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Abstract

Data prefetching effectively reduces the negative effects
of long load latencies on the performance of modern proces-
sors. Hardware prefetchers employ hardware structures to
predict future memory addresses based on previous patterns.
Thread-based prefetchers use portions of the actual program
code to determine future load addresses for prefetching.

This paper proposes the use of a pointer cache, which
tracks pointer transitions, to aid prefetching. The pointer
cache provides, for a given pointer’s effective address, the
base address of the object pointed to by the pointer. We ex-
amine using the pointer cache in a wide issue superscalar
processor as a value predictor and to aid prefetching when
a chain of pointers is being traversed. When a load misses
in the L1 cache, but hits in the pointer cache, the first two
cache blocks of the pointed to object are prefetched. In addi-
tion, the load’s dependencies are broken by using the pointer
cache hit as a value prediction.

We also examine using the pointer cache to allow spec-
ulative precomputation to run farther ahead of the main
thread of execution than in prior studies. Previously pro-
posed thread-based prefetchers are limited in how far they
can run ahead of the main thread when traversing a chain of
recurrent dependent loads. When combined with the pointer
cache, a speculative thread can make better progress ahead
of the main thread, rapidly traversing data structures in the
face of cache misses caused by pointer transitions.

1 Introduction

The difference between the speed of computation and the
speed of memory access (the CPU-memory gap) continues
to grow. Meanwhile, the working set and complexity of the
typical application is also growing rapidly. Thus, despite the
growing size of on-chip caches, the performance of many ap-
plications is increasingly dependent on the observed latency
of the memory subsystem.

Data prefetching is one technique that reduces the ob-
served latency of memory accesses by bringing data into the

cache or dedicated prefetch buffers before it is accessed by
the CPU. One can classify data prefetchers into three general
categories. Hardware data prefetchers [3, 9, 10, 23] observe
the data stream and use past access patterns and/or miss pat-
terns to predict future misses. Software prefetchers [15] in-
sert prefetch directives into the code with enough lead time
to allow the cache to acquire the data before the actual ac-
cess is executed. Recently, the expected emergence of mul-
tithreaded processors [27] has led to thread-based prefetch-
ers [1, 5, 6, 13, 14, 18, 19, 24, 28], which execute code in an-
other thread context, attempting to bring data into the shared
cache before the primary thread accesses it.

However, traditional prefetching techniques have diffi-
culty with sequences of irregular accesses. A common ex-
ample of this type of access is pointer chains, where the code
follows a serial chain of loads (each dependent on the previ-
ous one) to find the data it is looking for.

Some hardware approaches [23] can run ahead of the
main program when traversing a pointer-chain, since they
can predict the next address. This assumes that a history of
the pointer traversal over the miss stream can be captured in
the predictor. The accuracy of these techniques drops when
running too far ahead of the main thread, since the techniques
are based entirely on prediction. Accuracy can degrade be-
cause of (1) the address predictor being used, and (2) having
pointer traversals in a program guarded by branches (e.g.,
tree traversal) and these techniques do not incorporate con-
trol flow into their prediction.

Thread based techniques, such as speculative precompu-
tation [5, 6] (SP), have the advantage of using code from the
actual instruction stream, allowing them to accurately pre-
compute load addresses. A potential shortcoming of spec-
ulative precomputation is that cache misses can prevent the
speculative thread from making progress faster than the main
thread when traversing pointer chains with little other inter-
vening computation,

In this paper we introduce a specialized cache used to
aid prefetching that focuses just on pointer loads. The
Pointer Cacheis specifically targeted at speeding up recur-
rent pointer accesses. The pointer cache only stores pointer
transitions (from one heap object to another), effectively pro-
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viding a compressed representation of the important pointer
transitions for the program. We examine using the pointer
cache as a prediction table of object pointer values when a
load executes. We also use a hit in the pointer cache to initi-
ate a prefetch of the object to provide pointer-based prefetch-
ing for the main thread of execution. To keep the pointer
cache up to date in the face of changing data, our design
uses Store Teaching, to update the pointer transitions when
they change.

We find that using a pointer cache to provide pointer base
addresses overcomes serial accesses to recurrent loads for
an SMT processor with support for prefetching via specu-
lative precomputation. The pointer cache is particularly ef-
fective in combination with speculative precomputation for
two reasons. It prevents the speculative thread from being
hampered by long, serial data accesses. Data speculation oc-
curs in the speculative thread rather than the main thread, al-
lowing greater distance between the speculative computation
and the committed computation. Furthermore, the control
instructions in the speculative threads allow them to follow
the correct object traversal path resulting in very accurate
preloading of cache lines to be required by the main thread.

The pointer cache organizations we examine in this paper
are not necessarily small (or fast) structures, but are an alter-
native to overly large on-chip cache structures that provide
little marginal performance on many applications. We show
that a pointer cache in combination with a smaller traditional
cache can be a more effective use of processor transistors.

The rest of the paper is organized as follows. Section 2
discusses prior prefetching models. Section 3 describes the
Pointer Cache, Section 4 its use in accelerating single-thread
performance, and Section 5 its use in accelerating specula-
tive precomputation. Simulation methodology and bench-
mark descriptions can be found in Section 6. Section 7
presents performance results, and Section 8 concludes.

2 Related Work

We build on research from both hardware-based pointer-
chain prefetchers and thread-based prefetching. In this sec-
tion we discuss these prior prefetching architectures and
other related work.

2.1 Hardware Pointer Prefetchers

In Shadow Directory Prefetching by Charney and
Puzak [2], each L2 cache block has a shadow address asso-
ciated with it. The shadow address points to the cache block
accessed right after the corresponding cache block, provid-
ing a simple Markov transition. A hit in the L2 cache with
a useful shadow entry triggers a prefetch of the shadow ad-
dress.

Joseph and Grunwald introduce using Markov predictors
for prefetching [9]. When a cache miss occurs, the miss ad-

dress is used to index into the Markov prediction table to
provide the next set of possible cache addresses that previ-
ously followed this miss address. After these addresses are
prefetched, the prefetcher stays idle until the next cache miss.
They do not use the predicted addresses to re-index into the
table to generate more predictions for prefetching.

Farkas et al. [8] propose a stream buffer architecture that
uses a PC-basedstride predictor to provide the stride on
stream buffer allocation. Their PC-stride predictor deter-
mines the stride for a load instruction by indexing into a
stride address prediction table with the instruction PC. The
PC-stride predictor records the last miss address for N load
instructions, along with their program counter values in an
associative buffer. Thus, the stride prediction for a stream
buffer is based only on the past memory behavior of the load
for which the stream buffer was allocated.

A stream buffer is allocated on an L1 cache miss sub-
ject to allocation filters [8]. The stride predictor is accessed
with the missing load’s PC to store the stride into the stream
buffer. The stream buffer starts prefetching cache blocks
separated by the constant stride, starting with the one that
missed in the L1 cache. On subsequent misses, the stream
buffers are probed and if the reference hits, that block is
transferred to the L1 cache. A stream buffer can issue
prefetches only if it has empty entries available for prefetch-
ing. Once all entries are full, the stream buffer waits until
it incurs a hit and an entry becomes available or until the
stream buffer is reallocated to another load.

Sherwood, et al. [23] propose a decoupled architecture
for prefetching pointer-based miss streams. They extend the
stream buffer architecture proposed by Farkas et al. [8] to
follow prediction streams instead of a fixed stride. Predictor-
directed stream buffers achieve timely prefetches since the
stream buffers can run independently ahead of the execution
stream, filling up the stream buffer with useful prefetches.
Different predictors can be used to direct this architecture al-
lowing it to find both complex array access and pointer chas-
ing behavior over a variety of applications. In addition, they
present a new stream buffer allocation and priority schedul-
ing technique based on confidence.

Recently, Cooksey et al. [7] presented a content-aware
prefetching technique that examines each address-sized
word in a cache line for a potential prefetch address on a
demand L2 miss fill. After translation, addresses are issued
as prefetches into the L2 cache. Upon returning from the
memory hierarchy, prefetched cache lines are further exam-
ined for potential prefetch addresses provided they are within
a certain prefetch distance threshold.

Our baseline architecture for the simulations in this paper
includes the per PC-stride predictor proposed in [8] along
with the confidence based stream buffer allocation and prior-
ity scheduling techniques detailed in [23].
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2.2 Thread-Based Prefetchers

Several thread-based prefetching paradigms have been
proposed, including Collins et al.’s Speculative Precomputa-
tion (SP) [6], Zilles and Sohi’s Speculative Slices [28], Roth
and Sohi’s Data Driven Multithreading [18], Luk’s Soft-
ware Controlled Pre- Execution [13], and Annavaram’s Data
Graph Precomputation [1].

Speculative precomputation [6] works by identifying the
small number of static loads, known as delinquent loads, that
are responsible for the vast majority of memory stall cycles.
Precomputation slices (p-slices), sequences of dependent in-
structions which, when executed, produce the address of a
future delinquent load, are extracted from the program be-
ing accelerated. When an instruction in the non-speculative
thread that has been identified as a trigger instruction reaches
some point in the pipeline (typically commit or rename),
the corresponding p-slice is spawned into an available SMT
thread context.

Speculative slices [28] focus largely on the use of precom-
putation to predict future branch outcomes and to correlate
predictions to future branch instances in the non-speculative
thread, but they also support load prefetching.

Software controlled pre-execution [13] focuses on the use
of specialized, compiler inserted code that is executed in
available hardware thread contexts to provide prefetches for
a non-speculative thread.

Data graph precomputation [1] explores the runtime con-
struction of instruction dependence graphs (similar to the
p-slices of SP) through analysis of instructions currently
within the instruction queue. The constructed graphs are
speculatively executed on a specialized secondary execution
pipeline.

2.3 Additional Pointer-based Prefetchers

Jump pointers are a software technique for prefetching
linked data structures. Artificial jump pointers are extra
pointers stored into an object that point to other objects some
distance ahead in the traversal order. On future traversals
of the data structure, the targets of these extra pointers are
prefetched. Natural jump pointers are existing pointers in the
data structure used for prefetching. It is assumed that when
an object is visited one of its neighbors will also be accessed
in the near future and prefetches are issued for all the pointer
fields in the object. These techniques were introduced by
Luk and Mowry [12] and refined in [11] and [17]. Roth et
al. [16] also looked at dependence based prefetching which
identifies producer-consumer pairs of accesses. A prefetch
engine then speculatively traverses these and prefetches them
as it goes.

Recently Chilimbi and Hirzel [4] proposed an automated
software approach based on correlation. Their scheme first

gathers a data reference profile via sampling. Next, they pro-
cess the trace to extract data reference sequences that fre-
quently repeat in the same order. At this point, the system
inserts prefetch instructions to detect and prefetch these fre-
quent data references. The sampling and optimization are
done dynamically at runtime with very low overhead.

3 Pointer Cache

The Pointer Cache holds mappings between heap point-
ers and the address of the heap object they point to. This
structure is organized like a cache, but with only word-length
lines since we want to store only the important pointer tran-
sitions to maximize the utility of the structure. Since we are
only interested in capturing pointer transitions, the pointer
cache stores load values only if the address of the pointer
and the address of the object it points to fall within the range
of the heap.

The primary function of the pointer cache is to break the
serial dependence chains in pointer chasing code. When one
load depends on the data loaded by another, a cache miss by
the first load forces the second load to stall until the first load
completes. When executing a long sequence of such depen-
dent pointer-chasing loads, instructions can only be executed
at the speed of the serial accesses to memory.

3.1 Identifying Pointer Loads

Only pointer loads are candidates to be inserted into the
pointer cache. We assume simple hardware support for iden-
tifying pointer loads, which are loads that access a heap ad-
dress, loading a value which is also in the range of the heap.
A load is identified as a pointer load if the upper N bits of
its effective addressmatch the upperN bits of the value be-
ing loaded. In this study we assume N to be 6 bits. We
found that not inserting loads into the pointer cache whose
effective addresses point to the stack provided higher perfor-
mance than including them. Therefore, all load instructions
with the stack pointer as a source register are classified as
not being pointer loads in our study. This approach for dy-
namically identifying heap loads was proposed by Cooksey
et al. [7]. They found that comparing the upper 8 bits was
sufficient for their benchmark suite.

3.2 Pointer Cache Architecture

Figure 1 shows a processor organization for including a
pointer cache. The pointer cache is queried in parallel with
the L1 cache and returns the address of the object pointed
to. This value is consumed by instructions dependent on
the load, breaking the serial nature of the memory access.
Pointer cache entries are optionally tagged with the source
memory address they correspond to in order to avoid false
hits. In this study, we assume partial tags.
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Figure 1. Pipeline organization of a processor with a pointer cache.

Because the pointer cache predicts a full memory address,
the returned value can be directly used by instructions de-
pendent on the load. Subsequent loads may result in further
accesses to the cache and/or pointer cache, allowing parallel
access to these serial data structures.

The pointer cache is updated by pointer based accesses
(loads or stores) when they commit. When a pointer based
load (a heap load which loads a pointer to another heap loca-
tion) commits, it queries the pointer cache with the address it
had accessed. If no entry is found for this address, the load is
classified as a pointer load as described above, and the load
had missed in L3 cache, a new pointer cache entry is allo-
cated for the load. We only install a new pointer entry on
L3 misses. This reduces contention for pointer cache entries
and ensures maximum benefit is derived from each pointer
cache entry. More aggressive or targeted filtering techniques
are also possible. If a pointer load hits in any level of data
cache, but the loaded value does not match the value stored
in the pointer cache entry, then that pointer cache entry is
updated.

Existing pointer cache entries must be updated when the
program modifies pointer values. Otherwise, the pointer
cache will lose effectiveness by returning incorrect infor-
mation when queried. Such pointer cache misspeculations
(in which a pointer cache hit occurs, but an incorrect mem-
ory value is returned), are avoided through the use of Store
Teachingto compensate for the dynamic nature of data struc-
tures. This technique queries the pointer cache on all stores,
and, on a hit, updates the relevant pointer cache entry with
the store value. Store teaching updates occur in the commit
stage of the pipeline. If a pointer cache with full tags em-
ploys store teaching, and is exposed to the system’s cache
coherence mechanisms, then values loaded from the pointer
cache can safely be used by the processor without special
care for misspeculation. However, in this research we as-
sume only partial tags, so the value returned from the pointer
cache could be incorrect. Even though we found this situa-
tion to be rare, the address returned by the pointer cache must
be treated as speculative. Therefore, the load cannot commit
until it verifies the predicted value against the actual loaded
value. Section 4 describes this situation in more detail.

for(ptr){
.
.
.

if(ptr->x)
ptr=ptr->left;

else
ptr=ptr->right;

}
.
.
insert(s);
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Figure 2. This figure illustrates the different
operations performed on the pointer cache:
training (1), prediction (2), and store teaching
(3).

3.3 An Example Pointer Cache Use

Figure 2 illustrates the possible operations on a pointer
cache. In this example q and r are the left and right children
of p respectively. On the first traversal of this data struc-
ture, the pointer cache is updated with q at &p->leftwhen
we execute the ptr=ptr->left transition (1). Similarly,
when we follow the other link we store r at &p->right.
On a subsequent traversal of the data structure, a dereference
of ptr->left which misses in cache results in a pointer
cache hit, returning the address of q (2). Finally, when a later
modification of the data structure takes place, (in this case,
causing p->left to point at s), the pointer cache detects
the update via store teaching, and updates the corresponding
pointer cache entry (3).

4 Using Pointer Cache for Value Prediction
and Main Thread Prefetching

We first examine using the pointer cache for a single-
threaded wide-issue superscalar processor. This section de-
scribes using the pointer cache for two distinct purposes. The
first purpose is to use the values out of the pointer cache to
break true data dependencies exposing additional ILP. The
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second purpose is to initiate prefetching when a load hits in
the pointer cache.

4.1 Using the Pointer Cache to Predict Values

We access the pointer cache with a load’s effective ad-
dress in parallel with the data cache. A pointer cache hit pro-
vides a predicted value for the load. This provides the base
address for an object to potentially be used by subsequent
loads to access that object’s fields. For programs where the
critical loop path consists of instructions performing serial-
ized pointer chasing, value predicting the base addresses ef-
fectively allows multiple loop iterations to execute in paral-
lel.

If the predicted address differs from the value which was
loaded, the misspeculation must be repaired, either by reexe-
cuting instructions dependent on the load, or by flushing the
pipeline. Note that very few misspeculations (less than 0.2%
of all pointer cache accesses) occurred in our results because
of the use of store teaching and 10-bit partial tags.

4.2 Using the Pointer Cache to Aid Prefetching

When using a pointer cache to provide predicted values,
the consumers of this value are typically loads to various
fields of the object. The predicted object’s cache blocks will
not be loaded into the data cache (assuming they are not al-
ready there) until the first consumers of each block of the
object are executed. It can take several cycles from the time
the pointer cache prediction was made until these first con-
sumers are executed. This can occur because of resource
contention, or because the first consumer of a block may
be statically compiled a reasonable distance from the base
pointer load. Consequently, programs can benefit from ini-
tiating the prefetch of the object when we get a hit in the
pointer cache.

To use the pointer cache for main thread prefetching,
when a load hits in the pointer cache, we initiate a prefetch of
the pointed-to address and the sequential next line after that
into the L2 cache. We blindly prefetch two blocks for the
object, since many objects do not fit into one cache block.
More accurately predicting the object size for prefetching is
a goal of planned future work.

5 Using Pointer Cache with Speculative Pre-
computation

This section describes the use of the pointer cache to aid
speculative precomputation, enabling it to get farther ahead
of the main thread of execution. Unlike the main thread,
speculative threads are not bound by the correctness require-
ment, and can freely integrate pointer cache address predic-
tions into their thread context without verification.

5.1 Control Oriented Speculative Precomputation

This work assumes a Speculative Precomputation archi-
tecture similar to that described in [6], on a simultaneous
multithreading [26, 27] (SMT) processor. For this work,
speculative threads are generated off-line and trigger instruc-
tions are identified manually. Speculative threads fetch in-
structions out of a dedicated hardware Slice Cache, avoiding
fetch related conflicts with the main thread.

Unlike the prior speculative precomputation work in [6],
speculative threads constructed for this research can contain
important conditional branches. One of the primary bene-
fits of SP in this architecture is the ability to correctly follow
control flow. Allowing SP to resolve branch instructions and
recover from branch mispredictions provides the ability to
accurately traverse control flow to find out what pointer tran-
sition to follow next. This is particularly important when
there are several possible next pointer transitions for a given
loop construct.

Control speculation in the speculative threads is han-
dled just like a non-speculative thread — fetch is guided by
branch prediction, and on a branch misprediction all instruc-
tions following the mispredicted branch are squashed and
the speculative thread is redirected down the correct control
path.

Because slices contain branches in this research, poor
branch prediction resulting from a cold branch predictor
could hamper the speculative threads’ ability to get ahead
of the main thread. Therefore, we assume an architecture
that allows the speculative thread to benefit from the branch
predictor training of the main thread. For conditional branch
prediction, we would ideally like to have the same hash bits
for the speculative thread branch PCs as the original main
thread code. Thus, we assume that the speculative thread
code is laid out so that the PC bits used for the branch pre-
diction hash are the same between the branch in the main
thread and its duplicate in the speculative thread. Therefore,
the speculative thread will use the same 2-bit counters for
prediction as the main thread, but in our implementation the
speculative threads do not update the conditional branch 2-
bit counters when the branch completes. For branch target
address prediction, the speculative branch stream needs to
be executed once and inserted into the branch target buffer
before taken branches on the SP thread can enjoy no fetch
stalls.

5.2 Using the Pointer Cache with Speculative Pre-
computation

The pointer cache is used by speculative threads only as a
value prediction. When a speculative thread executes a load,
the pointer cache is accessed in parallel. On a pointer cache
hit, the load is marked as ready to commit (in addition to
waking up its dependent instructions) even though its mem-
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ory request is still outstanding. Since the speculative thread
doesn’t have to be correct, we do not wait until the load
comes back from memory before committing a load that hits
in the pointer cache. In comparison, the main thread, when
using the pointer cache speculatively, must validate the value
prediction before the load and its dependencies can complete
execution, which may cause the main thread’s fetch to stall
due to a full instruction window. Thus, SP makes it possi-
ble for speculative computation to advance well ahead of the
main thread when the speculative thread incurs a sequence
of pointer cache hits.

5.3 Making Speculative Threads

Speculative threads are constructed manually, using an
approach similar to the automatic construction described
in [5]. We start with loads that account for the majority of
misses for the program, which we call delinquent loads. The
program’s static instructions are analyzed in the reverse order
of execution from a delinquent load, building up a slice of in-
structions the load is directly and indirectly dependent upon.
As instructions are traversed, the set of registers (the reg-
ister live-in set) necessary to compute the address accessed
by the delinquent load is maintained — when an instruction
is encountered which produces a register in this set, the in-
struction is included in the slice, and the register set is up-
dated by clearing the dependence on the destination register,
and adding dependences for the instruction’s source regis-
ters. If, during analysis, another load which has been identi-
fied as delinquent is analyzed, it is automatically included in
the slice.

If only a single dominant control path leads to the delin-
quent load, only this control path is traversed (in reverse
order) when constructing the slice, and the conditional
branches necessary to compute this control path are not in-
cluded in the slice. Slice construction terminates when an-
alyzing an instruction far enough from the delinquent load
that a spawned thread can provide a timely prefetch, or when
further analysis will add additional instructions to the slice
without providing further performance benefits. In this form,
a slice consists of a sequence of instructions in the order they
were analyzed.

The single path slices constructed in this work are trig-
gered typically between 40 and 100 instructions prior to the
delinquent load, and contain between 10 and 15 instructions.
In some cases, moving the trigger instruction further back
would make the slice less profitable because doing so re-
quires a significant increase in the number of executed spec-
ulative instructions. For example, when the targeted delin-
quent loads are preceded by computation of a hash function,
including this hash function in the slice may degrade perfor-
mance.

If multiple control paths lead to the delinquent load, the
constructed slice must contain the dependence chains from

each path, and must also include the relevant branches to
determine which path to take when executing the slice. In
addition, if there are multiple delinquent loads on differ-
ent paths that define the same register, then those loads
and their corresponding branches are included into the same
slice. For example, the slice formed for Figure 2 includes
the loop branch, the if (ptr->x) branch and its register
operand definitions, and the two loads ptr=ptr->left
and ptr=ptr->right.

Slices which contain multiple paths are typically targeting
delinquent loads within a loop. The slice formation is termi-
nated when analysis reaches an instruction sufficiently far
preceding the loop (in which case the last instruction added
is marked as a trigger instruction), or when the live-in set
converges for all of the control flow paths and the instruc-
tions in the slice. Branches that are not critical to the slice
are marked as predict-only. This means that those branches
will only generate a prediction, and the speculative thread
will not verify the correctness of the prediction. In addi-
tion, these branches cannot cause a speculative thread to be
terminated, which we describe in more detail below. These
predict-only branches are inserted into speculative threads in
order to keep the global branch history information accurate
for the main thread, and to keep the speculative branch out-
come FIFO synchronized with the branches seen by the main
thread. Keeping global branch history accurate in the specu-
lative thread is important since the main thread and specula-
tive thread share the 2-bit predictor entries.

The multiple-path slices with control flow consist of be-
tween 8 and 40 static instructions for the programs we ex-
amined, with some instructions unique to a particular control
path. In comparison, the original targeted loops contain be-
tween 27 and 171 instructions. Some slices consist of a sig-
nificant number of the instructions making up a loop (�50%
of the loop instructions) when address computation is com-
plex, or when a significant number of branch outcomes must
be computed.

5.4 Spawning Speculative Threads

When an instruction in the main thread which has been
identified as a trigger instruction reaches the register rename
stage, a speculative thread is spawned into a hardware thread
context if one is available and another instance of the same
speculative thread is not already executing. The speculative
thread’s context is initialized by copying the necessary reg-
ister live in values from its parent thread, and by copying the
global history register value (at the time the trigger instruc-
tion was fetched) from its parent thread, ensuring the accu-
racy of the branch predictions performed by the speculative
thread.

Speculative threads spawn further child threads via ex-
plicit child spawn instructions (the chaining triggersof [6])
in the speculative thread. Unlike when spawning threads off

6



of the main thread, a child thread is spawned even if there is
already another instance of that particular thread executing.
A speculative thread that attempts to fetch a spawn instruc-
tion when all thread contexts are occupied is prevented from
doing so, and stops fetching until a thread context becomes
available.

5.5 Maintaining Control of the Speculative
Threads

The branch predictor for our SMT architecture is shared
among all of the threads, but each thread maintains its own
global history of executed branches. We call this the branch
outcome FIFO queue. When a speculative thread is forked,
the parent thread’s speculative global history register, when
the trigger point was fetched, is copied to the speculative
thread. From that point on, the speculative thread performs
its own branch predictions and keeps track of its predicted
global branch history in the FIFO global history queue.

The speculative thread keeps track of the outcomes of
all executed branches that have not committed in the main
thread, starting from the trigger point. This enables two im-
portant mechanisms — killing of speculative threads which
have deviated from the main thread’s control flow, and a
feedback mechanism to control how far ahead a speculative
thread is allowed to go.

The first mechanism is achieved by comparing the head
of this FIFO with each main thread branch that commits, and
killing the speculative thread when they differ. If the branch
outcomes agree, the head entry is removed. A speculative
thread can be on the wrong path because the formation of
the speculative thread has left out an instruction (e.g., a store)
that would affect at a later point an outcome of a branch on
the speculative thread. Note, that if the FIFO entry was pro-
duced by a predict-only branch, this check is not performed.
Predict-only branches do not cause a speculative thread to be
terminated.

The second mechanism is achieved by preventing a spec-
ulative thread from fetching when this FIFO exceeds a limit.
Each slice can have its own limit. The multi-path slices we
created had this limit set between 8 and 256 branches, to tar-
get traversing several loop iterations ahead.

The branch outcome FIFOs can also provide a simple
mechanism for guiding main thread branch prediction with
outcomes computed in a speculative thread. However, be-
cause this study focused only on the use of speculative
threads for prefetching, computed branch outcomes are not
used for this purpose. This is a topic of future work.

6 Methodology

Benchmarks are simulated using SMTSIM [25], a cycle
accurate, execution driven simulator that simulates an out-
of-order, simultaneous multithreading processor. SMTSIM

executes unmodified, statically linked Alpha binaries. Ta-
ble 1 shows the configuration of the processor modeled in
this research. Programs are simulated for 300 million com-
mitted instructions or until completion, starting with a cold
cache.

This paper studies eight memory limited benchmarks.
mcf, parser, and vpr are from the SPECINT2k suite
and em3d is from the Olden suite. Dot is taken from the
AT&T’s GraphViz suite. It is a tool for automatically mak-
ing hierarchical layouts of directed graphs. Automatic gen-
eration of graph drawings has important applications in key
technologies such as database design, software engineering,
VLSI and network design and visual interfaces in other do-
mains. We also used gawk, which is the GNU Project’s im-
plementation of the AWK programming language. Finally
our benchmark suite includes sis which is an interactive
program for the synthesis of both synchronous and asyn-
chronous sequential circuits, and vis which integrates the
verification, simulation, and synthesis of finite-state hard-
ware systems.

Benchmarks from the SPEC suite are compiled for a base
SPEC build, and other benchmarks are compiled with gcc
-O4. All simulations except em3d and gawk run for 300
million instructions after first skipping program initialization
code as determined by the SimPoint tool [21, 22]. Em3d
and gawk are run from the beginning until completion. Ta-
ble 2 presents additional details on the simulated bench-
marks, including the fraction of simulated instructions which
are loads, and data cache miss rates for each level of cache
when executing each program with no prefetching.

We examine two architectures that use stream buffers.
The first is the baseline program counter based stride
prefetcher proposed by Farkas et al. [8] (stride prefetching).
The second is the Stride-filtered Markov(SFM) predictor
proposed by Sherwood et. al. [23]. For all stream buffer
configurations, we use the confidence-based allocation and
priority-based scheduling described in [23]. The stride con-
figuration uses a 256-entry, 4-way associative stride address
prediction table. For the stride-filtered Markov scheme, we
utilize a similar 256-entry 4-way stride address prediction ta-
ble to filter stride predictions out of a 256K-entry Markov ta-
ble – this makes the Markov table roughly comparable in size
to our most common pointer cache configuration. For both
the stride and the stride filtered Markov architectures we use
8 stream buffers, each with 4 entries. All stream buffers are
checked in parallel on a lookup. In addition, when a stream
buffer generates a prediction, all stream buffers are checked
to guarantee that the stream buffers do not follow overlap-
ping streams. Unless otherwise noted, all the techniques uti-
lize the PC-based stride predictor along with 8 stream buffers
with 4 entries each.

The speculative precomputation technique makes use of
an SMT processor with 8 thread contexts. As described in
the previous section, the precomputation slices are created
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Pipeline Structure 8 stage pipeline, 1 cycle misfetch penalty, 6 cycle minimum mispredict penalty
Fetch 8 instructions total from up to two threads
Branch Predictor 88kbit 2Bc-gskew branch predictor modeled after the EV8 [20] branch predictor but with

instantaneous global history update (which also accounts for its smaller size)
256 entry 4-way associative BTB

Execution Resources 6 total int units, 4 can perform mem ops, 3 fp. All units pipelined, 256 int and 256 fp
renaming regs 128 entry int and fp instruction queues. Each thread has a 384 entry commit buffer

Memory Hierarchy 64KB, 2-way instruction cache, 64KB, 2-way data cache
256KB, 4-way shared L2 cache (10 cycles round trip time)
2048KB, 8-way shared L3 cache (30 cycle round trip time)
Memory has a 230 cycle round trip time, 128 entry instruction and data TLB
TLB misses handled by pipelined, on chip TLB miss handler, 60 cycle latency

Prefetching Stride prefetcher with a 256-entry, 4-way stride table, 8 stream buffers of 4 entries
with 1 cycle access time

Multithreading 8 total hardware thread contexts

Table 1. Assumed baseline architecture simulation parameters.

Bench FFwd % lds L1 MR L2 MR L3 MR
dot 5.1B 40.0% 26.7% 88.7% 97.1%
em3d 0 30.9% 7.6% 89.0% 74.5%
GNU awk 0 28.3% 1.2% 25.5% 67.8%
mcf 50.8B 30.8% 10.6% 82.2% 83.2%
parser 228B 23.4% 2.3% 59.9% 37.8%
SIS 5B 27.6% 2.3% 58.4% 23.0%
VIS 5B 24.5% 1.9% 84.4% 86.4%
vpr 31.8B 32.6% 2.8% 67.9% 50.1%

Table 2. Details of simulated benchmarks.
Data cache miss rates are shown for a proces-
sor which performs no hardware prefetching.

by hand.
Each pointer cache entry is comprised of a 10-bit partial

tag and a 26-bit differential address field. The address field
stores the difference between the indexing address and the
value stored in the entry to conserve area. Using 26 bits of
difference was enough to cover the whole memory space for
the programs we examined. The overall size of the 256K
entry pointer cache is 1.1MB, which is about the size of a
1MB cache along with its tags. As for the partial tags, tag-
width sensitivity analysis showed that tags wider than 8 bits
result in very few tag mismatches — less than 1%.

7 Prefetching Performance

This section compares the pointer-cache assisted unipro-
cessor and speculative precomputation architectures to prior
prefetching techniques which have been shown to per-
form well on pointer intensive programs. The prior tech-
niques include speculative precomputation [6] (SP) alone
and Predictor-directed Stream Buffers [23] (PSB) as de-

scribed in Section 2.

7.1 Previous Prefetching Mechanisms

We first explore the performance impact of prior prefetch-
ing schemes. Figure 3 shows performance results with
no prefetching, prefetching using a program counter stride
predicted stride stream buffer (stride prefetching), Stride-
Filtered Markov (SFM), Speculative Precomputation (SP),
and a new combination not examined in prior literature,
which combines stride stream buffers with speculative pre-
computation.

The results show that stride-based prefetching provides
large speedups for dot, em3d, and parser. Speculative
precomputation by itself performs well on sis and vpr, but
misses a lot of potential benefit the simple stride prefetcher
achieves. Therefore, we combined the stride prefetcher with
speculative precomputation, and found that this provided the
best overall results on average.

When combining speculative precomputation with stride
prefetching, we allow the speculative threads to access the
stream buffers and the stride predictor along with the main
thread. To make the stride predictor thread-aware, we ex-
tended the load PCs used to update the predictor with thread
IDs. This increases the accuracy of the predictor on a per-
thread basis, maximizing the stream buffer efficiency. Spec-
ulative threads are treated as equals with the main thread
with respective to all stream buffer functions (e.g., spawn-
ing stream buffers on a data cache miss). The results show
that combining stride with speculative precomputation pro-
vides on average 7% speedup over only using stride, and
21% speedup over only using speculative precomputation.

Unlike the other benchmarks, em3d shows a very
dramatic speedup (almost 300%) from using only stride
prefetching over the next best approach. The traversal of
em3d’s data structures occur in the same order in which
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Figure 3. Performance improvement from pre-
vious prefetching schemes.

they memory allocated, and the data structure pointers do
not change during execution. Because of this and the fact
that the memory allocator allocates the objects to sequential
addresses in a linear order, em3d’s object traversal is highly
stride prefetchable.

Two benchmarks, dot and mcf, involve significant num-
bers of dependent pointer dereferences. The stride-filtered
Markov scheme provides the best performance for these two
programs because the stream buffers are able to use address
prediction to run ahead of the main thread. Speculative pre-
computation, in contrast, is hampered by the serial nature of
these memory accesses, and has difficulty prefetching ahead
of the main thread. Subsection 7.3 illustrates how the pointer
cache enables SP to overcome this limitation.

7.2 Main Thread Pointer Cache Prefetching

In this section we evaluate the benefits of allowing the
main thread to use the pointer cache (PC) to hasten issue of
instructions dependent on a pointer load. We compare sev-
eral pointer cache configurations with varying capacity and
access latency to a baseline architecture with stride prefetch-
ing (labeled No PC in the graphs).

Figure 4 displays the effects of permitting the main thread
access to a pointer cache with varying access times (between
5 and 15 cycles). All the pointer cache configurations are
4-way set-associative and have 256K entries, except the last
one with 16 Meg entries. The first pointer cache bar shows
the effect of only using the pointer cache for value predic-
tion. The remaining bars use the pointer cache for value pre-
diction and prefetching into the L2 on a pointer cache hit. In
addition, all results have a baseline stride prefetching stream
buffer.

The results show that access latency is not a significant
factor in performance. This can be attributed to the pointer
cache allowing the main thread to hide long latencies asso-
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Figure 4. Performance impact when the main
thread is permitted to access a pointer cache
of varying sizes. All configurations also use
the stride prefetcher. No PC refers to the base-
line with only stride prefetching. Val pred only
shows results using the pointer cache for only
value prediction. All of the rest of the PC re-
sults use the pointer cache for both value pre-
diction and prefetching.
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Figure 5. Performance impact varying the
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ciated with off-chip cache misses. Increasing the access la-
tency beyond the 10 cycle L2 access to 15 cycles adversely
affects Sis, because most of the L1 misses in sis are ser-
viced by the L2 cache. Prefetching the pointer cache target
into L2 cache works particularly well for mcf and parser
over only using the pointer cache for value prediction. Since
an increase in pointer cache hit latency results in a delay in
initiating prefetches for the target object, these benchmarks
suffer some performance degradation with a 15 cycle pointer
cache. In comparison, dot also enjoys a significant benefit
from additional prefetching, but it is not affected by the in-
crease in access time since it is more capacity-limited than
latency-limited as described below.

For two benchmarks, em3d and sis, value prediction
only performs better than prefetching. This is because data
structures in both these programs are small, and prefetching
two cache lines pollutes the cache by bringing in irrelevant
data. This is especially true for em3d, where stride prefetch-
ing is already effective at prefetching the same loads which
are targeted by the pointer cache.

Figure 5 shows results for using the pointer cache for
value prediction and prefetching varying the number of
pointer cache entries. All configurations utilize stride
prefetching. These results show that performance is more
sensitive to the capacity of the pointer cache than to the la-
tency to access it. With the exception of dot and gawk,
the pointer data set for each program fits into a 256K en-
try, 4-way pointer cache. Dot has a large working set — it
has a 3% hit rate on a 2M, 8-way L3 cache — and incurs
pointer cache capacity misses for pointer caches with less
than one million entries. Gawk also traverses long recursive
data structures, creating the need for a large pointer cache.
It is interesting to note that gawk, parser and sis attain
noticeable speedups even with a relatively small 32K entry
pointer cache.

7.3 Pointer Cache Assisted Speculative Precompu-
tation

Figure 6 shows the performance impact when combin-
ing SP and stride prefetching while permitting speculative
threads to access a pointer cache for value prediction only.
For these results the pointer cache is not used by the main
thread of execution. The performance benefits from permit-
ting speculative threads access to the pointer cache are often
significant, varying between 2% and 236% over a processor
with no pointer cache.

In comparing Figures 4 and 6, some benchmarks achieve
a smaller speedup when combining SP with the pointer cache
than when only the main thread using the pointer cache. It
is not always possible (or profitable) to construct slices tar-
geting some loads in a program, but these loads may achieve
hits in the pointer cache when accessing it directly by the
main thread. Maximal benefit is achieved by permitting both
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Figure 6. Performance impact from combining
SP and stride prefetching when only using the
pointer cache for speculative precompuation
threads. The main thread does not use the
pointer cache.

the main thread and speculative threads access to the pointer
cache, which we present next.

7.4 Summary of Results

We now compare the performance of the pointer cache ar-
chitecture to a baseline architecture that uses the transistors
we devote to the pointer cache to instead increase the size of
the L3 cache. Figure 7 compares the performance of specu-
lative precomputation with stride prefetching using a 3 MB
L3 cache to the performance a 1 MB pointer cache and a 2
MB L3 cache. The 1 MB pointer cache is 4-way associative
and has 256K entries, each requiring 36 bits (as described in
Section 6). The 1 MB pointer cache is accessed in 20 cycles
to present a fair comparison to the 3MB L3 cache with 30 cy-
cles access time (which is the L2 access time plus 20 cycles).
We present results for four pointer cache configurations: (1)
allowing only the main thread to access the pointer cache to
perform value prediction, (2) allowing only the main thread
to access the pointer cache for value prediction and prefetch-
ing target objects, (3) allowing only the speculative threads
to access the pointer cache for value prediction, and finally
(4) allowing both the main thread and the speculative threads
to access the pointer cache for value prediction while using
it also for prefetching for the main thread.

For programs which experience a large number of serial-
ized pointer chasing related misses, the pointer cache pro-
vides very significant performance benefits over increasing
the L3 cache size; mcf achieves a speedup of more than
268% from using a pointer cache compared to increasing the
size of the L3 cache. Only em3d and vpr, which do not
significantly benefit from the pointer cache, perform better
with the larger L3 cache.
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Figure 7. Performance results comparing a
processor with a 2M 8-way L3 cache and 256k
entry 4-way, 20 cycle pointer cache against a
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3M, 12-way L3 cache. The pointer cache is
used for value prediction and prefetching for
all main thread (MT) results, except the second
bar, where the pointer cache is only used by
the main thread for value prediction. All con-
figurations access their L3 cache in 30 cycles.

8 Conclusions

A wide range of applications — from games to database
management systems — are based on dynamic data struc-
tures linked together via pointers. However, such accesses
are often not governed by the localities exploited by tra-
ditional cache organizations. Furthermore, misses to such
pointer-based loads, especially recurrent load accesses, sig-
nificantly restrict parallelism and expose the full latency to
memory.

In this paper we propose using a Pointer Cache to accel-
erate processing of pointer-based loads. The pointer cache
provides a prediction of the object address pointed to by a
particular pointer. If the load misses in cache, consumers
of this load can issue using this predicted address from the
pointer cache, even though the load itself is still outstanding.
Using the pointer cache for just value prediction provided
a 50% speedup over stride prefetching for a single-threaded
processor.

We also examine using the pointer cache to initiate
prefetches for the main thread of execution. On a pointer
cache hit, prefetches for the first two cache blocks of the ob-
ject are initiated. This provides an additional 5% speedup on
average over using the pointer cache for just value prediction
because the object’s cache blocks are accessed at the time of
prediction instead of waiting until their first use.

Another contribution of this paper is the examination of
adding stride prefetching and the pointer cache to specula-

tive precomputation. We found that a speculative precom-
putation architecture that incorporated a stride prefetching
architecture provided 7% speedup over using only a stride
prefetcher. Even with this improvement, we found that ap-
plying speculative precomputation with stride to a suite of
pointer intensive applications was ineffective for half of the
programs we examined, often because of recurrent loads.

To address this, we found that using the pointer cache in-
creases the effectiveness of speculative precomputation by
supplying speculative threads with pointer load values when
they otherwise would have been forced to stall due to cache
misses. This enables the speculative thread to prefetch far
ahead of the main thread. When executing recurrent loads,
the pointer cache is invaluable, as otherwise a cache miss by
any load prevents the speculative thread from making any
further progress ahead of the main thread until the data re-
turns. A challenge for speculatively prefetching object tran-
sitions, is dealing with objects that have several possible next
transition fields. To address this, we present a new form of
speculative thread that includes additional control flow in or-
der to accurately guide which next object transition to take.
This allows the speculative threads to preload the cache lines
that will soon be demanded by the main thread of execution.
Our results show that stride prefetching with speculative pre-
computation using a 2 MB L3 cache and a 1 MB pointer
cache is able to achieve 54% speedup on average over stride-
based prefetching with a 3 MB L3 cache. When both the
main thread and speculative precomputation threads using
the pointer cache for prefetching, the speedup increases to
62% on average. This shows that a pointer cache can be an
attractive alternative to increasing the L3 on-chip cache to
help reduce the memory bottleneck.
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