Single scattering

UCSD CSE 272
Advanced Image Synthesis

Tzu-Mao Li

with slides from Jiawen (Kevin) Chen
Today: single scattering
Today: single scattering

- Fast visibility evaluation
- Importance sampling
- Analytical solutions
Today: single scattering

slides mostly borrowed from Jiawen (Kevin) Chen!

- **A Hierarchical Volumetric Shadow Algorithm for Single Scattering**
 - Ilya Baran
 - Jiawen Chen
 - Jonathan Ragan-Kelley
 - Felipe Durand
 - Jakob Lethen
 - Computer Science and Artificial Intelligence Laboratory
 - Massachusetts Institute of Technology

- **Importance Sampling Techniques for Path Tracing in Participating Media**
 - Christopher Kulla
 - Marcos Fujardo
 - Sony Pictures Imageworks, Culver City, USA
 - Solid Angle, Madrid, Spain

- **Real-Time Volumetric Shadows using 1D Min-Max Mipmaps**
 - Jiawen Chen
 - Ilya Baran
 - Felipe Durand
 - Wojciech Jarosz
 - MIT CSAIL
 - Disney Research Zürich

- **A Practical Analytic Single Scattering Model for Real Time Rendering**
 - Bo Sun
 - Columbia University
 - Ravi Ramamoorthi
 - Columbia University
 - Srinivasa G. Narasimhan
 - Carnegie Mellon University
 - Shree K. Nayar
 - Columbia University

- **Practical product sampling for single scattering in media**

- **An Analytical Solution to Single Scattering in Homogeneous Participating Media**
 - Vincent Pogorelov
 - Steven G. Parker
 - University of Utah
 - NVIDIA Corporation

- **fast visibility evaluation**

- **importance sampling**

- **analytical solutions**
Single scattering equation (airlight integral)

\[L = \int_{0}^{t} T_c \cdot \sigma_s \cdot V \cdot \rho \cdot G \cdot L_e \cdot T_e \, dt' \]
Single scattering equation
(airlight integral)

\[L = \int_0^t T_c \cdot \sigma_s \cdot V \cdot \rho \cdot G \cdot L_e \cdot T_e \, dt' \]

- Camera transmittance
- Phase function
- Geometry term
- Light transmittance
- Visibility
Shadow mapping

depth map rendered from the light
Simplified scenario

- orthographic camera
- light direction perpendicular to view direction
- visibility only
Brute force complexity: $O(rd)$

https://groups.csail.mit.edu/graphics/mmvs
Visibility = 1D heightfield intersection

depth from shadow map

https://groups.csail.mit.edu/graphics/mmvs
1D Min-Max Mipmap

- binary tree of shadow map depths
- each node stores \textbf{min} and \textbf{max} of children

https://groups.csail.mit.edu/graphics/mmvs
1D ray tracing in a mipmap

https://groups.csail.mit.edu/graphics/mmvs
1D ray tracing in a mipmap

$y = 5$

https://groups.csail.mit.edu/graphics/mmvs
1D ray tracing in a mipmap

\[y = 5 \]
\[1 \leq 5 < 9 \]

Sum = 0

https://groups.csail.mit.edu/graphics/mmvs
1D ray tracing in a mipmap

\[y = 5 \]

\[1 \leq 5 < 9 \]

\[\text{Sum} = 0 \]

https://groups.csail.mit.edu/graphics/mmvs
1D ray tracing in a mipmap

$y = 5$

$2 \leq 5 < 9$

https://groups.csail.mit.edu/graphics/mmvs
1D ray tracing in a mipmap

$y = 5$

$y: 5 > 2$, shadowed

https://groups.csail.mit.edu/graphics/mmvs
1D ray tracing in a mipmap

$y = 5$

https://groups.csail.mit.edu/graphics/mmvs
1D ray tracing in a mipmap

\[y = 5 \]

https://groups.csail.mit.edu/graphics/mmvs
Generalizing from the perpendicular setting

https://groups.csail.mit.edu/graphics/mmvs
Epipolar rectification

Camera depth map

Light depth map

Rectify

Corresponding epipolar slice

https://groups.csail.mit.edu/graphics/mmvs
Handling transmittance & phase function & textured lights

\[L = \int_{0}^{t} T_c \cdot \sigma_s \cdot V \cdot \rho \cdot G \cdot L_e \cdot T_e \, dt' \]
Handling transmittance & phase function & textured lights

\[L = \int_{0}^{t} T_{c} \cdot \sigma_{s} \cdot V \cdot \rho \cdot G \cdot L_{e} \cdot T_{e} \mathrm{d}t' \]

\[L_{\alpha,\beta} \approx \sum_{\gamma=0}^{N} V_{\alpha,\beta,\gamma} \cdot I_{\beta,\gamma} \]

https://groups.csail.mit.edu/graphics/mmvs
Handling transmittance & phase function & textured lights

\[L = \int_0^t T_c \cdot \sigma_s \cdot V \cdot \rho \cdot G \cdot L_e \cdot T_e \, dt' \]

\[L_{\alpha,\beta} \approx \sum_{\gamma=0}^{N} V_{\alpha,\beta,\gamma} \cdot I_{\beta,\gamma} \]

want to compute prefix sum of \(I_{\beta,\gamma} \)

https://groups.csail.mit.edu/graphics/mmvvs
Trick: SVD approximation

\[I_{\beta,\gamma} = \sum_{i=0}^{M} J_i(\beta)K_i(\gamma) \]

store the prefix sum of \(K_i(\gamma) \) in the tree

https://groups.csail.mit.edu/graphics/mmvs
Runs in real-time!!

Real-Time Volumetric Shadows using 1D Min-Max Mipmaps

Jiwen Chen, Ilya Baran, Frédo Durand, Wojciech Jarosz

https://groups.csail.mit.edu/graphics/mmvs
Today: single scattering

- Importance Sampling Techniques for Path Tracing in Participating Media
 - Christopher Kulla1 and Marcos Fujardo2
 1Sony Pictures Imageworks, Culver City, USA
 2Solid Angle, Madrid, Spain

- A Hierarchical Volumetric Shadow Algorithm for Single Scattering
 - Erya Benaz, Jiawen Chen, Jonathan Roger Kelley, Fieko Durand, Jakob Lehtinen
 - Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology

- Real-Time Volumetric Shadows using 1D Min-Max Mipmaps
 - Jiawen Chen1, Erya Benaz2, Fieko Durand3, Wojciech Jaroci2
 1MIT CSAIL, 2Disney Research Zurich, 3Disney Research, USA

- A Practical Analytic Single Scattering Model for Real Time Rendering
 - Bo Sun
 - Columbia University
 - Ravi Ramamoorthi
 - Columbia University
 - Srinivasa G. Narasimhan
 - Carnegie Mellon University
 - Shree K. Nayar
 - Columbia University

- An Analytical Solution to Single Scattering in Homogeneous Participating Media
 - Vincent Pignedo1
 - Steven G. Parker1,2
 1University of Utah, 2NVIDIA Corporation

- Fast visibility evaluation
- Importance sampling
- Analytical solutions
Goal: importance sample single scattering

- given a point on the light, want to sample points on the ray

\[L = \int_{0}^{t} T_c \cdot \sigma_s \cdot V \cdot \rho \cdot G \cdot L_e \cdot T_e \, dt' \]

- visibility
- geometry term
- camera transmittance
- phase function
- light transmittance
Goal: importance sample single scattering

- sampling transmittance fails to consider the geometry term & phase function

\[L = \int_{0}^{t} [T_{c}] \cdot \sigma_{s} \cdot V \cdot \rho \cdot G \cdot L_{e} \cdot T_{e} \, dt' \]

- visibility
- geometry term
- phase function
- light transmittance

Equi-angular sampling
importance samples \(\frac{1}{r^2} \)

- change of variable: projects the line onto a circle

\[
\begin{align*}
\text{pdf}(t) &= \frac{D}{(\theta_b - \theta_a)(D^2 + t^2)} \\
t(\xi) &= D \tan \left((1 - \xi)\theta_a + \xi\theta_b\right) \\
\theta_x &= \tan^{-1} \frac{x}{D}
\end{align*}
\]

proposed by Kulla & Fajardo in graphics, known as “track-length estimator” in nuclear engineering

Can we importance sample the whole line integral?

• visibility is hard, but what about the rest?

\[L = \int_{0}^{t} T_c \cdot \sigma_s \cdot V \cdot \rho \cdot G \cdot L_e \cdot T_e \, dt' \]
Idea: build a 1D table by evaluating the integrand at few points

- important: do this in the angular space, ignore visibility

\[L = \int_{0}^{t} T_c \cdot \sigma_s \cdot V \cdot \rho \cdot G \cdot L_e \cdot T_e dt' \]

idea used in Novak et al., Szirmay-Kalos et al., and Villeneuve et al.
Alternative idea: apply a Taylor expansion

- important: do this in the angular space, ignore visibility

\[L = \int_0^t T_c \cdot \sigma_s \cdot V \cdot \rho \cdot G \cdot L_e \cdot T_e \, dt' \]
Equi-angular usually works pretty well

Villeneuve et al.

http://www.iliyan.com/publications/PracticalProductSampling
Today: single scattering

- Fast visibility evaluation
- Importance sampling
- Analytical solutions
The single-scattering integral can have an analytical solution!

- assuming: constant σ_a & σ_s, isotropic phase function & constant visibility

\[L = \int_0^t T_c \cdot \sigma_s \cdot V \cdot \rho \cdot G \cdot L_e \cdot T_e \, dt' \]

\[L_m(x_a,x_b,\bar{\omega}) = I \frac{K_2}{h} e^{K_2(x_a-x_b)} \frac{2}{4\pi} I_0(-H,v_a,v_b) \]
\[= I \frac{K_2}{h} e^{K_2(x_a-x_b)} \frac{2}{4\pi} \]

\[\left(\sin(-H)Re\left(Ei(-H(v_b + i)) - Ei(-H(v_a + i))\right) \right) \]
\[- \cos(-H)Im\left(Ei(-H(v_b + i)) - Ei(-H(v_a + i))\right) \]

\[H = \sigma_t t \]
\[Ei(x) = \int_{-\infty}^x \frac{e^t}{t} \, dt \]

http://www.sci.utah.edu/~vpegorar/research/2009_EG.pdf
Analytical solutions can handle simple scenes efficiently

http://www.sci.utah.edu/~vpegorar/research/2009_EG.pdf
Analytical solutions can handle simple scenes efficiently.

A Practical Analytic Single Scattering Model for Real Time Rendering

Bo Sun Columbia University
Ravi Ramamoorthi Columbia University
Srinivasa Narasimhan Carnegie Mellon University
Shree Nayar Columbia University

[audio]
Importance sampling multiple scattering
Next: differentiable rendering

Differentiable Monte Carlo Ray Tracing through Edge Sampling

TZU-MAO LI, MIT CSAIL
MIKA AITTALA, MIT CSAIL
FRÉDO DURAND, MIT CSAIL
JAAKKO LEHTINEN, Aalto University & NVIDIA

Unbiased Warped-Area Sampling for Differentiable Rendering

SAI PRAVEEN BANGARU, Massachusetts Institute of Technology
TZU-MAO LI, Massachusetts Institute of Technology
FRÉDO DURAND, Massachusetts Institute of Technology