o+ o+ 4+ 4+ 4+ o+ o+ o+ o+ 4+ o+ o+ o+ o+ 4+ o+ 4+ o+ o+ o+ o+ o+ 4+ o+ 4+

oo e index-matching surfacer o o o 0 e

; ; : : : i : : : : ; : : : ; ; : : : i : : : ; ; : : : i ; : : : ;
R - 1101C] £ R L S T L T |
- medium_id=0. . . . _~ For 4 b+ v
t + + + + + t + + QI IIQ + + t + + t t + +
+ 4
I+ + +
g

edium_id=1

Figure 7: Setup of our third volumetric renderer.

not importance sampling the geometry term T o i t) ,” visible(p(¢), p’) along t. Such importance sampling

scheme is called the equiangular sampling [1, 2]. Equiangular sampling is out of the scope for this homework,
but you’re free to implement it!

Bonus (25%). Implement the equiangular sampling [2] sampling strategy. Potentially combine it with the
transmittance sampling using multiple importance sampling. (I do not recommend you implement this until
you’ve finished the whole homework.) If you implement this bonus, please mention it in the README file,
and provide rendering comparisons.

4 Multiple monochromatic homogeneous volumes with absorption
and multiple-scattering using only phase function sampling, no
surface lighting

Our next volumetric path tracer would start to be a bit complicated. This time we will consider multiple
scattering between multiple volumes (Figure 7). We make the following assumptions:

e There are multiple homogeneous (o, and o, are constants over space) volumes.
e The surfaces in the scene only emit lights (with intensity L.) and do not reflect/transmit lights.
e The volume is monochromatic: the three color channels of o4 and o, have the same values.

e Light can scatter (changes direction) multiple times in the volume, but we only sample the scattering
by sampling the phase function p.

Under this assumption, our volumetric integral becomes:

thit
LS(p(O)v U‘)) = / exp (_Utt) JsLscatter (P7 w)dt + €xXp (_Jtthit) Le (p(thit)); (14)
0

where Lgcatter 1S recursive:

Lscatter(pvw) = / p(p(t)7w7w,)LB(p(t)vw/)dw/' (15)
S2
Our strategy of sampling the integral Ls is as follows: we first generate a distance ¢ by sampling the
transmittance as previous. If ¢ < tpj;, we need to evaluate Lgcatter- We do so by sampling the phase function
p for a direction w’. We then sample the next distance for evaluating the L3 inside the S? integral. If we hit
a surface (¢’ > t},, for some distance ' along our sampling), we include the emission L. and terminate.

Number of bounces. We use the scene.options.max_depth parameter to control the number of bounces.
If max_depth = -1, then we can bounce infinite amount of time. Otherwise, a light path can have at most
max_depth + 1 vertices, including the camera vertex and the light vertex. max_depth = 2 corresponds to the
single scattering case in the previous section.

Index-matched surfaces. Sometimes we will hit surfaces that have no materials assigned (material_id
= -1). For these surfaces, we need to pass through them. Passing through an index-matched surface counts
as one bounce.

Russian roulette. We use the scene.options.rr_depth to control the Russian roulette behavior. We
initialize Russian roulette when a light path has rr_depth + 1 vertices. We set the probability for termination

to
trib th
P — min (@)095) (16)
p(path)

where contrib(path) is the evaluation of the integrand of the path in the volumetric integral, and p(path) is
the probability density of generating such path.
The pseudo code looks like this:

def L(screen_pos, rng):
ray = sample_primary(camera, screen_pos, rng)
current_medium = camera.medium

current_path_throughput = 1
radiance = 0
bounces = 0
while True
scatter = False
isect = intersect(scene, ray)
isect might not intersect a surface, but we might be in a volume
transmittance = 1
trans_pdf = 1
if current_medium:
sample t s.t. p(t) ~ exp(-sigma_t * t)
compute transmittance and trans_pdf
if t < t_hit, set scatter = True
...
ray.org = ray.org + t * ray.dir

current_path_throughput *= (transmittance / trans_pdf)
if not scatter:

reach a surface, include emission

radiance += current_path_throughput * Le(isect)

10

if bounces == max_depth - 1 and max_depth != -1:
reach maximum bounces
break

if not scatter and isect:
if isect.material_id == -1:
index-matching interface, skip through it
current_medium = update_medium(ray, isect, medium)
bounces += 1
continue

sample next direct & update path throughput
if scatter:

next_dir = sample_phase_function(-ray.dir, rng)

current_path_throughput *=

(phase_function(-ray.dir, next_dir) / sample_phase_pdf(-ray.dir, next_dir)) * sigma_s

else:

Hit a surface -- don’t need to deal with this yet

break

Russian roulette
rr_prob =1
if (bounces >= rr_depth):
rr_prob = min(current_path_throughput, 0.95)
if next(rng) > rr_prob:
break
else:
current_path_throughput /= rr_prob
bounces += 1
return radiance

The pseudocode relies on the update_medium routine, which updates the current medium the ray lies in:

def update_medium(isect, ray, medium):
if (isect.interior_medium != isect.exterior_medium) :
At medium transition. Update medium.
if dot(ray.dir, isect.geometry_normal) > O:
medium = isect.exterior_medium_id
else:
medium = isect.interior_medium_id
return medium

We only update the medium if the intersection specifies a “medium transition”, where the interior medium
is different from the exterior medium.
Question(s) (8%). Answer these questions in a text file:

1. Play with the parameters o, o, of different volumes, and change max_depth, how do they affect the
final image? How does increasing/decreasing o and o, of mediuml and medium2 affect the appearance,
respectively? Why? Do different o4 and o, values affect how high you should set max_depth?

2. Switch to the Henyey-Greenstein phase function again. How does changing the g parameter affect the
appearance? Why?

3. Propose a phase function yourself (don’t have to describe the exact mathematical form). How would
you design the shape of the phase function? What parameter would you set to control it?

Think about these questions as you write the code.

11

Figure 8: How Figure 7 would be rendered like. Left top is a light source, and bottom right is a volume with
index-matched interface.

Task (10%). You will implement the algorithm above in the vol_path_tracing_3 function in vol_path_tracing.h.
For sampling the phase function p, use the sample_phase_function and pdf_sample_phase functions in phase_function.h.

Test your rendering using the scene scenes/volpath_test/volpath_test3.xml. You should get an image that
looks like Figure 8. Again, the image can be a bit noisy since we have not implemented next event estimation.

5 Multiple monochromatic homogeneous volumes with absorption
and multiple-scattering with both phase function sampling and
next event estimation, no surface lighting

Sampling only using the phase function is inefficient, especially when the light source is relatively small. Our
fourth volumetric path tracer adds the next event estimation to the sampling (Figure 9) as our section title
grows out of control. Instead of sampling from the phase function, we pick a point on the light source, and
trace a shadow ray towards the light to account for the transmittance in between. We also need to account
for index-matching surfaces — surfaces that don’t have a material assigned to them (so the index of refraction
is the same inside and outside). Our shadow ray will pass through all index-matching surfaces and account
for all the transmittance in between.

Mathematically, the next event estimation is a change of variable of the spherical single scattering integral:

|wl'npd /
2)
Ip—p/|

where p’ are points on the light sources, T'(p, p’) is the transmittance between point p and p’. We also need

/ P90, YT(p, p') Le(p) ! = / p(0,0,&"\T(p, p') L) (17)
S2 E

to include the geometry term ||‘;_'1;‘,’|'2 as the Jacobian of the change of variable.
The pseudo-code for the volumetric next event estimation looks like this:

def next_event_estimation(p, current_medium):
p_prime = sample_point_on_light(p)
Compute transmittance to light. Skip through index-matching shapes.
T_light = 1

12

o :““"i‘n:déx—:mat;hi‘ngSl‘Jrfac:e: o
““““’»“““‘*‘- P R S e S _1

‘\‘\‘\‘\‘ “\‘\I I \(\ t

R ‘ e ¢ —0 medlum() t
‘medlum |d 5" 1 medium_id =1 ,,{‘6‘ t() 2
‘\‘\‘\‘\‘ » ‘ “\ \I ’ I t t t ‘\ ‘\‘ “‘\‘\
AR ’ —atl(medluml)‘ 1
‘\‘\‘\‘ » » ‘ ‘\‘ ‘* \- -,-\q& - ‘ t \‘\‘\‘\ ” ‘ ‘\‘\‘
t t t t t t t t t t t t ’ t
+ + + + + + + + + + \’ +
‘\ t t \ t t \‘ t t t t t t t t t t t t t ‘\ t t t »’ t t t t

»,"e—at(medlumO)to
““““‘Ir. ' “ “ RS . “ L “‘ L “ . -
Figure 9: Our 4th volumetric path tracer adds next event estimation to the previous one. Given a point
in the volume, we first select a point on the light, then we trace a shadow ray towards the light. Unlike
normal next event estimation, where the visibility is a binary function, here the visibility is determined by
the transmittance between the volume point and the light source. Our shadow ray needs to trace through
index-matching surfaces and skip through them, accounting for the transmittance of all the media in between.

shadow_medium = current_medium
shadow_bounces = 0
p_trans_dir = 1 # for multiple importance sampling
while True:
shadow_ray = Ray(p, p_prime - p)
isect = intersect(scene, shadow_ray)
next_t = distance(p, p_prime)
if isect:
next_t = distance(p, isect.position)
Account for the transmittance to next_t
if shadow_medium:
T_light *= exp(-sigma_t * next_t)
p_trans_dir *= exp(-sigma_t * next_t)

if not isect:
Nothing is blocking, we’re done
break
else:
Something is blocking: is it an opaque surface?
if isect.material_id >= O:
we’re blocked
return 0O
otherwise, it’s an index-matching surface and
we want to pass through -- this introduces
one extra connection vertex
shadow_bounces += 1
if max_depth != -1 and bounces + shadow_bounces + 1 >= max_depth:
Reach the max no. of vertices

13

return O

shadow_medium = update_medium(isect, ray, shadow_medium)
p =p + next_t * dir_light

if T_light > O:
Compute T_light * G * £ * L & pdf_nee
...
contrib = T_light * G * £ * L / pdf_nee
Multiple importance sampling: it’s also possible
that a phase function sampling + multiple exponential sampling
will reach the light source.
We also need to multiply with G to convert phase function PDF to area measure.
pdf_phase = pdf_sample_phase(phase_function, dir_view, dir_light) * G * p_trans_dir
power heuristics
w = (pdf_nee * pdf_nee) / (pdf_nee * pdf_nee + pdf_phase * pdf_phase)
return w * contrib
return O

Then we can put next_event_estimation() in our previous code and include its contribution. Remember
to multiply the result of next event estimation with the transmittance from the previous path vertex to p
and o4(p).

Next, we need to include the multiple importance sampling weight for phase function sampling as well.
Previously we included those contribution whenever our path hits a light source:

if not scatter:
reach a surface, include emission
radiance += current_path_throughput * Le(isect)

2
This time, we need to multiply the contribution with the multiple importance sampling weight — pphf;
phase T Pnee

— how do we get those values? The problem is that the quantities that are required for computing these two
PDFs might exist several bounces ago, since in our main loop in L we skip through index-matching surfaces.
My strategy for resolving this is to cache the necessary quantities during the main loop. We introduce the
quantities dir_pdf (the pdf of the latest phase function sampling), nee_p_cache (the last position p that can
issue a next event estimation — if it’s on an index-matching surface, it can’t issue next event estimation).
multi_trans_pdf (the product PDF of transmittance sampling going through several index-matching surfaces
from the last phase function sampling):

def L(screen_pos, rng):
...
current_path_throughput = 1
radiance = 0
bounces = 0
dir_pdf = 0 # in solid angle measure
nee_p_cache = None
multi_trans_pdf = 1
while True:
...

We update these cache variables accordingly, and then when we hit a light source in the main loop, we
use them to compute the multiple importance sampling weight (we also introduce a new flag never_scatter
to indicate that the light path has never scattered so far):

If we reach a surface and didn’t scatter, include the emission.
if not scatter:
if never_scatter:
This is the only way we can see the light source, so

14

Figure 10: Test scenes for our fourth volumetric path tracer. The left scene is similar to the previous test
scene in volumetric path tracer 3, but the light source is smaller. The right scene contains a dense volumetric
ball floating in the air.

we don’t need multiple importance sampling.
radiance += current_path_throughput * Le(isect);
else:
Need to account for next event estimation
light_point = isect
Note that pdf_nee needs to account for the path vertex that issued
next event estimation potentially many bounces ago.
The vertex position is stored in nee_p_cache.
pdf_nee = pdf_point_on_light(isect.light, light_point, nee_p_cache, scene)
The PDF for sampling the light source using phase function sampling + transmittance sampling
The directional sampling pdf was cached in dir_pdf in solid angle measure.
The transmittance sampling pdf was cached in multi_trans_pdf.
dir_pdf_ = dir_pdf * multi_trans_pdf * G;
w = (dir_pdf_ * dir_pdf_) / (dir_pdf_ * dir_pdf_ + pdf_nee * pdf_nee)
current_path_throughput already accounts for transmittance.
radiance += current_path_throughput * emission(vertex, -ray.dir, scene) * w

Debugging tip. Implement the method first without multiple importance sampling. Render the previous
scene in our third volumetric path tracer. Make sure it converges to the same image.

Question(s) (8%).

1. When will next event estimation be more efficient than phase function sampling? In our test scenes,
which one is more efficient? Why?

2. In scenes/volpath_test/volpath_test4_2.xml, we render a scene with an object composed of dense
volume. How does it compare to rendering the object directly with a Lambertian material? Why are
they alike or different?

3. Jim Kajiya famously has predicted in 1991 that in 10 years, all rendering will be volume rendering.
What do you think that makes him think so? Why hasn’t it happened yet?

15

Figure 11: Test scenes for our fifth volumetric path tracer. The left scene contains a volumetric ball and an
opaque Lambertian ball (with red reflectance). The right scene contains an outer sphere with a dielectric
interface and an inner sphere with Lambertian material, and between them is a dense volume.

Task (13%). You will implement the algorithm above in the vol_path_tracing_4 function in vol_path_tracing.h.
Test your rendering using the scenes scenes/volpath_test/volpath_test4.xml and scenes/volpath_test/volpath_test4_2.xml.
You should get images that look like the ones in Figure 10.

6 Multiple monochromatic homogeneous volumes with absorption
and multiple-scattering with both phase function sampling and
next event estimation, with surface lighting

We are finally adding surface lighting to our volumetric renderer. This should be much easier compared to the
last two parts. So far, whenever we encounter a surface, we use L. to represent its emission. Adding surface
lighting is just replacing L. with the full rendering equation (that includes transmittance and volumetric
scattering). Code-wise, we just need to go through all the places where we sample or evaluate the phase
function, and also consider the case where we hit a surface and include the BSDF sampling and evaluation.
I will let you figure out the details!

Question(s) (8%).

1. Play with the index of refraction parameter of the dielectric interface in
scenes/volpath_test/volpath_test5_2.xml. How does that affect appearance? Why?

2. In the scene scenes/volpath_test/vol_cbox_teapot.xml, we model the glass teapot as a transparent
glass with blue homogeneous medium inside. What is the difference in terms of appearance between
this approach and just making the color of the glass blue without any medium inside?

Task (10%). You will add surface lighting in the vol_path_tracing_5 function in vol_path_tracing.h. Test

your rendering using the scenes scenes/volpath_test/volpath_test5.xml and scenes/volpath_test/volpath_test5_2.xml.
You should get images that look like the ones in Figure 11. Also check out scenes/volpath_test/vol_cbox.xml

and scenes/volpath_test/vol_cbox_teapot.xml to see what we can render now (Figure 12)!

16

Figure 12: Cornell box scenes that we can render with our fifth volumetric path tracer.

7 Multiple chromatic heterogeneous volumes with absorption and
multiple-scattering with both phase function sampling and next
event estimation, with surface lighting

We reach the final stage of this homework. This last part is a bit tough due to the mathematicaly complexity
(but the implementation isn’t that bad), so don’t worry too much if you cannot finish it. Even if you don’t
finish this part, you will still get 90% of the score. But the math is fun and you should try to understand it!
So far, we have been assuming that 1) the volumes are monochromatic, and 2) they are homogeneous.
We are going to solve the two problems at once with a super clever idea called null-scattering. Let’s focus on
heterogeneous media first and look at the radiative transfer equation (assuming no volumetric emission):

d

3 L@(),w) = —ou(p(t)) L(p(?), w) +0s(P(t))/ plw, W) L(p(t),w")dw’, (18)
SZ

with boundary condition L(p(tnit),w) = Lsurface(P(tnit)) to account for surface lighting.
Integrating over distance, we get our integral volume rendering equation:

Lp(t)) = [@O0 (020D [ol L))") A HT(D(0) Dl11)) Lt Pl11)

(19)
where T is the transmittance:

T(p(0), p(t')) = exp (— /0 ot (p(t")) dt") : (20)

The transmittance has a closed-form when the volume is homogeneous. However when we have hetero-
geneous volumes (i.e. oy changes with position), we need to use Monte Carlo to estimate the transmittance.
The exponential makes it tricky to do an unbiased estimation: FElexp(X)] # exp(FE[X]) for most ran-
dom va}"iable X, where F is expectation. This means /tha,t when we have an estimation of the integral
X ~ f(f o (p(t")dt"), even if X is unbiased (E[X] = fg o (p(t")) dt”), the exponentiation of X won’t be
an unbiased estimation of the exponentiation of the integral.

17

Homogenized free-flight sampling. To resolve this, we apply a trick called homogenization. That is,
we convert the heterogeneous medium into a homogeneous medium by inserting fake particles that do not
scatter lights. Then we can use the closed-form solution from the homogeneous medium to obtain an answer.
Mathematically, we modify the radiative transfer equation as follows:

GLPE)) = ~(ae(B(0) + 7 (PO LB().2) + u(ROVLB(E).) + au(p(0) [o) Lp(0).)
(21)

where o, is the density of the fake particles. All we did is to add —o,,L 4 0, L to the right-hand side, so we
did not alter the values of the radiative transfer equation at all.

Now, if we choose the fake particle density o, (p(t)) such that o:(p(t)) + o (p(¢)) is a constant for all ¢,
then we convert the radiative transfer equation back to a homogeneous medium!

What constant should we choose? A common choice is the upper bound of o;(p(t)) for all ¢, so that
on(p(t)) > 0. We call the upper bound the majorant (o,,). Now we can write the volume integral equation
as:

Lp(0)) = [000D (3uGEONLEE).0) + 0. (plt) [l Lol) '+
Tm (p(o)v p(thit))Lsurface (p(thit))a
where T, is the homogenized transmittance:
T (p(O)v p(t/)) = exp (7Umt,) . (23)

To evaluate L, we importance sample the homogenized transmittance 7;,. Every time we sample a
distance ¢’ based on the homogenized transmittance, three things can happen:

(22)

1. We hit the surface (¢’ > ty;1), and need to compute Lgyrface-
2. We hit a real particle, and need to compute the S? integral to scatter the particle.
3. We hit a fake particle, and need to keep evaluating L by continuing the ray in a straight line.

The probability that the first event happenning is the same as Equation 13. For the second and third
event, we can use whatever probability we like (it’s just importance sampling). We will choose the real
probability to be U"—;, and the fake probability to be gn (a more optimal way to assign the probability is to
set the real probability to Usfan, but then it is possible that o5 + 0, = 0 and we need to deal with those
corner cases, so we opt for simplicity here). We arrive at the classical delta tracking (or Woodcock tracking)

algorithm [0].

Homogenized next event estimation. Next, we need to evaluate the transmittance (instead of impor-
tance sampling) for the next event estimation. We will use the same homogenization trick. We have the
following integral to estimate between two points p(0) and p(¢'):

T(p(0),p(t")) = Tp(t') = exp (/0 at(p(t”))dt“> . (24)

We again observe that T}, (t') is the solution of an ordinary differential equation

dTp (¢)
gt, =—o(p(t')Tp (') = —omTp (') + on(p(t)Tp (). (25)
Tp(0) =1
where we homogenize the ODE using the majorant o;(p(t')) = 0 — o0 (p(t')).
To solve this ODE, we apply a change of variable T, (') = exp (opmt') Tp(t'). This gives us
4z)=) Tp(t) =)Tt
Tt = 2 (exp (ont) To(t) = ou () Ty (1) o)
Tp(0) =1

18

Instead of solving the ODE above using exponentiation (which gives us back the exponential integral),
we simply integrate both sides and get Ty (') = 1 + fot on(P(t"))Tp(t")dt”. Changing the variable back to
T from T gives us:

0

1) = —20) (ot (1 + / exp (omt”) an(p(t”))Tp(t”)dt”>
(27)

=exp (—ont') + /0 exp (o, (1" — 1)) on(p(t")Tp(t")dt",

and now we have a recursive integral equation that we can directly estimate using Monte Carlo. (we can

get an integral that does not involve homogenization nor exponentiation by just integrating both sides of

dTgt(,t) _ —o(p(t'))Tp ('), but Monte Carlo sampling of this integral turns out to be very very slow. See

Georgiev et al.’s article for a deeper discussion [1].) This change of variable trick is called an exponential
integrator in ODE literature (Google it if you’re interested ;).

The Monte Carlo sampler we will apply for solving Equation 27 is called the ratio tracking method. The
idea is to use a path tracing like algorithm with Russian roulette. We notice that the recursive integral
is a bit like the rendering equation: we have the light source term exp (—on,t'), and the recursive integral

fgl exp (om (t" — 1)) on(P(t"))Tp(¢")dt”. Starting from z = ¢/, we sample a distance zq such that p(zq)
exp (—omzq) and update z. If we reach 0, then we evaluate the light source term. Otherwise, we evaluate
the recursive term. One way to think about this is that we hit the fake particle if we choose to evaluate the
recursive term. The probability for evaluating the light source term is exp (—o,,2) (Equation 13), and the
probability density for evaluating the recursive term is exp (—.,24) 0. We accumulate these probabilities
by multiplying them, while also accounting for the integrand.

Dealing with chromatic media. Finally, we need to deal with colors. So far, we have been assuming
that o, and o, are monochromatic, but in practice, they can be RGB colors (or even a vector representing
response per wavelength). We deal with this by sampling a channel (R, G, or B) whenever we need to
sample distance. Importantly, when computing probability density, we take the average probability density
over all channels: this is a form of multiple importance sampling (called the one-sample multiple importance
sampling [5]). To achieve this, we need to keep track of the PDFs of all color channels. Therefore our PDFs
have the type Spectrum instead of Real.

Multiple importance sampling. To combine phase function sampling with the next event estimation, we
need the PDF's for the ratio tracking (the sequence of decisions we make to evaluate either the recursive term
or the source term) during free-flight sampling, and the PDFs of free-flight sampling (the real/fake particle
events) during next event estimation. So when evaluating the PDF for one of them, we must also accumulate
the PDF of the other. The PDFs of both are products of the homogenized transmittance sampling density
exp (—omAy) oy, (where A, is the distance traveled) and the real/fake event probabilities.

Combining all of these, let’s look at the pseudo-code. For homogenized free-flight sampling, it looks like
this:

scatter = False
never_scatter = True
transmittance = make_const_spectrum(1)
trans_dir_pdf = make_const_spectrum(l) # PDF for free-flight sampling
trans_nee_pdf = make_const_spectrum(l) # PDF for next event estimation
if in_medium():

majorant = get_majorant(medium, ray);

Sample a channel for sampling

u = next(rng) # u \in [0, 1]

channel = clamp(int(u * 3), 0, 2)

accum_t = 0

iteration = 0

while True:

19

if majorant[channel] <= 0:

break

if iteration >= max_null_collisions:

break

t = -log(1l - next(rng)) / majorant[channel]

dt = t_hit - accum_t

Update accumulated distance

accum_t = min(accum_t + t, t_hit)

if t < dt: # haven’t reached the surface
sample from real/fake particle events

real_prob = sigma_t / majorant
if next(rng) < real_prob[channel]:
hit a "real" particle

scatter = true

never_scatter =

False

transmittance *= exp(-majorant
trans_dir_pdf *= exp(—majorant

* t) / max(majorant)
* t) * majorant * real_prob / max(majorant)

don’t need to account for trans_nee_pdf since we scatter

break
else:

hit a "fake" particle

transmittance *= exp(-majorant

trans_dir_pdf *= exp(—majorant

trans_nee_pdf *= exp(-majorant
else: # reach the surface

transmittance *=
trans_dir_pdf *=
trans_nee_pdf *=
break

iteration += 1

exp(-majorant *
exp(-majorant *
exp(-majorant *

* t) * sigma_n / max(majorant)
* t) * majorant * (1 - real_prob) / max(majorant)
* t) * majorant / max(majorant)

dt)
dt)
dt)

Two crucial differences between the pseudo code and the math above are: 1) We terminate the loop when
the iteration reaches a maximum amount of fake particle collisions (default is set to 1000). While this is not
mathematically correct, I found that sometimes the numerical error can lead to unbounded loops. 2) We
divide both transmittance and the PDF with the maximum of the majorant. This is to improve numerical
robustness. Whenever we hit the fake particle, both the transmittance and the free-flight PDF needs to be
multiplied with o, (note that 0,,(1 — 0¢/0.,) = 0y), which can be a few hundreds or larger. If we do not

normalize these values, the numbers will quickly blow up and go to infinity.
For the transmittance estimation in next event estimation the pseudo code looks like this:

p_prime = sample_point_on_light(p)
Compute transmittance to light. Skip through index-matching shapes.
T_light = make_const_spectrum(1)

p_trans_nee = make_const_spectrum(1)
p_trans_dir = make_const_spectrum(1)

while True:

shadow_ray = Ray(p, p_prime - p)

isect = intersect(scene, shadow_ray)
next_t = distance(p,

if isect:

p_prime)

next_t = distance(p, isect.position)
Account for the transmittance to next_t

if shadow_medium:

u = next(rng) # Sample a channel for sampling

channel = clamp(int(u * 3), 0, 2)

iteration = 0
while True:

if majorant[channel] <= 0:

20

Figure 13: Test scene for our final volumetric path tracer.

break

if iteration >= max_null_collisions:
break

t = -log(l - next(rng)) / majorant[channel]

dt = next_t - accum_t

accum_t = min(accum_t + t, next_t)

if t < dt:
didn’t hit the surface, so this is a null-scattering event
T_light *= exp(-majorant * t) * sigma_n / max(majorant)
p_trans_nee *= exp(-majorant * t) * majorant / max(majorant)
real_prob = sigma_t / majorant
p_trans_dir *= exp(-majorant * t) * majorant * (1 - real_prob) / max(majorant)
if max(T_light) <= 0: # optimization for places where sigma_n = 0

break

else: # hit the surface
T_light *= exp(-majorant * dt);
p_trans_nee *= exp(-majorant * dt);
p_trans_dir *= exp(-majorant * dt);

iteration += 1

same as the previous next event estimation code...

Notice that whenever we need to compute the Monte Carlo estimate of the transmittance, we need to
divide it by the average PDFs over the RGB channels. For example, when updating the path throughput:

current_path_throughput *= (transmittance / avg(trans_dir_pdf))

Same when computing multiple importance sampling.

Question (s) (8%).

1. For heterogeneous volumes, what kind of distribution of the volume density makes the null scattering
efficient /inefficient? Can you think of a way to improve our current sampling scheme in the inefficient
case?

2. How do we make the null-scattering work for emissive volumes? Briefly describe a solution.

21

Figure 14: Monochromatic heterogeneous volume. Scene data courtesy of Wenzel Jakob.

3. Why is it important to have an unbiased solution for volume rendering? Would it be sensible to have
something that is biased but faster? How would you do it?

Task (12%). You will implement the algorithms above in the vol_path_tracing function in vol_path_tracing.h.
For getting the majorant, use get_majorant defined in medium.h. For accessing max_null_collisions, use
scene.options.max_null_collisions. Test your rendering using the scenes scenes/volpath_test/volpath_test6.xml
(chromatic homogeneous medium), scenes/volpath_test/hetvol.xml, scenes/volpath_test/hetvol_colored.xml.
You should get images that look like the ones in Figure 1, 13, and 14.

Bonus (10%). Design some scenes yourself and render them! Consider using Blender to model and export
the scene. If you did this bonus, please submit the scene files and rendering and mention it in the README
file.

References

[1] Hiyan Georgiev, Zackary Misso, Toshiya Hachisuka, Derek Nowrouzezahrai, Jaroslav Kfivanek, and Woj-
ciech Jarosz. Integral formulations of volumetric transmittance. ACM Trans. Graph. (Proc. SIGGRAPH
Asia), 38(6), 2019.

[2] Christopher Kulla and Marcos Fajardo. Importance sampling techniques for path tracing in participating
media. Comput. Graph. Forum (Proc. EGSR), 31(4):1519-1528, 2012.

[3] Bailey Miller, Iliyan Georgiev, and Wojciech Jarosz. A null-scattering path integral formulation of light
transport. ACM Trans. Graph. (Proc. SIGGRAPH), 38(4), 2019.

[4] Herbert Rief, A Dubi, and Tov Elperin. Track length estimation applied to point detectors. Nuclear
Science and Engineering, 87(1):59-71, 1984.

[5] Eric Veach and Leonidas J. Guibas. Optimally combining sampling techniques for Monte Carlo rendering.
In SIGGRAPH, pages 419-428, 1995.

[6] E Woodcock, T Murphy, P Hemmings, and S Longworth. Techniques used in the GEM code for Monte
Carlo neutronics calculations in reactors and other systems of complex geometry. In Applications of
Computing Methods to Reactor Problems, volume 557, 1965.

22

	Lajolla's participating media data structures and interfaces
	Single monochromatic absorption-only homogeneous volume
	Single monochromatic homogeneous volume with absorption and single-scattering, no surface lighting
	Multiple monochromatic homogeneous volumes with absorption and multiple-scattering using only phase function sampling, no surface lighting
	Multiple monochromatic homogeneous volumes with absorption and multiple-scattering with both phase function sampling and next event estimation, no surface lighting
	Multiple monochromatic homogeneous volumes with absorption and multiple-scattering with both phase function sampling and next event estimation, with surface lighting
	Multiple chromatic heterogeneous volumes with absorption and multiple-scattering with both phase function sampling and next event estimation, with surface lighting

