Sampling (continued) & Textures

UCSD CSE 168
Rendering
Tzu-Mao Li
Last time: sampling theorem

spatial domain

Fourier transform

frequency domain
What if we have randomly placed samples?
What if we have randomly placed samples?

aliasing becomes noise!
Fourier transform of random sampling

on expectation a uniform distribution
“white noise”
Quiz: which sampling distribution is better?
Sampling distribution of human eyes

quiz 1: how is it different from our displays/cameras?

quiz 2: how is it different from independent random sampling?

Fig. 13. Tangential section through the human fovea. Larger cones (arrows) are blue cones. From Ahnelt et al. 1987.
Human eyes’ sampling follow a Poisson-disk/blue-noise distribution for each disk of distance r at each point, there is no other points in the disk.
Fourier transform of Poisson-disk/blue-noise sampling

5.4 Interpreting and exploiting knowledge of the sampling spectra

Samples Power spectrum Radial mean

Poisson Disk

Figure 5.9: Illustration of some well known blue noise samplers with the corresponding Fourier expected power spectra and the corresponding radial mean of their expected power spectra.

5.3.3 Tiling-based methods

There are some tile-based approaches that can be used to generate blue noise samples. Tile-based methods overcome the computational complexity of dart-throwing and/or relaxation based approaches in generating blue noise sampling patterns. In computer graphics community, two tile-based approaches are well known: First approach uses a set of precomputed tiles, with each tile composed of multiple samples, and later use these tiles, in a sophisticated way, to pave the sampling domain. Second approach employed tiles with one sample per tile and uses some relaxation-based schemes, with look-up tables, to improve the overall quality of samples.

Although many blue noise sample generation algorithms exist, none of them are easily extendable to higher dimensions (>3).

5.4 Interpreting and exploiting knowledge of the sampling spectra

Recently, it has been shown that the low frequency region of the radial power spectrum (of a given sampling pattern) plays a crucial role in deciding the overall variance convergence rates of sampling patterns used for Monte Carlo integration. Since blue noise sampling patterns contain almost no radial energy in the low frequency region, they are of great interest for future research to obtain fast results in rendering problems. Surprisingly, Poisson Disk samples have shown the convergence rate of $O(N^{-1})$ which is the same as given by purely random samples. This can be explained by looking at the low frequency region in the radial power spectrum of Poisson Disk samples (Fig. 5.9) which is not zero. The importance of the shape of the radial mean power spectrum in the low frequency region demands methods and algorithms that could eventually allow sample generation directly from a target Fourier spectrum.

5.4.1 Radially-averaged periodograms

Figures 5.6, 5.8 and 5.9 depict radially averaged periodograms of the various sampling strategies described in this chapter. These spectra reveal two important characteristics of estimators built using the corresponding sampling strategies.
Fourier transform of Poisson-disk/blue-noise sampling

5.4 Interpreting and exploiting knowledge of the sampling spectra

Recently, it has been shown that the low frequency region of the radial power spectrum (of a given sampling pattern) plays a crucial role in deciding the overall variance convergence rates of sampling patterns used for Monte Carlo integration. Since blue noise sampling patterns contain almost no radial energy in the low frequency region, they are of great interest for future research to obtain fast results in rendering problems. Surprisingly, Poisson Disk samples have shown the convergence rate of $O(N^{-\frac{1}{2}})$ which is the same as given by purely random samples. This can be explained by looking at the low frequency region in the radial power spectrum of Poisson Disk samples (Fig. 5.9) which is not zero.

5.4.1 Radially-averaged periodograms

Figures 5.6, 5.8 and 5.9 depict radially averaged periodograms of the various sampling strategies described in this chapter. These spectra reveal two important characteristics of estimators built using the corresponding sampling strategies.

Which sampling distribution is better?

- Human-eyes-like
- Independent random sampling
- Regular sampling
Dart throwing for Poisson disk sampling

[Cook 1986]

(fancy animation from Wojciech Jarosz)

Lloyd relaxation for Poisson disk sampling

developed at ~1957, published at 1982

Least Squares Quantization in PCM

Hexagon bot on twitter

https://twitter.com/relaxagons
Stratified/jittered sampling

for (uint i = 0; i < numX; i++)
 for (uint j = 0; j < numY; j++)
 {
 samples(i,j).x = (i + randf())/numX;
 samples(i,j).y = (j + randf())/numY;
 }

Stratified/jittered sampling

samples

(expected)
Fourier transform

radial mean

Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the corresponding Fourier expected power spectra and the corresponding radial mean of their expected power spectra.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is supposed to be well distributed within the spatial domain without containing any regular structures. The term Blue noise was coined by Ulichney [47], who investigated a radially averaged power spectra of various sampling patterns. He advocated three important features for an ideal radial power spectrum: First, its peak should be at zero frequency, which corresponds to the total energy of the signal. Second, the power spectrum should decrease at a specific rate with increasing frequency. Third, the power spectrum should not have any sharp peaks or dips. These features ensure that the signal is well-distributed and does not contain any regular patterns.

Comparison

- **independent random sampling** (white noise)

- **stratified/jittered sampling**

- **Poisson-disk/blue-noise sampling**

Sources:

Ulichney [34], who investigated a radially averaged power spectra of various sampling patterns. He showed that the power spectra of blue noise samples are more concentrated in the low-frequency region compared to white noise samples. This concentration leads to a faster convergence rate of the variance with increasing sample count. The graphs on the right show the expected power spectra and the corresponding radial mean of their expected power spectra for different sampling patterns. The graphs illustrate that while the radial mean of the random samples is flat, the radial mean of blue noise samples shows significant variation, indicating a more efficient sampling strategy.

There are some tile-based approaches that can be used to generate blue noise samples. These methods overcome the computational complexity of generating blue noise samples directly in high dimensions. The images in the middle row demonstrate the effect of tile-based approaches on blue noise sampling. The top part of the inner box contains a set of precomputed tiles, and the bottom part shows how these tiles are used to pave the sampling domain in a sophisticated way.
Comparison

stratified/jittered sampling
(4 samples per pixel)

Poisson-disk/blue-noise sampling
(4 samples per pixel)

https://www.csie.ntu.edu.tw/~cyy/courses/rendering/16fall/lectures/handouts/chap07_sampling.pdf
More in CSE 272!

- reconstruction vs integration
- low-discrepancy sampling
- higher-dimensional sampling
- blue noise + low-discrepancy sampling
- perceptual quality
- ...

Textures
Real-world surfaces are colorful!

photo from K.C. Alfred
An option: assign a color to each triangle

• *quiz*: pros and cons?
An option: assign a color to each triangle

- **pros**
 - simple
 - easy to edit (just paint on triangles)

- **cons**
 - couples geometric complexity with color complexity
 - hard to **filter**
 - more on this next lecture
In practice: texture mapping

- assign a “UV” 2D vector to each point on the surface

(0,0) (1,0)

(0,1) (1,1)

image

lookup
UV mapping

- “unwrap” a surface and map it to a 2D square
- automatic UV mapping is an active research area

http://staff.ustc.edu.cn/~fuxm/projects/Peeling/index.html
Distortion is often unavoidable

- ideally we want
 - area-preserving (large areas map to large areas)
 - conformal (angles between any two curves are preserved)
- a theorem from Euler [1775]:
 - for a sphere-to-square projection, a conformal map cannot be area-preserving
 - an area-preserving map cannot be conformal

https://en.wikipedia.org/wiki/Mercator_projection
An area-preserving projection of earth
A few simple “automatic” UV mappings

- Spherical mapping
- Cylindrical mapping
- Planar mapping
Spherical mapping

\((\theta, \phi)\)
Cylindrical mapping

(θ, r)
Planar mapping (i, u, v)
Obtain UV by interpolating values from vertices

\[uv = (1 - b_1 - b_2)uv_0 + b_1 uv_1 + b_2 uv_2 \]
3D Textures

use a volumetric texture, don’t need UV mapping then
Quiz: what do we use textures for?
Quiz: what do we use textures for?

- color map
- normal map
- roughness map
- displacement map
Textures as BRDF parameters
Procedural textures: textures as programs

```
def stripe(x, y, z, u, v):
    if int(x) % 2 == 0:
        return red
    else:
        return white
```

1984
Shade Trees
Robert L. Cook

1985
An Image Synthesizer
Ken Perlin
Procedural textures: textures as programs

```python
def ramp(x, y, z, u, v):
    v = (sin(x) + 1) / 2
    return (1 - v) * magenta +
            v * yellow
```

https://www.csie.ntu.edu.tw/~cyy/courses/rendering/16fall/lectures/handouts/chap10_textures.pdf
def ring(x, y, z, u, v):
 v = (x - center.x)^2 +
 (y - center.y)^2
 if int(v) % 2 == 0:
 return white
 else:
 return red
Procedural noise

want to represent random natural variation
Procedural noise

want to represent random natural variation
Perlin noise

- a way to procedurally generate stochastic textures
- used in TRON (1982)!
 (first Hollywood film that used 3D shaded graphics)
Idea: smoothly interpolate white noise
def Noise1D(x):
 xi0 = int(x)
 xi1 = xi0 + 1
 val0, val1 = hash(xi0), hash(xi1)
 t0, t1 = x - xi0, xi1 - x
 w0 = 6 * t0^5 - 15 * t0^4 + 10 * t0^3
 w1 = 6 * t1^5 - 15 * t1^4 + 10 * t1^3
 return w0 * val0 + w1 * val1

see Perlin [2002] for the weight derivation
Perlin’s Noise function

```python
def Noise2D(x):
    xi0, yi0 = int(x), int(y)
    xi1, yi1 = xi0 + 1, yi0 + 1
    val00, val01 = hash(xi0, yi0), hash(xi0, yi1)
    val10, val11 = hash(xi1, yi0), hash(xi1, yi1)
    t0x, t1x = x - xi0, xi1 - x
    t0y, t1y = y - yi0, yi1 - y
    w00 = w(t0x) * w(t0y)
    ...
    return w00 * val00 + ...
```

Improving Noise

Ken Perlin

see Perlin [2002] for the weight derivation

https://thebookofshaders.com/11/
Scale of the inputs determines the smoothness of the noise

\[\text{Noise2D}(x/n) \]
Combining multiple Noises at different scales

\[\text{Noise1D}(x) + \frac{1}{2} \times \text{Noise1D}(2x) + \frac{1}{4} \times \text{Noise1D}(4x) + \ldots \]

Combining multiple Noises at different scales
Turbulence

\[\frac{1}{2} \cdot |\text{Noise3D}(2x)| + \frac{1}{4} \cdot |\text{Noise3D}(4x)| + \ldots \]
Marble

perturb uv using turbulence
Map generation

- high -> green
- middle -> brown
- low -> blue

https://medium.com/@yvenscher/playing-with-perlin-noise-generating-realistic-archipelagos-b59f004d8401
Map generation

- high -> white
- mid-high -> gray
- middle -> green
- mid-low -> brown
- low -> blue

https://medium.com/@yvanscher/playing-with-perlin-noise-generating-realistic-archipelagos-b59f004d8401
Inverse Perlin noise

target image

optimization

2021
Adding details to smoke simulation using Perlin’s turbulence noise

(won an Oscar technical achievement award at 2012!)

Wavelet Turbulence for Fluid Simulation
Theodore Kim Nils Thürey Doug James Markus Gross
A great resource on noise

The Book of Shaders
by Patricia Gonzalez vivo and Jen Lowe

This is a gentle step-by-step guide through the abstract and complex universe of Fragment Shaders.

https://thebookofshaders.com/11/
Next: texture filtering