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Abstract

This paper proposes and evaluates software techniques that increase register file utilization
for simultaneous multithreading (SMT) processors. SMT processors require large register files to
hold multiple thread contexts that can issue instructions out of order every cycle. By supporting
better inter-thread sharing and management of physical registers, an SMT processor can reduce
the number of registers required and can improve performance for a given register file size.

Our techniques specifically target register deallocation. While out-of-order processors with
register renaming are effective at knowing when a new physical register must be allocated, they
have limited knowledge of when physical registers can be deallocated. We propose architectural
extensions that permit the compiler and operating system to (1) free registers immediately upon
their last use, and (2) free registers allocated to idle thread contexts. Our results, based on
detailed instruction-level simulations of an SMT processor, show that these techniques can
increase performance significantly for register-intensive, multithreaded programs.
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1 Introduction

Simultaneous multithreading (SMT) is a high-performance microarchitecture that
substantially improves processor performance by executing instructions from multiple threads
every cycle. By dynamically sharing processor resources among the executing threads, SMT
increases functional unit utilization, boosting instruction throughput and program speedups on a
variety of workloads that include commercial databases and scientific applications in both
multiprogrammed and parallel environments [5][10][28][31].

Previous research has examined several aspects of the SMT design, including instruction
fetch mechanisms [25], cache organization [14], multiple-path execution [28], and
synchronization hardware [26]. This paper focuses on another hardware feature that impacts
SMT’s cost-effectiveness: the organization and utilization of its register file. SMT raises a
difficult tradeoff for register file design: while a large register file is required to meet the
architectural and renaming register needs of the multiple thread contexts, smaller register files
provide faster access times. Therefore, an SMT processor needs to use its register resources
efficiently in order to optimize both die area and performance.

In this paper, we propose and evaluate software techniques that increase register utilization,
permitting a smaller, faster register file, while still supporting multiple threads. Our techniques
involve coordination between the operating system, the compiler, and the low-level register
renaming hardware to provide more effective register use for both single-threaded and
multithreaded programs. The result is improved performance for a given number of hardware
contexts and the ability to handle more contexts with a given number of registers. For example,
our experiments indicate that an 8-context SMT processor with 8 eight extra registers for register
renaming (i.e. 264 total registers), managed with the techniques we present, can attain
performance comparable to a processor with 100 extra physical registers for renaming.

Our techniques support the effectivesharingof register contexts in an SMT processor, using
register renaming to permit multiple threads to share a single global register file. In this way, one
thread with high register pressure can benefit when other threads have low register demands.
Unfortunately, existing register renaming techniques cannot fully exploit the potential of a
shared register file. In particular, while existing renaming hardware is effective at allocating
physical registers, it has only limited ability to identify registerdeallocationpoints; therefore it
frees registers conservatively, possibly underutilizing them.

We have designed software support to expedite the deallocation of two types of dead
registers: (1) registers allocated to idle hardware contexts, and (2) registers in active contexts
whose last use has already retired. In the first case, when a thread terminates execution on a
multithreaded architecture, its hardware context becomes idle if no threads are waiting to run.
Although the registers allocated to the terminated thread are dead, they are not freed, because
hardware register deallocation only occurs when registers in a new, active thread are mapped.
This causes a potentially-shared SMT register file to behave like a partitioned collection of per-
thread registers. We propose a privileged instruction that deallocates idle SMT contexts earlier
than is done on current multithreaded machines. Our experiments show that by notifying the
hardware of OS scheduling decisions, performance with a register file of size 264 is boosted by
more than 3 times when 2 or 4 threads are running.

To address the second type of dead registers, those in active threads, we investigate five
mechanisms that allow the compiler to communicate last-use information to the processor, so
that the renaming hardware can deallocate registers more aggressively. Without this information,
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the hardware must conservatively deallocate registers only after they are redefined. Simulation
results indicate that these mechanisms can reduce register deallocation inefficiencies; in
particular, on small register files, the best of the schemes attains speedups of up to 2.5 for some
applications, and 1.6 on average. All the register deallocation schemes could benefit any out-of-
order processor, not just SMT.

The remainder of this paper is organized as follows. Section 2 briefly summarizes the SMT
architecture and register renaming inefficiencies. Our experimental methodology is described in
Section 3. Section 4 describes the OS and compiler support that we use to improve register
usage. We discuss related work in Section 5 and offer concluding remarks in Section 6.

2 Simultaneous Multithreading

Our SMT processor model is similar to that used in previous SMT studies: an eight-wide,
out-of-order processor with hardware contexts for eight threads. On every cycle four instructions
are fetched from each of two threads. The fetch unit favors high throughput threads, selecting the
two that have the fewest instructions waiting to be executed. After fetching, instructions are
decoded, their registers are renamed, and they are inserted into either the integer or floating point
instruction queues. When their operands become available, instructions (from any thread) are
issued to the functional units for execution. Finally, instructions are retired in per-thread order.

Most components of an SMT processor are an integral part of any dynamically-scheduled,
wide-issue superscalar. Instruction scheduling is an important case in point: instructions are
issued after their operands have been calculated or loaded from memory, without regard to
thread; the register renaming hardware eliminates inter-thread register name conflicts by
mapping thread-specific architectural registers onto the processor’s physical registers.

The major additions to a conventional superscalar are the instruction fetch unit mentioned
above and several per-thread mechanisms, such as program counters, return stacks, retirement
and trap logic, and identifiers in the TLB and branch target buffer. The register file contains
register state for all resident threads, and consequently the pipeline contains two additional stages
for accessing it (one each for reading and writing). The additional stages cause little degradation
in single-thread performance, because we assume a fully bypassed datapath.

2.1 Register Renaming and the Register Deallocation Problem
Register renaming eliminates false (output and anti-) dependences that exist in compiled

code. It does so by assigning a different physical register to the same logical register being
defined in a later instruction. This allows the later (in code sequence) instruction to proceed
without violating any false dependence with an earlier instruction (that reads or writes the same
logical register). These false dependences are introduced when the compiler’s register allocator
assigns an arbitrary number of compiler-generated pseudo-registers to the limited number of
architectural registers in the instruction set architecture. Each instruction that defines (writes) a
new register value is assigned a unique physical register. Subsequent reads of that logical register
will try to read that physical register, unless there has been an intervening write to the logical
register (and a new physical register assigned). Thus, a write and a read of a register (in teh
processor at the same time) will only share the same physical register if they have a true
dependence, and two writes will never share the same physical register.

SMT assumes a register mapping scheme similar to that used in the DEC 21264 [8] and
MIPS R10000 [32]. The register renaming hardware is responsible for three primary functions
(illustrated in Figure 1): (1) physical register allocation, (2) register operand renaming, and (3)
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register deallocation. Physical register allocation occurs after instruction decoding. When an
instruction defines an architectural register (i.e., the instruction writes a destination register), a
mapping is created from the architectural register to an available physical register and is entered
into a mapping table. If no physical registers are available, instruction fetching stalls. To rename
a source register operand to the physical register number, the renaming hardware locates its
architectural-to-physical mapping in the mapping table and aliases it to its physical register
number. Register deallocation works in conjunction with instruction retirement. An active list
keeps track of all uncommitted instructions in the pipeline in per-thread, program order. As
instructions retire, the physical registers that are mapped to architectural registers theyredefine
(again, a destination register) are deallocated and become available for reallocation.

Renaming hardware handles physical register allocation and renaming rather effectively, but
fails to manage deallocation efficiently. A register is dead and could be deallocated once its last
use commits. The hardware, however, cannot identify the last uses of registers, because it has no
knowledge of register lifetimes. Consequently, hardware can only safely deallocate a physical

register when it commits another instruction that redefines its associated architectural register, as
shown in Figure 1.

2.2 Physical Register Organization and the Register Deallocation Problem
In fine-grained multithreaded architectures like the Tera [1], each hardware context includes

a register file for its thread, and a thread only accesses registers from its own context, as shown

in Figure 2a.1 In contrast, in an SMT processor, a single register file holds the register context
for all threads and thus is shared among all contexts (Figure 2b). We call this organizationFully-

1. Note that we are discussing differentlogical organizations for the register file. How the file is physically
structured is a separate issue.

1 ldl r20,addr1(r22)
2 ldl r21,addr2(r23)
3 addl r20,r21,r12

        ...

n ldl r20,addr4(r29)

Figure 1: This example illustrates the inability of the renaming hardware to
efficiently deallocate the physical register for r20. (The destination registers are
italicized). Instruction 1 defines r20, creating a mapping to a physical register, say
P1. Instruction 3 is the last use of r20. However, P1 cannot be freed until r20 is
redefined in instruction n. In the meantime, several instructions and potentially a
large number of cycles can pass between the last use of P1 (r20) and its
deallocation.
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Figure 2: Logical register file configurations: (a) is a Tera-style, partitioned register file; (b) is an SMT register file in which
all threads share a common pool of physical registers; (c) is an SMT register file, given current register deallocation schemes:
each hardware context has dedicated physical registers for the ISA-defined architectural registers and only the renaming
registers are shared across all contexts.
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Shared. Since SMT’s register file is structured as a single pool of physical registers, SMT’s
register renaming hardware is essentially an extension of the register mapping scheme to
multiple contexts. Threads name architectural registers from their own context, and the renaming
hardware maps these thread-private, architectural registers to the pool of thread-independent
physical registers. Register renaming thus provides a transparent mechanism for sharing the
register pool.

Although an SMT processor is best utilized when all hardware contexts are busy, some
contexts may occasionally be idle. To maximize performance, no physical registers should be
allocated to idle contexts; instead, all physical registers should be shared by the active threads.
However, with existing register deallocation schemes, when a thread terminates, its architectural
registers remain allocated in the processor until they are redefined by a new thread executing in
the context. Consequently, the Fully-Shared organization behaves more like a partitioned file, as
shown in Figure 2c. (We call this organizationPartially-Shared.) Most ISAs have 32
architectural registers; consequently, thirty-two physical registers must be dedicated to each
context in a Partially-Shared scheme. So, for example, on an eight-context SMT with 352
registers, only 96 (352-8*32) physical registers are available for sharing among the active
threads.

3 Methodology for the Experiments

We have defined several register file management techniques that were devised to
compensate for the hardware’s conservative register deallocation, and evaluated them using
instruction-level simulation of applications from the SPEC95-FP [23] and SPLASH-2 [30]
benchmark suites (Table 1). The SUIF compiler [9] automatically parallelized the SPEC
benchmarks into multithreaded C code; the SPLASH-2 programs were explicitly parallelized by
the programmer. All programs were compiled with the Multiflow trace-scheduling compiler [15]
into DEC Alpha object files. The object files were then linked with our versions of the ANL [2]

and SUIF runtime libraries to create executables.

Application Data Set Instructions Simulated

SPEC 95 FP applu 33x33x33 array, 2 iterations 271.9 M

hydro2d 2 iterations 473.5 M

mgrid 64x64x64 grid, 1 iteration 3.193 B

su2cor 16x16x16x16, vector length 4096, 2 iterations 5.356 B

swim 512x512 grid, 10 iterations 419.1 M

tomcatv 513x513 array, 5 iterations 189.1 M

turb3d 64x64x64 array, 1 timestep 1.941 B

SPLASH 2 fft 64K data points 32.0 M

LU 512x512 matrix 431.2 M

radix 256K keys, radix 1024, 524288 max key value 5.8 M

water-nsquared 512 molecules, 3 timesteps 869.9 M

water-spatial 512 molecules, 3 timesteps 783.5 M

Table 1: Benchmarks used in this study. For the SPEC95 applications, our data sets are the same size as the SPEC
reference set, but we have reduced the number of iterations because of the length of simulation time.
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Our SMT simulator processes unmodified Alpha executables and uses emulation-based,
instruction-level simulation to model in detail the processor pipelines, hardware support for out-
of-order execution, and the entire memory hierarchy, including the TLBs (128 entries each for
instruction and data TLBs), cache behavior, and bank and bus contention. The memory hierarchy
in our processor consists of two levels of cache, with sizes, latencies, and bandwidth
characteristics, as shown in Table 2. Because register file management is affected by memory

latencies,2 we experimented with two different memory hierarchies. The larger memory
configuration represents a probable SMT memory hierarchy for machines in production a few
years in the future. The smaller configuration serves two purposes: (1) it models today’s memory
hierarchies, as well as those of tomorrow’s low-cost processors, such as multimedia co-
processors, and (2) it provides a more appropriate ratio between data set and cache size,
modeling programs with larger data sets or data sets with less data locality than those in our
benchmarks [21].

We also examined a variety of register file sizes, ranging between 264 and 352, to gauge the
sensitivity of the register file management techniques to register size. With more than 352
registers, other processor resources, such as the instruction queues, become performance
bottlenecks. At the low end, at least 256 registers are required to hold the architectural registers

for all eight contexts,3 and we provide an additional 8 renaming registers for a total of 264.
Smaller register files are attractive for several reasons. First, they have a shorter access time; this
advantage could be used either to decrease the cycle time (if register file access is on the critical
path) or to eliminate the extra stages we allow for register reading and writing. Second, they take
up less area. Register files in current processors occupy a negligible portion (roughly 1%) of the
chip area, but a large, multi-ported SMT register file could raise that to around 10%, an area
allocation that might not be acceptable [18][29]. Third, smaller register files consume less power.

For branch prediction, we used a McFarling-style hybrid predictor with a 256-entry, 4-way
set-associative branch target buffer, and a hybrid predictor (8k entries) that selects between a
global history predictor (13 history bits) and a local predictor (a 2k-entry local history table that
indexes into a 4k-entry, 2-bit local prediction table) [18].

Because of the length of the simulations, we limited our detailed simulation results to the
parallel computation portion of the applications (the norm for simulating parallel applications).
For the initialization phases of the applications, we used a fast simulation mode that warmed the

L1 I-cache L1 D-cache L2 cache

Size (bytes) 128 K / 32 K 128 K / 32 K 16 M / 2 M

Associativity two-way two-way direct- mapped

Line size (bytes) 64 64 64

Banks 4 4 1

Accesses/cycle 2 2 1/2

Cache fill time (cycles) 2 2 4

Latency to next level 10 10 68

Table 2: Configuration and latency parameters of the SMT cache hierarchies used in this study.

2. Smaller caches increase miss rates, and because more latencies have to be hidden, register pressure
increases. The opposite is true for larger caches.

3. in the absence of mechanisms to avoid or detect and recover from deadlock.
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caches, and then turned on the detailed simulation mode once the main computation phases were
reached.

4 Techniques for improving register file management

Despite its flexible organization, an SMT register file will be underutilized, because
renaming hardware fails to deallocate dead registers promptly. In this section, we describe
communication mechanisms that allow the operating system and the compiler to assist the
renaming hardware with register deallocation, by identifying dead registers that belong to both
idle and active contexts.

4.1 Operating system support for dead-register deallocation
As explained in Section 2.2, when an executing thread terminates, the thread’s physical

registers remain allocated. Consequently, active threads cannot access these registers, causing a
fully-shared register file (Fully-Shared) to behave like one in which most of the registers are
partitioned by context (Partially-Shared).

After a thread terminates, the operating system decides what to schedule on the newly-
available hardware context. There are three options, each of which has a different implication for
register deallocation:
1. Idle contexts: If there are no new threads to run, the context will be idle. The terminated

thread’s physical registers could be deallocated, so that they become available to active
threads.

2. Switching to a new thread: Physical registers for a new thread’s architectural registers are
normally allocated when it begins execution. A more efficient scheme would free the
terminated threads’s physical registers, allocating physical registers to the new thread on
demand. Unallocated physical registers would then be available to other contexts.

3. Switching to a swapped-out thread: Context switch code loads the register state of the new
thread. As these load instructions retire, physical registers used by the terminated thread are
deallocated.

All three scenarios present an opportunity to deallocate a terminated thread’s physical
registers early. We propose a privileged,context deallocation instructionthat triggers physical
register deallocation for a thread. The operating system scheduler would execute the context
deallocation instruction in the context of the terminated thread. In response, the renaming
hardware would free the terminating thread’s physical registers when the context deallocation
instruction retires.

Three tasks must be performed to handle the context deallocation instruction: creating a new
map table, invalidating the context’s register mappings, and returning the registers to the free list.
When a context deallocation instruction enters the pipeline, the current map table is saved and a
new map table with no valid entries is created; the saved map table identifies the physical
registers that should be deallocated, while the new table will hold subsequent register mappings.
Once the context deallocation instruction retires, the saved map is traversed, and all mapped
physical registers are returned to the free list. Finally, all entries in the saved map are invalidated.
If the context deallocation instruction is executed on a wrong-path and consequently gets
squashed, both the new and saved map tables are thrown away.

Much of the hardware required for these three tasks already exists in out-of-order processors
with register mapping to handle branch prediction. When a branch enters the pipeline, a copy of
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the map table is created; when the branch is resolved, one of the map tables is invalidated,
depending on whether the prediction was correct. If instructions must be squashed, the renaming
hardware traverses the active list (or some other structure that identifies physical registers) to
determine which physical registers should be returned to the free list. Although the context
deallocation instruction adds a small amount of logic to existing renaming hardware, it allows
the SMT register file to behave as a true Fully-Shared register file, instead of a Partially-Shared
register file by deallocating registers more promptly.

Experimental results
To evaluate the performance of the Fully-Shared register organization, we varied the number

of active threads and register set sizes, and compared it to the Partially-Shared organization with
identical configurations. We modeled an OS scheduler that frees all physical registers for
terminated threads, by making all physical registers available when a parallel application began
execution.

The results of this comparison are shown in Figure 3. With the Partially-Shared register

organization (Figure 3a), only renaming registers are shared among threads. Execution time
therefore was higher for smaller register files, as more threads competed for the renaming
registers. The Fully-Shared organization, shown in Figure 3b, was less sensitive to both
parameters. In fact, the smaller register files had the same performance as larger ones when few
threads were executing, because registers were not tied up by idle contexts. Except for the
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smallest configuration, Fully-Shared performance was stable with varying numbers of threads,
because the parallelism provided by additional threads overcame the increased competition for
registers; only the 264-register file had a performance sweet spot.

The speedups in Figure 4 show that the Fully-Shared organization equals or surpasses
Partially-Shared for all register file sizes and numbers of threads. Fully-Shared provides the
greatest benefits when it has more registers to share (several idle contexts) and Partially-Shared
has fewer (small register files). For example, with 320 registers and 4 idle contexts (4 threads),
Fully-Shared outperformed Partially-Shared by 8%, averaged over all applications. With only
288 or 264 registers, Fully-Shared’s advantage grew to 34% and 205%, and with 6 idle contexts
(and 320 registers) to 15%. Taking both factors into account (288/264 registers, 6 idle contexts),
Fully-Shared outperformed Partially-Shared by 51%/232%. Only when all contexts were active
were Fully-Shared and Partially-Shared comparable; in this case, since the architectural state for
all threads is resident in both schemes, they have the same number of shared renaming registers
available to them.

The Fully-Shared register organization has a slightly larger performance edge with smaller
cache hierarchies, because hiding the longer memory latencies requires more in-flight
instructions and therefore more registers in use. This suggests that efficient register management
is particularly important on memory-intensive workloads or applications with relatively poor
data locality.

In summary, the results illustrate that partitioning a multithreaded register file restricts its
ability to expose parallelism. Operating system support for deallocating registers in idle contexts,
which enables the register file to be fully shared across all threads, both improves performance,
and makes it less dependent on the size of the register file and the number of active threads.

4.2 Compiler support for dead-register allocation
As described in section 2.1, hardware register deallocation is inefficient, because the

hardware has knowledge only of a register’s redefinition, not its last use. Although the compiler
can identify the last use of a register, it currently has no means for communicating this
information to the hardware.

In this section, we describe and evaluate several mechanisms that allow the compiler to
convey register last-use information to the hardware, and show that they improve register
utilization on SMT processors with an Fully-Shared register file organization. The proposed
mechanisms are either new instructions or fields in existing instructions that direct the renaming
hardware to free physical registers.

First, however, we examine three factors that motivate the need for improved register
deallocation: (1) how often physical registers are unavailable, (2) how many registers are dead
each cycle, and (3) how many cycles pass between a register’s last use and its redefinition, which
we call thedead-register distance. Register unavailability is the percentage of total execution
cycles in which the processor runs out of physical registers (causing fetch stalls); it is a measure
of the severity of the problem caused by current hardware register-deallocation mechanisms. The
average number of dead registers each cycle indicates how many physical registers could be
reused, and thus the potential for a compiler-based solution. Dead-register distance measures the
average number of cycles between the completion of an instruction that last uses a register and
that register’s deallocation; it is a rough estimate of the likely performance gain of a solution.

The data in Table 3 indicate that, while the projected SMT design (352 registers in a Fully-
Shared register organization) is sufficient for most applications, smaller register files introduce
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bottlenecks, often severe, on many applications. (Register pressure was particularly high for
integer registers infft and radix, and for floating-point registers inapplu, hydro2d,
tomcatv, andwater-n.) Applications also ran out of registers more frequently with smaller
cache hierarchies. A closer examination reveals that in all cases where stalling due to insufficient
registers was a problem (bold entries in Table 3), a huge number of registers were dead (shown
in Table 4). Table 5 shows that if these dead registers had been freed, they could have been
reallocated many instructions/cycles earlier. All this suggests that, if registers were managed
more efficiently, performance could be recouped and even a 264-register Fully-Shared register
organization might be sufficient.

Five compiler-based solutions
Using dataflow analysis, the compiler can identify the last use of a register value. In this

section, we evaluate five alternatives for communicating last-use information to the renaming

Number
of

registers

integer FP

applu hydro2d swim tomcatv fft LU radix water-n applu hydro2d swim tomcatv fft LU radix water-n

Large Cache Hierarchy

352 3.1 0.1 0.0 0.0 3.8 0.0 0.4 0.0 27.7 6.3 0.0 18.0 0.0 0.0 0.0 0.1

320 3.1 0.7 0.1 0.0 16.1 0.1 36.9 0.1 40.2 17.7 0.1 20.3 0.0 0.0 0.0 0.6

288 1.9 1.6 0.4 0.0 21.5 0.3 75.9 0.3 64.0 521 0.5 58.4 0.5 0.0 0.0 14.1

264 1.5 2.2 21.9 0.0 58.2 2.2 91.1 0.6 87.8 83.0 0.6 90.1 8.1 0.2 0.0 73.9

Small Cache Hierarchy

352 3.4 1.0 0.4 0.0 8.4 1.3 12.0 0.0 32.3 34.4 5.3 45.7 0.5 1.7 0.0 0.1

320 3.5 1.5 1.5 0.0 16.2 3.3 49.1 0.2 44.6 48.0 8.6 60.2 1.4 3.5 0.0 0.6

288 2.6 2.1 5.3 0.0 25.2 10.5 83.5 0.3 67.5 70.1 13.2 79.8 5.3 5.5 0.0 17.0

264 2.2 2.5 44.2 0.2 64.9 22.7 93.4 0.7 88.1 87.2 2.7 94.0 8.5 6.7 0.0 74.7

Table 3: Frequency (percentage of total execution cycles) that no registers were available when executing 8 threads. Bold entries
(frequencies over 10%) represent severe stalling due to insufficient registers.

ldl   r20,addr1(r22)
ldl   r21,addr2(r23)
addl  r20,r21, r24
addl  r21,0x1, r21
      ...
stl   r12,addr3(r21)
ldl   r20,addr4(r29)

a) base

ldl r20,addr1(r22)
ldl r21,addr2(r23)
addl r20,r21, r24
addl r21,0x1, r21

...
stl r12,addr3(r21)
ldl r20,addr4(r25)

; mask for reg 24
lda r25,0x1000(r31)

; mask for regs 20,21,22,23,25
ldah r25,0x20f0(r24)

;free int regs identified
;by mask

fmask r25

(c) Free Mask
ldl   r20,addr1(r22)
freg r22
ldl   r21,addr2(r23)
freg r23
addl  r20,r21, r24
freg r20
addl  r21,0x1, r21
      ...
stl   r24,addr3(r21)
freg r24,r21
ldl r20,addr4(r259)
freg r25

b) Free Register

Figure 5: These code fragments illustrate the register freeing mechanisms: a) is the original code fragment; b) shows the
Free Register instructions necessary to free registers r12 to r25, c) is the Free Mask instructions necessary to free the same
registers
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hardware:
1. Free Register Bit communicates last-use information to the hardware via dedicated

instruction bits, with the dual benefits of immediately identifying last uses and requiring no
instruction overhead. Although it is unlikely to be implemented, because most instruction
sets do not have two unused bits, it can serve as an upper bound on performance
improvements that can be attained with the compiler’s static last-use information. To
simulate Free Register Bit, we modified the Multiflow compiler to generate a table, indexed
by the PC, that contains flags indicating whether either of an instruction’s register operands
were last uses. On each simulated instruction, the simulator performs a lookup in this table to
determine whether register deallocation should occur when the instruction is retired.

2. Free Register is a more realistic implementation of Free Register Bit. Rather than specifying
last uses in the instruction itself, it uses a separate instruction to specify one or two registers
to be freed. Our compiler generates a Free Register instruction (an unused opcode in the
Alpha ISA) immediately after any instruction containing a last register use (if the register is
not also redefined by the same instruction). Like Free Register Bit, it frees registers as soon
as possible, but with an additional cost in dynamic instruction overhead.

3. Free Mask is an instruction that can free up to 32 registers, and is used to deallocate dead
registers over a large sequence of code, such as a basic block or a set of basic blocks. For our
experiments, we inserted a Free Mask instruction at the end of each Multiflow trace. Rather
than identifying dead registers in operand specifiers, the compiler generates a bit mask. In
our particular implementation, the Free Mask instruction uses the lower 32-bits of a register
as a mask to indicate which registers can be deallocated. The mask is generated and loaded

Number
of

registers

integer FP

applu hydro2d swim tomcatv fft LU radix water-n applu hydro2d swim tomcatv fft LU radix water-n

Large Cache Hierarchy

352 74 69 29 52 135 110 312 168 120 153 73 136 68 42 48 199

320 74 68 29 53 134 110 311 168 120 153 73 136 68 42 36 199

288 75 64 29 52 132 110 301 168 117 152 73 135 67 42 48 199

264 77 57 29 51 140 110 211 168 111 150 73 133 71 42 48 198

Small Cache Hierarchy

352 74 62 30 54 132 147 265 168 121 158 77 141 68 88 24 199

320 74 61 30 55 132 147 258 167 121 157 76 141 68 81 21 216

288 74 58 30 55 131 110 231 168 118 155 76 139 69 50 44 199

264 76 54 32 54 137 110 173 168 113 152 76 136 72 50 48 198

Table 4: Average number of dead registers per cycle when executing 8 threads. Bold entries are those where no registers were
available more than 10% of execution cycles.

Number of
registers applu hydro2d swim tomcatv fft LU radix water-n average

int instrs 57.6 59.1 32.3 67.2 30.7 56.9 27 32.7 47.2

int cycles 214.6 155.4 27.8 225.7 89.9 85.6 80 215.4 125.5

FP instrs 18.4 30.9 11.7 22.6 20.4 7.1 32.7 18.5

FP cycles 97.1 157.4 28.4 120.0 65.7 22.4 133.7 81.8

Table 5: Dead register distance for 264 registers and the smaller cache hierarchy. The data indicate that registers are frequently not
deallocated until many cycles after their last use has retired. Figures for other register sizes were similar. Bold entries are those
where no registers were available more than 10% of execution cycles.
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into the register using a pair oflda andldah instructions, each of which has a 16-bit
immediate field. (The example in Figure 5 compares Free Register with Free Mask for a code
fragment that frees integer registers 20 through 25.) Free Mask sacrifices the promptness of
Free Register’s deallocation for a reduction in instruction overhead.

4. Free Opcode is motivated by our observation that 10 opcodes were responsible for 70% of
the dynamic instructions with last use bits set, indicating that most of the benefit of Free
Register Bit could be obtained by providing special versions of those opcodes. In addition to
executing their normal operation, the new instructions also specify that either the first,
second, or both operands are last uses. In this paper, we use the 15 opcodes listed in Table 6,
obtained by profiling Free Register Bit instruction frequencies onapplu, hydro2d and

tomcatv.4 Retrofitting these 15 instructions into an existing ISA should be feasible; for
example, all can be added to the DEC Alpha ISA, without negatively impacting instruction
decoding.

5. Free Opcode/Mask augments Free Opcode by generating a Free Mask instruction at the end
of each trace. This hybrid scheme addresses register last uses in instructions that are not
covered by our particular choice of instructions for Free Opcode.

Current renaming hardware provides mechanisms for register deallocation (i.e., returning
physical registers to the free register list) and can perform many deallocations each cycle. For
example, the Alpha 21264 deallocates up to 13 registers each cycle to handle multiple instruction
retirement or squashing. All five proposed register deallocation techniques use a similar
mechanism. Free Mask is slightly more complex, because it can specify up to 32 registers; in this
case deallocation could take multiple cycles if necessary. (In our experiments, however, only 7.2
registers, on average, were freed by each mask.) Deallocating a register before it is redefined
means that exception recovery or branch misprediction recovery may find some registers in an
undefined state; however, this will only be the case for registers that are guaranteed not to be
read again. This optimization is safe.

The five register deallocation schemes are compared in Figure 6, which charts their speedup

4. We experimented with between 10 and 22 Free Opcode instructions. The additional opcodes after the top
15 tended to occur frequently in only one or two applications, and using them brought limited additional
benefits (the exceptions wereswim andradix).

Integer FP

Opcode Operand Opcode Operand

addl 1 addt 1

subl 1 subt 1

mull 1 mult 1, 2

stl 2 stt 1, both

beq 1 fcmov 1, both

lda 1

ldl 1

Table 6: The opcodes used in Free Opcode. Note that formult,stt, andfcmov, two new versions of each
must be added. The versions specify whether the first, second, or both operands are last uses.
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versus no explicit register deallocation. The Free Register Bit bars show that register deallocation

can (potentially) improve performance significantly for small register files (77% on average, but
ranging as high as 195%). The Free Register Bit results highlight the most attractive outcome of
register deallocation: by improving register utilization, an SMT processor with small register
files can achieve large register file performance, as shown in Figure 7. The significance of this
becomes apparent in the context of conventional register file design. Single-threaded, out-of-
order processors often double their registers to support greater degrees of parallelism (e.g., the
R10000 has 64 physical registers, the 21264 has 80). With multiple register contexts, an SMT
processor need not double its architectural registers if they are effectively shared. Our results
show that an 8-context SMT with an Fully-Shared register file (i.e., support for deallocating
registers in idle contexts) needs only 96 additional registers to alleviate physical register

Free Register Bit
Free Register
Free Register Mask
Free Register Opcode
Free Register Opcode/Mask
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Figure 6: A comparison of register deallocation alternatives. Each bar is the speedup over no deallocation with 8 threads.
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pressure, lowering the renaming register cost to 27% of the ISA-defined registers. Compiler-directed register
deallocation for active contexts drops the overhead even further, to only 8 registers or 3% of the architectural
register state.

The Free Register and Free Mask results highlight the trade-off between these two alternative schemes.
Free Register is more effective at reducing the number of dead registers, because it deallocates them more
promptly, at their last uses. When registers are a severe bottleneck, as inapplu, hydro2d, tomcatv, and
radix with small register files, Free Register outperforms Free Register Mask. Free Register Mask, on the
other hand, incurs less instruction overhead; therefore it is preferable with larger register files and applications
with low register usage.

Free Opcode and its variant, Free Opcode/Mask,5 are the schemes of choice. They strike a balance
between Free Register and Free Mask by promptly deallocating registers, while avoiding instruction overhead.
When registers were at a premium, Free Opcode(/Mask) achieved or exceeded the performance of Free
Register; with the larger register file and for applications with low register usage, Free Mask performance was

5. We profiled a very small sample of programs to determine the best selection of opcodes for Free Opcode, and used Free
Opcode/Mask to provide more flexibility in opcode choice. The speedups of the two schemes are very close, and which
has the performance edge varies across the applications for 264 registers. Looking at a different or larger set of programs
to determine the hot opcodes might tip the performance balance for these cases. (For example, by adding 6 single-preci-
sion floating point Free Opcodes to the single-precision swim, Free Opcode exceeded both Free Register and Free Mask.)
Therefore we discuss the results for Free Opcode and Free Opcode/Mask together.
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attained or surpassed.
For most programs (all register set sizes and both cache hierarchies) Free Opcode(/Mask)

met or came close to the optimal performance of Free Register Bit. (For example, it was within
4% on average for 264 registers, and 10% for 352, on the small cache hierarchy.) With further
tuning of opcode selection and the use of other hybrid schemes (perhaps judiciously combining
Free Opcode, Free Mask, and Free Register), we expect that the gap between it and Free Register
Bit will be narrowed even further, and that we will achieve the upper bound of compiler-directed
register deallocation performance. Although the addition of the Free Mask to Free Opcode is
clearly desireable, there were certain results that indicated it needn’t always be used, as Free
Opcode actually outpeformed Free Opcode/Mask due to the overhead of the mask instructions.

In summary, by providing the hardware with explicit information about register lifetimes,
compiler-directed register deallocation can significantly improve performance on small SMT
register files, so that they become a viable alternative even with renaming register-intensive
applications. Although particularly well-suited for SMT, register deallocation should benefit any
out-of-order processor with explicit register renaming.

5 Related work

Several researchers have investigated register file issues similar to those discussed in this
paper. Large register files are a concern for both multithreaded architectures and processors with
register windows. Waldspurger and Weihl [27] proposed compiler and runtime support for
managing multiple register sets in a register file. The compiler tries to identify an optimal
number of registers for each thread, and generates code using that number. The runtime system
then tries to dynamically pack the register sets from all active threads into the register file. Nuth
and Dally’s [19] named state register file caches register values by dynamically mapping active
registers to a small, fast set of registers, while backing the full register name space in memory.

To reduce the required chip area in processors with register windows, Sun designed 3-D
register files [24]. Because only one register window can be active at any time, the density of the
register file can be increased by overlaying multiple register cells so that they share wires.

Several papers have investigated register lifetimes and other register issues. Farkas, et al. [6]
compared the register file requirements for precise and imprecise interrupts and their effects on
the number of registers needed to support parallelism in an out-of-order processor. They also
characterized the lifetime of register values, by identifying the number of live register values
present in various stages of the renaming process.

Martin, et al. [17] communicate dead-register information through a mechanism very similar
to our free-register instruction (the E-DVI instruction). The focus of that paper is to use the
information to dynamically eliminate unnecessary load and store instructions, particularly around
procedure calls, and achieve 0.4% to 4.8% improvements as a result. They do note its advantages
in physical register-size reduction, even for the single-thread architectures they consider. We
consider more effective mechanisms for communicating live ranges, and examine both single-
thread and multithreaded scenarios.

Franklin and Sohi [7] and Lozano and Gao [16] found that logical-register values have short
lifetimes, and often do not need to be committed to the register file. Both proposed compiler
support to identify last uses and architectural mechanisms to allow the hardware to ignore writes
to reduce register file traffic and the number of write ports, but neither applied these concepts to
register deallocation. Pleszkun and Sohi [20] proposed a mechanism for exposing the reorder
buffer to the compiler, so that it could generate better schedules and provide speculative
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execution. Sprangle and Patt [22] proposed a statically-defined tag ISA that exposes register
renaming to the compiler and relies on basic blocks as the atomic units of work. Part of the
register file is used for storing basic block effects, and the rest handles values that are live across
basic block boundaries.

Wallace and Bagherzadeh [29] move renaming-register allocation late in the pipeline, at
register-write, to reduce pressure on the register file. Janssen and Corporaal [11], Capitanio, et al.
[3], Llosa, et al. [13], Multiflow [4], and Kiyohara, et al. [12] also investigated techniques for
handling large register files, including partitioning, limited connectivity, replication, and the use
of new opcodes to address an extended register file.

6  Conclusions

Simultaneous multithreading has the potential to significantly increase processor utilization
on wide-issue, out-of-order processors, by permitting multiple threads to issue instructions to the
processor’s functional units within a single cycle. As a consequence, SMT requires a large
register file to support the multiple thread contexts. This raises a difficult design tradeoff,
because large register files can consume die area and impact performance.

This paper has introduced new software-directed techniques that increase utilization of the
registers in an SMT. Fundamental to these techniques is the global sharing of registers among
threads, both for architectural register and renaming register needs. By introducing new
instructions or additional fields in the ISA, we allow the operating system and compiler to signal
physical register deallocation to the processor, thereby greatly decreasing register waste. The
result is more effective register use, permitting either a reduction in register file size or an
increase in performance for a given file size.

We have introduced explicit software-directed deallocation in two situations. First, when a
context becomes idle, the operating system can indicate that the idle context’s physical registers
can be deallocated. This permits those registers to serve the renaming needs of other executing
threads. Our results show that such notification can significantly boost performance for the
remaining threads, e.g., a register file with 264 registers demonstrates performance equivalent to
a 352-register file when only 4 threads are executing. Second, by allowing the compiler to signal
the last use of a register, the processor need not wait for a redefinition of that register in order to
reuse it. We proposed several mechanisms for signalling last register use, and showed that on
small register files, average speedups of 1.6 can be obtained by using the most efficient of these
mechanisms. While our results are shown in the context of an SMT processor, these mechanisms
would be appropriate for any processor using register renaming for out-of-order instruction issue.
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