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ABSTRACT

In recent years, computer architects have proposed tiled ar-
chitectures in response to several emerging problems in pro-
cessor design, such as design complexity, wire delay, and fab-
rication reliability. One of these architectures, WaveScalar,
uses a dynamic, tagged-token dataflow execution model to
simplify the design of the processor tiles and their intercon-
nection network and to achieve good parallel performance.
However, using a dataflow execution model reawakens old
problems, including the instruction overhead required for
control flow. Previous work compiling the functional lan-
guage Id to the Monsoon Dataflow System found this over-
head to be 2—3x that of programs written in C and targeted
to a MIPS R3000.

In this paper, we present and analyze three compiler op-
timizations that significantly reduce control overhead with
minimal additional hardware. We begin by describing how
to translate imperative code into dataflow assembly and an-
alyze the resulting control overhead. We report a similar
2 — 4x instruction overhead, which suggests that the execu-
tion model, rather than a specific source language or target
architecture, is responsible. Then, we present the compiler
optimizations, each of which is designed to eliminate a par-
ticular type of control overhead, and analyze the extent to
which they were able to do so. Finally, we evaluate the
effect using all optimizations together has on program per-
formance. Together, the optimizations reduce control over-
head by 80% on average, increasing application performance
between 21-37%.

Categories and Subject Descriptors: C.1.3 [Processor
Architectures]: Data-flow Architectures; D.3.4 [Program-
ming Languages|: Compilers

General Terms: Performance

Keywords: tiled architecture, compiler, dataflow, Wavescalar
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1. INTRODUCTION

To address a set of critical, emerging problems in proces-
sor design, including complexity, wire delay and fabrication
reliability, many computer architects are shifting their focus
away from today’s complex, monolithic, high-performance
processors. Instead, they are designing a much simpler pro-
cessing element (PE) and compensating for its lower individ-
ual performance by replicating it across a chip and exploiting
the parallelism this provides. Examples of these tiled archi-
tectures include RAW [1], SmartMemories [2], TRIPS [3]
and WaveScalar [4]. A simple PE decreases both design and
verification time, PE replication provides robustness in the
face of fabrication errors, and the combination reduces wire
delay for both data and control signal transmission. The
result is a scalable architecture that enables a chip designer
to target different levels of performance with different area
budgets [5].

One of these tiled architectures, WaveScalar, is a tagged-
token dataflow machine [6, 7, 8, 9, 10, 11, 12]. It leverages
two key properties of dataflow computing, explicit instruction-
to-instruction communication and the dataflow firing rule,
to simplify the microarchitecture [4, 13, 5]. Direct producer-
to-consumer instruction communication enables WaveScalar
processors to optimize their communication infrastructure
around local point-to-point, packet-based routing networks.
The dataflow firing rule allows decisions about when an in-
struction can execute to be made locally, enabling the con-
struction of a distributed processor free of complex control
mechanisms.

While using the dataflow execution model eases the com-
plexity of building tiled processors in today’s process tech-
nology, it brings with it an old set of problems related to ef-
ficiently executing applications on a dataflow machine: (1)
an inability to execute imperative language code [14], (2)
the “parallelism explosion” of excessive loop iteration gen-
eration [15], and (3) the high control-instruction overhead
required for correct control flow [16]. WaveScalar solves the
first of these problems with a new dataflow interface to mem-
ory called wave-ordered memory [4]. It addresses the second
problem with k-loop bounding [12], a well-known solution.
The third problem, control-instruction overhead, is the sub-
ject of this paper.

Control-instruction overhead consists of the instructions
that determine the correct flow of execution within a pro-



[ WaveScalar Instruction Set (single-threaded) |

[ Operation [ Inputs [ Outputs [ Description |
Data steering
Select w:d, w:c w:d Pass d to one of two outputs based on c.
MERGE w:dy, wida,w:c | wic?dy : d2 | Pass di or do depending upon c.
INDIRECT-SEND w:d, w:a w:d Send a message w:d to the instruction at address a.
Tag management
‘Wave-Advance w:d w~+ 1:d Increment wave tag w.
N-WAVE-ADVANCE w:d, w w ~+ vid (signed) add to wave tag.
WAVE-TO-DATA w:k wiw Extract wave tag.
DATA-TO-WAVE wiu, wid u:d Modify wave tag.

Table 1: The WaveScalarISA: In addition to RISC-like instructions (add, load, etc.) and memory instructions,
the WaveScalar instruction set contains instructions that facilitate data steering and tag management, shown
here. The instructions that are the focus of the optimizations presented in this paper are shown in bold.

gram. On von Neumann processors this is largely com-
prised of branch instructions, which constitute roughly 15%
of dynamic instruction count [17]. In contrast, tagged-token
dataflow machines have two types of control instructions:
data-steering instructions and tag management instructions.

Data-steering instructions explicitly guide data values to
the correct path after a branch. Each live value requires
its own data-steering instruction, leading Hicks et al. to
observe on the order of twice as many data-steering instruc-
tions as execution instructions in their programs [16]. Our
own results validate this prior research, as we also find data-
steering instructions to be up to twice as numerous as com-
putation instructions.

Tag management instructions are inserted into tagged-
token dataflow programs to differentiate between multiple
dynamic instances of named program values (for example,
variables in simultaneously executing iterations of a loop).
Each of these values is flagged with a distinct tag, enabling
their iterations to execute in parallel. WaveScalar uses a
purely software-driven approach to tag management. The
compiler is responsible for managing the tag space, including
updating the tags for all live values. Our data show that
tag management instructions occur as frequently as data-
steering instructions, up to twice as often as computation
instructions.

For WaveScalar to be a viable alternative for future pro-
cessors, this overhead must be reduced. We present three
compiler optimizations that reduce control overhead by 80%
to only 30-45% of dynamic instructions. The optimizations
exploit the fact that control overhead instructions are, for
the most part, easily executed in parallel with computa-
tion [12]. The optimizations increase compile times by a
negligible amount and require only trivial changes to the
microarchitectural implementation.

We begin by providing a brief overview of the WaveScalar
architecture and microarchitecture. This overview summa-
rizes material that has been published elsewhere [4, 5].
Next, in Section 3, we illustrate how two simple snippets of
C code appear as WaveScalar assembly. These two examples
are used throughout the text to illustrate the optimizations.
This section also presents an overview of the WaveScalar C
compiler and the compiler algorithms used to insert control
instructions into an application’s dataflow graph.

Section 4 presents two of the three compiler optimiza-
tions and their hardware support. We call the optimizations
WAVEADVANCE-FOLDING and SELECT-FOLDING, as they con-
ceptually “fold” control operations together with computa-
tion instructions. We also evaluate the effectiveness of these
optimizations using a simulator of the WaveScalar microar-
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Figure 1: The WaveScalar Processor: The hierar-
chical organization of the WaveScalar microarchitec-
ture.

chitecture. Our data show that these two compiler passes
reduce control overhead by 67% on average.

We then explore the third control-overhead-reducing com-
piler optimization, a dataflow graph transformation tech-
nique we call FAR-HOISTING. FAR-HOISTING recognizes when
live values are unused in loops and minimizes the overhead
of updating their tags. Applied alone, this compiler pass
reduces control overhead by 22% on average.

We conclude our study by evaluating the effect of applying
all three optimizations together. Combining WAVEADVANCE-
FoLpING, SELECT-FOLDING and FAR-HOISTING reduces con-
trol overhead by 80%, improving application performance by
an average of 27%.

2. OVERVIEW OF WAVESCALAR

We begin by presenting WaveScalar, the target architec-
ture for the optimizations presented in later sections. We
confine our discussion to a high-level view of the architec-
ture, with specific details included only if they are relevant
to the optimizations. A more in-depth description of the
architecture appears in [4].

2.1 Dataflow instruction set architecture

WaveScalar is a dataflow architecture. Like all dataflow
architectures (e.g. [18, 19, 6, 7, 8, 9, 20, 10, 11, 12]), its bi-
nary consists of a program’s dataflow graph (DFG). Nodes
in the graph are instructions. Arcs are directed and rep-
resent operand dependences. While traditional machines



WaveCache Capacity 131,072 static

Clusters

64

PEs per Domain 8 (4 pods)

Domains / Cluster

4

PE Tnput Queue 16 entries, 4 banks

PE Output Queue 8 entries, 4 ports (2r, 2w)

Network Latency

within Pod: 1 cycle

PE Pipeline Depth 5 stages

within Domain: 5 cycles
within Cluster: 9 cycles (min)
inter-Cluster: 9 + cluster dist.

L1 Caches 32KB, 4-way set associative, || L2 Cache 16 MB shared, 1024B Tine, 4-way
128B line, 4 accesses per cycle set associative, 20 cycle access
Main RAM 1000 cycle latency Network Switch 4-port, bidirectional

Table 2: WaveScalar microarchitectural parameters.
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Scalar Opts
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Figure 2: Compiler Flow: The WaveScalar compiler
is based on the Scale compiler. Shaded boxes rep-
resent compilation passes added to compile and op-
timize WaveScalar code.

Select Insertion
WaveAdvance
Insertion

WaveScalar
Assembly

have a program counter that walks a program’s control flow
graph (CFG) and fetches instructions into a processing core,
dataflow machines do not. Instead, they have a “token
store”, which stores tokens comprised of operand values and
their instruction-identifying tags and matches input operands
to instructions. The token store in WaveScalar is distributed
across multiple processing elements (PEs): each PE contains
a small matching table that serves as the token store for the
instructions it will execute. When all of the operands for a
particular instruction have arrived in this table, the instruc-
tion can be executed. This is known as the dataflow firing
rule [18, 19].

The WaveScalar instruction set comprises RISC-like in-
structions which carry out most of program execution and
special memory operations that preserve memory order for
imperative language programs, thread-management instruc-
tions for executing multiple threads, and control overhead
instructions that facilitate data steering and tag manage-
ment. Since the semantics of these instructions has been
presented elsewhere [4, 13], we will discuss only the con-
trol overhead instructions which are the focus of this paper.
Table 1 presents a summary.

SELECT takes two input values, a data item and a con-
trol bit, and sends the data item to one of two consumers,
based on the value of the control bit. SELECT instructions
represent 28-42% of all instructions executed in unoptimized
WaveScalar binaries. MERGE is the inverse operation of SE-
LECT. It takes two data items and a control bit and, based
on the control bit, passes one of the data items to the out-
put. Since the WaveScalar compiler does not yet support
software speculation, it does not currently generate MERGES.
INDIRECT-SEND is used for function invocation and accounts
for less than 2% of instructions executed. Although we do
not address optimizing the use of INDIRECT-SEND in this
paper, common optimizations such as function-inlining are
effective in reducing them.

In this paper we focus on compiling single-threaded pro-
grams, and for these, the key tag manipulation instruc-

a=el
b =e2
if (1)

then

if (p_1)( _\F »2)

a=a*a; then else

else

(a)
Asimple Conditional in C

(c)
Unoptimized Data Flow Graph
- nodes are instructions
- edges are operand dependences

(b)
Control Flow Graph
- nodes are basic blocks
- edges are control flow dependences

Figure 3: Example of branching code.

tion the WaveScalar compiler employs is WAVE-ADVANCE.
In WaveScalar, the wave portion of a tag is used to dif-
ferentiate between several dynamic instances of the same
static instructions. For example, different iterations in a
loop and different invocations of a function begin on differ-
ent wave numbers. WAVE-ADVANCE simply increments the
wave number. Other wave instructions allow more compli-
cated wave number manipulation, convert wave numbers to
operand data, and set the wave field to a specific value.

2.2 Microarchitecture

Conceptually, each static instruction in a WaveScalar pro-
gram executes in a separate processing element (PE). Since
building a PE for each static instruction is an inefficient
use of hardware resources, the WaveScalar compiler maps
multiple instructions to a fixed set of PEs, each of which
contains a small, local instruction cache. This cache holds
up to 64 static instructions at a time. The microarchitecture
swaps instructions in and out of these caches as required by
program execution.

The microarchitecture consists of a grid of these simple, 5-
stage pipelined processing elements. To reduce communica-
tion costs within the grid, PEs are organized hierarchically,
as depicted in Figure 1. Two PEs are coupled, forming a
pod; within a pod, instructions can execute and send their
results to their partner PE in a single cycle. Four pods are
grouped into a domain, within which producer-consumer la-
tency is five cycles. Four domains form a cluster, which also
contains a memory-ordering store buffer and a traditional
L1 data cache. A single cluster, combined with an L2 cache
and main memory, is sufficient to run any WaveScalar pro-
gram. To build larger machines, multiple clusters are con-
nected by an on-chip, dynamically routed packet network;
communication latency between clusters depends upon the



a=el
b =e2!
while (p1) { while (p1)
a=a+b; a=a+b
}
c=a*b
Aave advance Aave udvunc&
(a) (b) (c)
A Simple Loop Control Flow Graph Unoptimized Data Flow Graph
inC - nodes are basic blocks - nodes are instructions
- edges are control flow - edges are operand dependences
dependences

Figure 4: Example of a simple loop.

distance between them on the chip. Data cache coherence
is maintained by a directory-based coherence protocol. The
coherence directory and the L2 cache are distributed around
the edge of the grid of clusters. Table 2 depicts the microar-
chitectural parameters of the design used in this study.

3. COMPILING FOR WAVESCALAR

Our WaveScalar compiler extends the Scale [21, 22] com-
piler to support dataflow execution and the WaveScalar ISA.
This section presents a brief overview of the compiler, in-
cluding the ordering of optimization passes. It concludes
with two examples of the code produced by the compiler
without our new control optimizations. Later sections will
revisit these examples to illustrate how control optimizations
affect the generated code.

3.1 Overview

Figure 2 depicts the overall compilation flow. The un-
shaded regions represent existing Scale compiler passes, which
remain largely unchanged. Our compiler adds the shaded
passes to generate and optimize WaveScalar programs.

The WaveScalar compilation path diverges from a con-
ventional compiler at the stage where register allocation
would traditionally take place. Being a dataflow machine,
WaveScalar has no registers. Instead, an effectively infi-
nite number of pseudo-registers can be stored in the pro-
cessor as tokens. To exploit this, we base our intermediate
representation on single static assignment (SSA) form [23].
Transforming code from SSA form to WaveScalar assembly
is straightforward: WaveScalar instructions become nodes
in a dataflow graph, and pseudo-register names become arcs
that connect these nodes. At this point, only two more
compilation passes, SELECT insertion and WAVE-ADVANCE
insertion, are required.

Select insertion: SELECT instructions steer data values
along the correct control path to consumer instructions. In-
stead of having an explicit branch instruction, the predicate
the branch would normally utilize is computed and directed
to a SELECT instruction. Each live-out from every basic
block is assigned its own SELECT instruction. The outputs
of the SELECT instructions become the inputs to the suc-
ceeding blocks.

Tag management insertion: A program’s dataflow graph
is partitioned into directed acyclic subgraphs or waves. For a
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ammp [ 0.365 | 42.4 30.0 7.0 79.4
art 0.812 [ 42.0 347 0.7 77.4
equake | 1.22 | 28.8 30.1 3.2 62.1
gzip 0.342 | 32.8 36.4 2.4 716
twolf || 0.296 | 31.4 39.1 5.6 76.1
[Mean [ 0.607 [ 355 [ 341 [ 37 [ 733

Table 3: Baseline performance (AIPC) and over-
head data: The overhead is calculated as the per-
centage of dynamic instructions executed that are
only for data-steering and only for tag management.

single-threaded program, tag management insertion consists
of inserting a WAVE-ADVANCE on each dataflow arc entering
any wave. Inserting WAVE-ADVANCES in this way ensures
that all tokens entering a wave have the same, unique wave
number.

WaveScalar does not require a temporal instruction sched-
ule, since execution is driven by the dataflow firing rule and
dynamically dispatched by the hardware. However, instruc-
tions must be scheduled in space (to particular PEs). Doing
so efficiently is the subject of ongoing work [24]. For this pa-
per, we utilize the best instruction scheduler available from
that work.

3.2 Examples

In this paper, we will illustrate optimizations with two
simple examples. The first is a straightforward if-then-else
block; the second is a small while loop. Figures 3 and 4
depict the C code, associated control flow graph, and unop-
timized WaveScalar assembly for these examples.

As Figure 3 demonstrates, at each branch the dataflow
assembly must have a SELECT instruction for each live data
value to send it to one path or the other at runtime. Simi-
larly, Figure 4 illustrates how live values are routed to each
loop iteration. Figure 4 also shows how WAVE-ADVANCE
instructions are inserted to uniquely name different itera-
tions of a loop. In the general case, every re-entrant basic
block must have a WAVE-ADVANCE instruction for every live
input. As discussed earlier, these two forms of control over-
head dominate computation.

3.3 Compiler output analysis

To evaluate the quality of the code our compiler generates,
we use a cycle-level simulator of the WaveScalar microarchi-
tecture. This simulator closely matches an RTL model [5]
for the processor but is significantly faster than RTL-based
simulation. The parameters to this simulator are shown in
Table 2. For this study, we use five benchmarks from the
SPEC2000 benchmark suite: ammp, art, equake, gzip, and
twolf. We use this subset because our tool chain can cor-
rectly process them.

Table 3 shows the baseline performance data from the
unoptimized compiler output. To generate these results, all
of the typical compiler optimizations (common subexpres-
sion elimination, dead code elimination, etc.) were enabled,
but the control-overhead optimization passes we added (de-
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(a)
Unoptimized Data Flow Graph
- nodes are instructions
- edges are operand dependences

c=a*b
wave advance

(b)
Optimized Data Flow Graph
- instructions may carry a wave advance
annotation

Figure 5: WaveAdvance-Folding: The dataflow
graph for an unoptimized simple loop (left) and with
WaveAdvance-Folding (right).

scribed below in Sections 4 and 5) were not. Bottomline
performance is expressed as AIPC, or Alpha-equivalent in-
structions per cycle. AIPC only counts computation (non-
overhead) instructions completed each cycle to facilitate com-
parison to a traditional RISC architecture. All control over-
head figures (for SELECTs, WAVE-ADVANCEs and total over-
head) are calculated as a percentage of the total instruc-
tions executed. As evident from Table 3, a significant frac-
tion (70% on average) of dynamic instructions are WAVE-
ADVANCE or SELECT instructions. (All other data steering
and tag manipulation instructions account for only another
4% of total instructions.)

This data validates prior work which demonstrated that
dataflow executes up to 3x more instructions than equiv-
alent imperative code [16]. That work suggested the over-
head was partly due to the dataflow execution model and
partly due to the non-strict functional language they com-
piled. Our data show a similar overhead when compiling an
imperative language, suggesting that the execution model is
entirely responsible for the overhead.

4. ELIMINATING CONTROL OVERHEAD

The previous section showed that the majority of instruc-
tions are control overhead. In this section, we introduce
two compiler optimizations and a few small modifications to
the basic PE design that dramatically lower this overhead.
Both optimizations involve merging computation and over-
head instructions together into a single instruction, which we
refer to as folding. The WaveScalar compiler folds WAVE-
ADVANCE and SELECT instructions in two distinct passes:
WAVEADVANCE-FOLDING and SELECT-FOLDING. Section 4.1
discusses WAVEADVANCE-FOLDING, as the compiler executes
this pass first. Section 4.2 covers SELECT-FOLDING. Sec-
tion 4.3 discusses the changes to the microarchitecture these
optimizations require.

4.1 WaVEADVANCE-FOLDING

Algorithm 1 implements WAVEADVANCE-FOLDING, and
Figure 5 shows its effect on the example loop code from Fig-
ure 4. WAVEADVANCE-FOLDING walks the dataflow graph
and folds WAVE-ADVANCE instructions into consumer in-
structions. Folding produces a composite instruction that

Algorithm 1 WAVEADVANCE-FOLDING: Applied to a list
of all instructions in a function

1: for all (instr € instructionList) do

2:  for all (producer € instr.producers) do
3 if (—IsWaveAdvance(producer)) then
4 Unfoldable : GotoNext instr

5 end if

6: end for
7. AddW aveAdvance Annotation(instr)
8
9

0

1

for all (waveadvancelnstr € instr.producers) do
BypassW ave Advance(waveadvancelnstr, instr)
end for
: end for

implements both the original operation of the consumer, as
well as an increment of the output value’s wave field. Its
inputs arrive directly from the WAVE-ADVANCES’ producers
rather than through the WAVE-ADVANCE instructions.

Algorithm 2 SELECT-FOLDING: Applied to a list of all
SELECT instructions in a function
1: for all (select € selectList) do

2:  if (HasSingleProducer(select)) then
3: target = select.producers
4: if (IsSelectInstruction(target)) then
5: combinedOutputs =
CombineOutputs(select, target)
6 if (combinedOutputs.numberO fSets < 2) then
7 predicate = NewPredicate(combinedOutputs)
8: trueQutputs = combinedOutputs.outputSetl
9: falseOutputs = combinedOutputs.outputSet2
10: else
11: Unfoldable : GotoNext select
12: end if
13: else
14: predicate = select.predicate
15: trueQutputs =
select.trueOutputs | target.outputs
16: falseOutputs =

select. falseOutputs | target.outputs
17: end if

18: target. AddSelect Annotation(predicate,
trueOutputs, falseOutputs)

19: Removelnstruction(select)

20:  end if

21: end for

In Algorithm 1, the outermost “for all” loop walks through
a list of all instructions in a function. For each instr in
the list, the algorithm examines all of the producer instruc-
tions that send inputs to instr. If all producers are WAVE-
ADVANCEs, instr is a legal target for folding. Then, instr
becomes a composite instruction (line 7), and the sources
of its inputs are updated to eliminate the WAVE- ADVANCES.
The loop on lines 8-10 performs the latter step by replacing
each input to instr from a WAVE-ADVANCE with the inputs
to that WAVE-ADVANCE. The bottom node (¢ = a *b) in
Figure 5 exemplifies this operation. Originally (left), it re-
ceives its inputs from two WAVE- ADVANCE operations. After
WAVEADVANCE-FOLDING (right), it receives its inputs di-
rectly from four separate SELECT instructions. In this case,
two WAVE-ADVANCE instructions were eliminated. The al-
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Figure 7: Performance: The effect on baseline per-
formance of individually applying WaveAdvance-
Folding, Select-Folding, and Far-Hoisting.

Hoisting.

Coa e
i ]

p18& ~p2
p1 Select Pl Select
T F T F

(a) (b)

Unoptimized Data Flow Graph Optimized Data Flow Graph
- nodes are instructions - select instructions are implementated as the
- edges are operand dependences original opcode plus an annotation
Figure 8: Select-Folding: The dataflow graph for an
unoptimized nested branch (left) and with Select-
Folding (right). For value ‘a,” only one of the Select
instructions folds, since folding the second would re-
sult in three destinations. For value ‘b,’ both Selects
can be folded, since the predicates can be combined
and the resulting instruction has only two destina-
tions.

gorithm is not always this efficient. For example, folding the
SELECT in Figure 5 bypasses only a single WAVE-ADVANCE.

Note that while the WAVE-ADVANCE instructions have
disappeared from the right side of Figure 5, Algorithm 1
never removed a WAVE-ADVANCE instruction. Instead, we
rely on a subsequent dead code elimination pass to remove
unused WAVE-ADVANCE instructions. Line 9 in the algo-
rithm removes the link from a WAVE-ADVANCE to its for-
mer consumer. If all such links are folded away, the WAVE-
ADVANCE becomes unused and will be deleted.

Figures 6 and 7 show the results of executing WAVEADVANCE-

FOLDING on our benchmark suite. The data show a decline
in overhead instructions of 30-45%, which results in an aver-
age increase in AIPC of 13% over the baseline performance.
ATPC rose because many WAVE-ADVANCE instructions lie
on the critical path of execution. (By definition, at least

_\nput control

Input #
Hash()

Value

Input ) Prodicate

Fire @

Inst, store

Tag Value Control

_ompm control

Figure 9: A WaveScalar Processing Element: The
shaded elements — a third input queue and an adder
— are added to each PE to enable WaveAdvance-
Folding and Select-Folding, resulting in an increase
in die area of only 2%.

one WAVE-ADVANCE per subgraph in the dataflow graph
is on the critical path.) However, the increase in AIPC is
not commensurate with the number of instructions removed,
since most WAVE-ADVANCE instructions execute in parallel
with other, independent instructions.

4.2 SELECT-FOLDING

Algorithm 2 describes the steps involved in SELECT-FOLDING,
and Figure 8 illustrates the effect of applying the algorithm
to the simple branch example in Figure 3. The SELECT-
FoLDING algorithm must solve two high-level problems. First,
it identifies when it is legal to fold a SELECT. Second, if a
SELECT may be folded, it produces the composite instruc-
tion’s third input (the predicate) and identifies its outputs.

In Algorithm 2, the outermost loop iterates through a
list of SELECT instructions. To determine if select may be
folded, the compiler determines how many and what type of
instructions produce the input value to select. If more than
one instruction produces the input (for example, the input
can arrive from either branch path), then select may not



be folded (line 2). In addition, if the producer (target) is
itself a SELECT instruction and combining the two SELECT
instructions would produce an instruction with more than
two outputs (checked in lines 4 and 6), select may also not be
folded. The latter case occurs with the leftmost two SELECT
instructions on the left side of Figure 8, which cannot be
folded together. The right two SELECT instructions on the
left side of that figure may be folded together, however, since
combining them produces only a single output.

After determining that select may be folded into target,
the second problem is creating the predicate and outputs
for the folded instruction. If target is not a SELECT in-
struction, then predicate is simply the predicate to the orig-
inal select, and the composite instruction’s outputs are the
union of select’s and target’s outputs (lines 14-16). If target
is a SELECT instruction, however, a new predicate must be
computed by combining the predicates for both select and
target (see “pl && ~ p2” in the example) (lines 7-9). As
an example, consider the rightmost composite instruction in
Figure 8. This instruction is the result of two iterations of
the outside loop in the SELECT-FOLDING algorithm. In the
first pass, the node “b = e2” is the target for the SELECT
with predicate pl. It becomes “b = e2-and-SELECT” with
predicate = pl and outputs equal to those of the original
SELECT. In the second pass, the new composite instruction
is the target for the SELECT with predicate p2. The two may
be folded, because combining their predicates yields only a
single output (to the node a = a * b).

Earlier, we mentioned that a SELECT cannot be folded
if its inputs have more than one producer instruction. In
this respect, SELECT-FOLDING differs from WAVEADVANCE-
FoLDING, as WAVE-ADVANCEs can be folded no matter how

many producers or consumers they have. However, in SELECT-

FOLDING, an additional input (the predicate) must be added
to the newly annotated instruction. The additional input
would have to be sent to ezactly the producer instruction
that is used on that dynamic instance of the SELECT ex-
ecution. Sending it to the wrong producer would lead to
incorrect program behavior. For this reason, it is simpler to
avoid this problem by not folding SELECT instructions with
multiple producers.

Unlike WAVEADVANCE-FOLDING, SELECT-FOLDING folds
SELECT instructions into producer, rather than consumer,
instructions. The reason for this lies with the semantics of
a SELECT instruction. SELECT takes two input operand to-
kens: one for a data value and one for the predicate. It sends
the data token to one of two consumer instructions, based
upon the value of the predicate. If SELECT instructions
were folded into consumer instructions, the hardware would
need to identify the unused consumer instructions and their
tokens (the instructions on the wrong-path) and garbage
collect them. Having no other reason to have this facility,
adding it to the WaveScalar microarchitecture only for this
purpose is a poor implementation choice.

In contrast, folding SELECT instructions into a producer
instruction requires no significant changes to the microar-
chitecture. A third input is added to each PE (described
below), and a PE simply matches on three input operands.
The third operand is always used for SELECT instructions,
whether or not they are folded into other instructions.

Figures 6 and 7 show the results of executing SELECT-
FOLDING on our benchmark suite. On average, SELECT-
FOLDING successfully removes 90% of SELECT instructions

(data not shown), which reduces the total control overhead
by 40%. The effect of the lower control overhead on per-
formance depends on whether having fewer SELECTs on the
critical path outweighs the potential delay of waiting for
three, rather than two, input operands to arrive at the com-
posite instruction. In our workload, the combined effect of
these factors increased application performance by 15% over
the baseline.

4.3 Microarchitectural support

Implementing WAVEADVANCE-FOLDING and SELECT-FOLDING

necessitates few changes to the WaveScalar microarchitec-
ture. WAVEADVANCE-FOLDING requires an extra adder in
the execute stage of each PE to update the tag field of an
output token, while SELECT-FOLDING needs an extra bit in
the input operand queues to guide route selection. Figure 9
illustrates such a PE design. The additional hardware re-
sults in only a 2% increase in the required die area and no
increase in the cycle time.

In addition to WAVEADVANCE-FOLDING and SELECT-FOLDING,

this PE can also support the simultaneous execution of com-
putation, data steering, and tag management functions, such
as ADD-WITH-WAVEADVANCE-AND-SELECT.

Algorithm 3 FAR-HOISTING: Applied to a list of loops in
a function
1: for all (loop € loopList) do
2:  hoistList = ()
3:  for all (input € loop.inputs) do
4 if (= (input.isUsedIn(loop)V
input.isDefinedIn(loop))) then

5: hoistList.add(input)

6: end if

7:  end for

8: if (hoistList.size > 2) then

9: rtoken = AddRendezvousT okenInstructions(loop)
10: for all (input € HoistList) do

11: AddDataT oW ave(rtoken, input)

12: RemoveH oistedInstructions(input)
13: end for

14:  end if

15: end for

S. FAR HOISTING

Combining WAVEADVANCE-FOLDING and SELECT-FOLDING
leads to a 66% reduction in overhead. However, to further
reduce overhead, we present a graph transformation opti-
mization that removes values from loops that do not use
them. Even if a value is not being used in a loop, it must
be “spun” through a WAVE-ADVANCE and a SELECT and
back to the WAVE-ADVANCE on each iteration. This is done
to keep the tag field of the token updated, so it will have
the correct wave number when it is eventually used. With
one value, this spinning process is not an onerous burden,
but with several unused live values in a loop, the overhead
quickly adds up.

One solution to this problem is to send the tokens around
the loop body entirely and then to “patch” the tag field
with the proper tag value. This process is illustrated in the
shaded box in Figure 10. To patch the tag values, both
the original and final tag value must be known; to do this,
the original tag value must be spun through the loop. A
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overhead required to patch the hoisted values’ tags
is more than offset by the reduction in Select and

‘Wave-Advance instructions.

WAVE-TO-DATA instruction performs this task; it creates
an output token with a data value equal to the tag value of
its input token. At the completion of the loop, the tag and
value fields of this token are reversed (using DATA-TO-WAVE
and WAVE-T0-DATA), so the token will match with tokens
that did not spin through the loop. This token is used to
patch the tag fields of tokens sent around the loop body (via
a DATA-TO-WAVE). We call this process FAR-HOISTING, as
it fast-forwards wave numbers to their post-loop value.

We have implemented a compiler optimization, depicted
in Algorithm 3 that performs FAR-HOISTING. It works by
scanning a function with def-use information. At each loop,
it uses the def-use data to determine which values should
be hoisted out of the loop, inserts code to produce a ren-
dezvous wave number value, and replaces the associated
WAVE-ADVANCE and SELECT instructions of values being
hoisted with WAVE-T0-DATA instructions that patch their
tags.

In Algorithm 3, the outermost loop iterates through a
list of loops in a function. For each loop, the algorithm
generates a hoistList that contains all inputs to the loop
that are neither used nor defined within the loop. By line
8, hoistList is a complete list of all inputs that may safely
be hoisted out of the loop. For example, for the left side of
Figure 10, hoistList would contain the value “b”. Next, the
algorithm creates a rendezvous token (rtoken) that is spun
through the loop. The resulting code (created on line 9) lies
within the shaded box in Figure 10. Finally, for each input
in hotistList, the algorithm replaces the code that spun input
through the loop with a DATA-TO-WAVE that uses rtoken
to patch the input’s tag.

Line 8 in Algorithm 3 specifies when it is potentially prof-
itable to perform FAR-HOISTING. The example in Figure 10
is guaranteed to be unprofitable, since only one value (b)
is being hoisted out of the loop, and it is replaced by an
rtoken that must be spun through the loop, plus additional
instructions to patch b’s tag. Therefore, FAR-HOISTING is
only performed on a loop, if hoistList contains at least two
elements.

Figures 6 and 7 depict the results from applying FAR-
HoisTING. As detailed in the figures, FAR-HOISTING re-
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Tagfolded Data Flow Graph Fully Folded Data Flow Graph
- instructions can carry a wave advance - instructions can carry a wave advance annotation
annotation - steering instructions are implementated as the
original opcode plus an annotation

c=a'b
wave advance

Figure 11: Combining WaveAdvance-Folding and
Select-Folding: The dataflow graph for a simple loop
that has been WaveAdvance-Folded (left) and then
Select-Folded (right). The rightmost Select-Wave-
Advance cannot be completely eliminated.
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Figure 12: The combined effect of eliminating in-
structions through WaveAdvance-Folding, Select-
Folding, and Far-Hoisting on control instruction
overhead. All sources of overhead, both eliminated
and remaining, are a percentage of the original con-
trol overhead.

duces the control overhead 10-20%. Performance increases
slightly, because the processor has to perform fewer opera-
tions, decreasing contention for its hardware resources (PEs,
network links, etc).

6. COMBINING ALL OPTIMIZATIONS

We conclude by examining how the optimizations described
in Sections 4 and 5 combine to reduce overhead and improve
performance. Figure 11 depicts how our example loop code
is transformed when first WAVEADVANCE-FOLDING and then
SELECT-FOLDING are performed, and Figure 12 presents the
results.

The three optimizations reduce the original overhead 80%
to only 30-456% of total instructions. A small percentage of
instructions (8-29% of total WAVE-ADVANCE and 8-14% of
SELECT instructions) are not folded out of execution. Fig-
ure 11 illustrates one of these cases: a SELECT-and-WAVE-
ADVANCE remains in the code because it has two produc-
ers (the assignment and itself), which violates a SELECT-
FOLDING rule.
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Figure 13: The combined effect of WaveAdvance-
Folding, Select-Folding, and Far-Hoisting on nor-
malized AIPC.

The 80% reduction in overhead increases performance 22-
37%. As previously discussed, performance does not in-
crease as dramatically as the reduction in overhead might
suggest, because overhead instructions are often executed
in parallel with the main computation. Nevertheless, the
performance improvements show that folding away control
instructions and FAR-HOISTING shorten the critical path and
reduce contention for WaveScalar processor resources, such
as processing elements and network switches.

Folding and FAR-HOISTING have a minimal effect on code
size. Individual instruction width increases slightly, since
both WAVEADVANCE-FOLDING and SELECT-FOLDING require
an additional bit and SELECT-FOLDING potentially increases
the number of output operand destinations for the folded in-
struction. (Additional inputs do not increase code size, since
input addresses are not encoded.) However, total code size
decreases by 4% on average due to the reduced number of
instructions.

7. RELATED WORK

Compiling to the WaveScalar processor builds upon pre-
vious work on compilation for dataflow machines [16, 25,
26, 12, 27, 21, 22, 28, 29]. Several of these researchers in-
vestigated the effects of control overhead on dataflow execu-
tion [16, 25, 26, 30] and using hardware to improve execution
performance [31, 15, 32].

Traub, Arvind, et al. compiled Id to the MIT Tagged-
Token Dataflow Architecture (TTDA) [12, 27]. The TTDA
uses instructions to handle both data steering and tag man-
agement, and its PE computes values and tags in parallel.
However, TTDA tags are more complex than WaveScalar
tags and must be recomputed at every instruction. They do
not attempt to merge explicit tag management instructions
into other instructions, nor do they attempt to reduce data
steering overhead.

Arvind, Hicks, et al. compiled Id to Monsoon [16, 25].
They reported a code-size and cycle overhead of 2 —3x over
a MIPS-R3000 running C and classified several sources of in-
efficiency that were created when compiling a “non-strict”
language like Id to Monsoon, including the language run-
time-system, control instructions, and tag management. Af-
ter extensive work optimizing their code, the Monsoon team
concluded that the instruction-level parallelism obtained by

explicitly controlling fanout and joins is better controlled
by hardware than software. In this paper, we confirm that
the sources of overhead they discovered when compiling a
functional language are also present when compiling an im-
perative language. This suggests that it is the dataflow ex-
ecution model, rather than any language model, that is the
source of the overhead. Furthermore, we develop three opti-
mizations that enable us to handle control in software, while
eliminating much of the instruction overhead.

Nikhil, et al. targeted Id to the abstract P-Risc machine
and more traditional control-flow computers [26, 33]. They
also found the number of control flow operations (forks and
joins) to be an issue and developed optimizations to re-
move them. Their fork and join instructions are different
from WaveScalar’s, since the P-Risc machine assumes the
hardware has resources for storing values and only uses the
fork and join instructions for synchronization. Furthermore,
overhead instructions are removed, rather than combined
with other instructions.

Culler, Goldstein, et al. compiled Id to the CM-5 [34]
via the Threaded Abstract Machine (TAM) [35, 30]. They
reported that only 34% of instructions executed on their
benchmarks were control instructions, because TAM uses
local storage and an instruction pointer to avoid steering
data values to consumers.

Budiu, et al [32, 36, 29, 28] compiled C to application-
specific hardware (ASH). They recently used ASH to com-
pare the performance of static dataflow machines and mod-
ern superscalars and then discussed hardware structures com-
monly found in superscalars that give them a performance
edge. Previously, they presented optimizations that de-
crease the number and latency of memory accesses per-
formed in their system. In particular, the goal of their
loop invariant code motion is quite similar to ours for FAR-
HoisTinG. However, the spatial computing hardware they
use eliminates the need to update tags, which simplifies loop
invariant code motion and naturally eliminates tag manage-
ment overhead. Data steering is handled with multiplexors,
though they implement several passes to remove unneces-
sary muxes and combine others.

Finally, the WaveScalar compiler is based on the Scale
compiler [21, 22], which targets the TRIPS architecture.
TRIPS executes frames, each of which consists of a statically
defined group of instructions. Groups are formed by merging
basic blocks; this process duplicates some code but reduces
the number of branches by merging predicates. TRIPS does
not suffer from high control overhead, as it is a von Nuemann
machine, with a program counter, register file, etc.

8. CONCLUSIONS

WaveScalar is a processor designed to confront the chal-
lenges of wire-delay, design complexity, and scalable per-
formance. Being a dataflow processor enables it to achieve
these goals; however, it must also address problems inherent
to this model of execution. One of those challenges, which
has been known for over a decade, is the high cost of control
in dataflow models. Prior research found this overhead to
be about 3x, and we found a similar cost.

This paper presents a solution composed of two pieces, a
compiler and a microarchitecture, that work together to sig-
nificantly reduce control overhead. The basis of the solution
lies in recognizing that overhead instructions are relatively
simple to implement in hardware and can generally execute



in parallel with computation. This means the microarchi-
tecture can be tuned to execute overhead instructions in
parallel with computation instructions.

The compiler must be modified to take advantage of this
microarchitecture, and this paper presents two algorithms,
WAVEADVANCE-FOLDING and SELECT-FOLDING, that do so.
It also presents a third algorithm, FAR-HOISTING, which
transforms a dataflow graph to remove unnecessary control

instructions by removing unused values from loops.

Ulti-

mately, these three algorithms and the microarchitecture
work together to reduce overhead to only 30-45% of exe-
cuted instructions and improve performance by 27%.
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