
Providing Safe, User Space Access to Fast, Solid State Disks

Adrian M. Caulfield Todor I. Mollov Louis Alex Eisner
Arup De Joel Coburn Steven Swanson

Computer Science and Engineering Department
University of California, San Diego

{acaulfie,leisner,arde,jdcoburn,swanson}@cs.ucsd.edu

Abstract
Emerging fast, non-volatile memories (e.g., phase change memo-
ries, spin-torque MRAMs, and the memristor) reduce storage ac-
cess latencies by an order of magnitude compared to state-of-the-art
flash-based SSDs. This improved performance means that software
overheads that had little impact on the performance of flash-based
systems can present serious bottlenecks in systems that incorpo-
rate these new technologies. We describe a novel storage hardware
and software architecture that nearly eliminates two sources of this
overhead: Entering the kernel and performing file system permis-
sion checks. The new architecture provides a private, virtualized
interface for each process and moves file system protection checks
into hardware. As a result, applications can access file data with-
out operating system intervention, eliminating OS and file system
costs entirely for most accesses. We describe the support the system
provides for fast permission checks in hardware, our approach to
notifying applications when requests complete, and the small, eas-
ily portable changes required in the file system to support the new
access model. Existing applications require no modification to use
the new interface. We evaluate the performance of the system us-
ing a suite of microbenchmarks and database workloads and show
that the new interface improves latency and bandwidth for 4 KB
writes by 60% and 7.2⇥, respectively, OLTP database transaction
throughput by up to 2.0⇥, and Berkeley-DB throughput by up to
5.7⇥. A streamlined asynchronous file IO interface built to fully
utilize the new interface enables an additional 5.5⇥ increase in
throughput with 1 thread and 2.8⇥ increase in efficiency for 512 B
transfers.

Categories and Subject Descriptors D.4.2 [Operating Systems]:
Storage Management—Secondary storage

General Terms Design, Measurement, Performance

Keywords File Systems, IO Performance, Non-Volatile Memory,
Storage Systems, Virtualization

1. Introduction
Emerging fast, non-volatile technologies such as phase change,
spin-torque transfer, and memristor memories make it possible to
build storage devices that are orders of magnitude faster than even
the fastest flash-based solid-state disks (SSDs). These technologies
will rewrite the rules governing how storage hardware and software
interact to determine overall storage system performance. In par-
ticular, software overheads that used to contribute marginally to la-
tency (because storage hardware was slow) will potentially squan-
der the performance that these new memories can provide.
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Recent work describing Moneta [5], a fast, next-generation stor-
age architecture, showed that optimizing the existing IO stack and
tuning the hardware/software interface can reduce software over-
heads by up to 62% and increase sustained bandwidth for small
accesses by up to 19⇥. However, even with these reduced over-
heads, IO processing places large demands on the system’s com-
pute resources – sustaining peak performance on Moneta for 4 KB
requests requires the dedicated attention of 9 Nehalem thread con-
texts. Entering the kernel, performing file system checks, and re-
turning to user space account for 30% (8 µs) of the latency of a
4 KB request. Together those costs reduce sustained throughput
by 85%. However, simply removing those layers is not possible
because they provide essential management and protection mecha-
nisms.

This paper describes extensions to Moneta that remove these
costs by transparently bypassing the operating and file systems
while preserving their management and protection functions. The
extensions provide each process with a private interface, or chan-
nel, to Moneta. Unlike other systems that virtualize an entire device
(e.g., a graphics card or network card), Moneta’s channels are vir-
tual interfaces to a single device. Each process uses its channel to
access Moneta directly, without interacting with the operating sys-
tem for most accesses. Hardware permission verification replaces
permission checks in the operating system, preserving all of the
protection guarantees the operating system normally provides.

To utilize channel-based IO, unmodified applications link with
an untrusted user space library that intercepts IO system calls and
performs the operations directly. The library works with a trusted
driver and a slightly modified file system to extract file protection
information and transfer it to Moneta. The library presents a stan-
dard POSIX interface.

We refer to the new system as Moneta Direct (Moneta-D)
throughout the remainder of the paper. Moneta-D’s unique features
eliminate file system overheads and restructure the operating sys-
tem storage stack to efficiently support direct, user space access to
fast non-volatile storage arrays:

• Moneta-D removes trusted code and the associated overheads
from most accesses. Only requests that affect meta-data need to
enter the operating system.

• Moneta-D provides a fast hardware mechanism for enforcing
the operating and file system’s data protection and allocation
policy.

• Moneta-D trades off between CPU overhead and performance
by using different interrupt forwarding strategies depending on
access size and application requirements.

• Moneta-D provides an asynchronous software interface, allow-
ing applications to leverage its inherently asynchronous hard-
ware interface to increase performance and CPU efficiency.
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Figure 1. Changes to the high-level system architecture The operating and file systems protect storage devices like Moneta (a) by requiring
a system call on every access. In Moneta-D (b), the OS and file system are only responsible for setting protection and sharing policy. Moneta-
D enforces that policy in hardware, eliminating the need for most system calls and file system accesses. A virtualized hardware interface
allows for an untrusted driver.

We evaluate options for key design decisions in Moneta-D and
measure its performance under a collection of database workloads
and direct file access benchmarks. Our results show that Moneta-D
improves performance for simple database operations by between
2.6⇥ and 5.7⇥. For full SQL server workloads, performance im-
proves by between 1.1⇥ and 2.0⇥. For file access benchmarks, our
results show that Moneta-D can reduce the latency for a 512 byte
read operation by 64% (to 4.1 µs) relative to the original Mon-
eta design. The reduction in latency leads to a 14.8⇥ increase in
bandwidth for 512 byte requests in the presence of a file system,
allowing the storage array to sustain up to 1.8 million 512 byte
IO operations per second. With a single thread, Moneta-D’s asyn-
chronous IO interface improves performance by 5.5⇥ for 4 KB
accesses compared to synchronous IO. Asynchronous IO also im-
proves efficiency by up to 2.8⇥, reducing CPU utilization and sav-
ing power.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the baseline Moneta storage array and provides an
overview of the changes required to virtualize it. Section 3 places
our work in the context of other research efforts. Section 4 de-
scribes Moneta-D’s architectural support for virtualization. Sec-
tion 5 evaluates the system. Finally, Section 6 concludes.

2. System overview
Moneta-D’s goal is to remove operating system and file system
overheads from accesses while maintaining the strong protection
guarantees that these software layers provide. The resulting sys-
tem should be scalable in that many applications should be able
to access Moneta-D concurrently without adversely affecting per-
formance. Furthermore, it should not be necessary to modify the
applications to take advantage of Moneta-D.

Figures 1(a) and (b) summarize the changes Moneta-D makes
to the hardware and software components of the original Moneta
system. In Moneta (Figure 1(a)), all interactions with the hardware
occur via the operating system and file system. Together, they set
the policy for sharing the device and protecting the data it contains.
They also enforce that policy by performing checks on each access.
Performing those checks requires the file system to be trusted code.
The driver is trusted since it accesses a shared, non-virtualized
hardware resource.

Figure 1(b) shows the revised organization that Moneta-D uses.
The kernel and the file system remain responsible for making policy
decisions that control access to data, but the Moneta-D hardware
enforces that policy. The hardware exposes a set of virtual channels
that each provide a single process with access to storage. The
kernel manages these channels, assigns them to processes, and
maintains protection information associated with each channel.
Since the hardware enforces protection and each process has a
private channel, there is no need for a privileged driver. Instead,
applications access their channels via an untrusted driver library,
avoiding system call overheads.

Our intent is that this new architecture be the default mecha-
nism for file access rather than a specialized interface for high-
performance applications. To make it feasible for all applications
running on a system to use the interface, Moneta-D supports a large
number of virtual channels. This decision has forced us to minimize
the cost of virtualization.

Below, we describe the channel interface, the user space driver
library, and discuss the interactions between our system and the file
system.

2.1 Channels
A channel is a virtual interface to the storage array. Each channel
provides all the facilities necessary for a process to access data in
the array and for the kernel to restrict access to only files that the
process has successfully opened.

A channel has two interfaces, a privileged interface for config-
uration by the kernel and an unprivileged interface for application
access. The privileged interface comprises a set of control registers
that let the kernel manage the channel and install permission infor-
mation. The unprivileged interface has three components: 1) a set
of user registers that the user space library uses to access array data,
2) a set of tags that distinguish between outstanding requests on the
channel, and 3) a DMA buffer.

Below, we describe how a process and the kernel use their re-
spective interfaces to initialize a channel, access data, and manage
permission information. Section 4 describes these mechanisms in
more detail.



Channel initialization The user space driver library initializes
a channel by opening the storage device’s file in /dev/ and
mmap()ing several pages into its address space. Mapping these
pages allocates a channel for the process and grants it access to the
hardware and shared-memory software interfaces. The first mapped
page contains the user registers that the process will use to commu-
nicate with the hardware. The next pages provide communication
with the kernel via shared memory. The remaining pages make up
the channel’s DMA buffer. Initially, the channel does not have per-
mission to access any of the data in Moneta-D.

Managing permissions To gain access to data in Moneta-D, the
user space library issues a system call that takes a file descriptor
and an offset in the file. The system call returns a description of the
file system extent (i.e., the range of physical bytes in Moneta-D)
containing that offset. The process uses this information to populate
a user space table that maps file offsets onto physical extents. If the
process does not have access to that data, the system call returns an
error.

The system call also installs the permission record for the extent
in the process’s channel. Moneta-D’s permission record storage is
finite, so installing one permission record may require the kernel to
evict another. This also means that the process may issue a request
for data that it should be able to access and have the request fail.
In this case, the process re-issues the system call to re-install the
permission record and retries the request.

Issuing and completing commands Once the process has in-
stalled a permission record, it can start making requests. To initiate
a command, the process writes a 64-bit command word to the chan-
nel’s memory-mapped command register. The command encodes
the operation to perform (read or write), the portion of the DMA
buffer to use, the physical location in Moneta-D to access, and a
tag to differentiate between requests. After issuing the command,
the thread waits for the command to complete.

When Moneta-D receives the command word, it checks the
hardware permission table to determine whether the channel has
permission to access the location. If it does, it performs the com-
mand and signals its completion. In Section 4 we describe several
schemes for notifying the thread when a command completes.

2.2 The user space driver
The user space library for accessing Moneta-D performs the low-
level driver functions including tag management, extent lookup,
and command retry. The library transparently replaces the standard
library calls for accessing files using LD PRELOAD. Dynamically
linked applications do not require any modification or recompila-
tion. When the program open()s a file on Moneta-D, the library
allocates a channel if necessary and then handles all future accesses
to that file. The library forwards operations on all other files to the
normal libc functions.

The POSIX compatibility layer implements POSIX calls (e.g.
read(), write(), and seek()) calling Moneta-D specific read
and write functions. The layer also tracks file descriptor manipu-
lation functions (e.g. dup(), dup2(), and close()) to track
per-file descriptor state (e.g. the file pointer’s position) and file de-
scriptor aliasing relationships.

Other, Non-POSIX interfaces are also possible. Moneta-
D’s hardware interface is inherently asynchronous, so a high-
performance asynchronous IO library is a natural fit. In addition,
since the channel’s DMA buffers reside in the process’s address
space, an optimized application could avoid copying data to and
from the DMA buffer and operate on the data in place instead. We
explore both these options in Section 4.

2.3 The file system
Moneta-D changes the way applications interact with the file sys-
tem to increase performance. These changes require minor modi-
fications in the file system to support moving protection checking
into hardware. They also introduce some challenges to maintaining
existing functionality and consistency in the file system.

The only change required to the file system is the addition
of a function to extract extent information. We implemented this
change in XFS [10] and found it to be straightforward, even though
XFS is a very sophisticated file system. The single 30-line function
accesses and transfers file extent meta-data into Moneta-D’s data
structures. We expect that adding support to other file systems
would also be relatively easy.

All meta-data updates and accesses use the conventional operat-
ing system interface. This requirement creates problems when the
driver uses the kernel to increase a file’s size and then accesses the
resulting data directly. When it extends a file (or fills a hole in a
sparse file), XFS writes zeros into the kernel’s file buffer cache.
Although the operating system writes out these dirty blocks after
a short period of time, the user space library accesses the newly-
allocated blocks as soon as the system call returns and that access
will not ”see” the contents of the buffer cache. If the application
updates the new pages in Moneta-D before the operating system
flushes the cached copy, a race will occur and the flushed pages
will overwrite the application’s changes. To avoid this problem, we
flush all blocks associated with a file whenever we fill a hole or
extend a file. After the first access to the file, this is usually a fast
operation because the buffer cache will be empty.

Guaranteeing consistency while accessing files concurrently
through Moneta-D and via the operating system remains a chal-
lenge, because of potential inconsistencies caused by the kernel’s
buffer cache. One solution is to detect files that applications have
opened a file using both interfaces and force the application using
the user space interface to switch to the system-call based inter-
face. The library could do this without that application’s knowl-
edge. Alternatively, disabling the buffer cache for files residing on
Moneta-D would also resolve the problem. Our system does not yet
implement either option.

Moneta-D’s virtual interface also supports arbitrarily sized and
aligned reads and writes, eliminating the need to use read-modify-
write operations to implement unaligned accesses.

3. Related Work
Our extensions to Moneta touch on questions of virtualization, fast
protection and translation, and light-weight user space IO. Below
we describe related work in each of these areas and how the system
we describe differs from and extends the current state of the art.

3.1 Virtualization
Moneta-D differs from other efforts in virtualizing high-speed IO
devices in that it provides virtual interfaces to the device rather
than logically separate virtual devices. In our system, there is a sin-
gle logical SSD and a single file system to manage it. However,
many client applications can access the hardware directly. Creating
multiple, independent virtual disks or multiple, independent virtual
network interfaces for multiple virtual machines is a simpler prob-
lem because the virtual machine monitor can statically partition the
device’s resources across the virtual machines.

Previous work in high-speed networking [4, 21, 31] explores
the idea of virtualizing network interfaces and allowing direct ac-
cess to the interface from user space. DART [21] implements net-
work interface virtualization while also supporting offloading of
some packet processing onto the network card for additional per-
formance enhancements. Our work implements similar hardware



interface virtualization for storage accesses while enabling file sys-
tems protection checking in hardware.

Many projects have developed techniques to make whole-device
virtualization more efficient [18, 19, 25, 29, 33], particularly for
graphics cards and high-performance message-passing intercon-
nects such as Infiniband. Virtualization techniques for GPUs are
most similar to our work. They provide several “rendering con-
texts” that correspond to an application window or virtual ma-
chine [6]. A user space library (e.g., OpenGL) requests a context
from the kernel, and the kernel provides it a set of buffers and
control registers it can use to transfer data to and from the card
without OS involvement. Some Infiniband cards [9] also provide
per-application (or per-virtual machine) channels and split the in-
terface into trusted and untrusted components. The work in [16]
has explored how to expose these channels directly to applications
running inside virtual machines. However, neither of these applica-
tions requires the hardware to maintain fine-grain permission data
as Moneta-D does.

The concurrent, direct network access (CDNA) model [33] is
also similar, but applies to virtual machines. In this model, the net-
work card provides multiple independent sets of queues for net-
work traffic, and the VMM allows each virtual machine to access
one of them directly. On an interrupt, the OS checks a register to
determine which queues need servicing and forwards a virtual in-
terrupt to the correct VMs.

Recent revisions of the PCIe standard include IO virtualization
(IOV) [22] to support virtual machine monitors. PCIe IOV allows
a single PCIe device to appear as several, independent virtual de-
vices. The work in [35] describes a software-only approach to vir-
tualizing devices that do not support virtualization, assuming the
devices satisfies certain constraints. In both cases the support is
generic, so it cannot provide the per-channel protection checks that
Moneta-D requires. Some researchers have also found the PCIe ap-
proach to be inflexible in the types of virtualized devices it can
support [13].

The work in [26] and [24] present new IO architectures with
virtualization as the driving concern. In [26] researchers propose
a unified interface to several of the techniques described above as
well as extensions to improve flexibility. [24] proposes a general
approach to self-virtualizing IO devices that offloads many aspects
of virtualization to a processor core embedded in the IO device.

3.2 User space IO
Efficiently initiating and completing IO requests from user space
has received some attention in the high-speed networking and mes-
sage passing communities. In almost all cases, the VMs issue re-
quests via stores to PIO registers, and the VMM is responsible for
delivering virtual interrupts to the VMs. We describe two alterna-
tive approaches below.

Prior work [3, 4, 31] proposed supporting user space IO and ini-
tiating DMA transfers from user space without kernel intervention.
SHRIMP [3] proposes user space DMA through simple load and
store operations, but requires changes to the CPU and DMA engine
to detect and initiate transfers. Our work requires no changes to the
CPU or chipset.

The work in [27, 28] proposes architectural support for issuing
multi-word PIO commands atomically. In effect, it implements a
simple form of bounded transactional memory. Moneta-D would
be more flexible if our processors provided such support. The same
work also suggests adding a TLB to the PCIe controller to allow
the process to specify DMA targets using virtual addresses. The
PCIe IOV extensions mentioned above provide similar functions.
The combination of multi-word atomic PIO writes and the DMA
TLB would eliminate the need for a dedicated DMA buffer and

make it possible to provide a zero-copy interface on top of Moneta-
D that was POSIX-compatible.

The same work also proposes hardware support for delivering
interrupts to user space. The device would populate a user space
buffer with the results of the IO operation, and then transmit data to
the CPU describing which process should receive the interrupt. The
OS would then asynchronously execute a user-specified handler.
Moneta-D would benefit from this type of support as well, and
one of the request completion techniques we examine is similar
in spirit. More recently, researchers have proposed dedicating an
entire core to polling IO device status and delivering notifications to
virtual machines through memory [15]. The driver for recent PCIe-
attached flash-based SSDs from Virident dedicates one processor
core solely to interrupt handling.

Several papers have argued against user space IO [17]. They
posit that efficient kernel-level implementations can be as fast as
user-level ones and that the kernel should be the global system
resource controller. However, our work and prior work [36] have
found that user-level IO can provide significant benefit without
significantly increasing complexity for application developers. Our
work maintains the kernel as the global policy controller — only
policy enforcement takes place in hardware.

3.3 Protection and translation
Moneta-D removes file system latency by copying permission in-
formation into hardware and caching the physical layout of data
in user space. Some approaches to distributed, networked storage
use similar ideas. The latest version of the network file system
(NFS) incorporates the pNFS [20] extension that keeps the main
NFS server from becoming a bottleneck in cluster-based NFS in-
stallations. Under pNFS, an NFS server manages storage spread
across multiple storage nodes. When a client requests access to a
file, it receives a map that describes the layout of the data on the
storage nodes. Further requests go directly to the storage nodes.
NASD [7] is similar in that a central server delegates access rights
to clients. However, it uses intelligent drives rather than separate
storage servers to provide access to data. NASD uses cryptographic
capabilities to grant clients access to specific data.

Modern processors provide hardware support for translation
and protection (the TLB) and for servicing TLB misses (the page
table walker) in order to reduce both translation and miss costs.
Supporting multiple file systems, many channels, and large files
requires Moneta-D to take a different approach. Our SSD provides
hardware support for protection only. Translation must occur on
a per-file basis (since “addresses” are file offsets), and hardware
translation would require Moneta-D to track per-file state rather
than per-channel state.

Rather than addressing physical blocks in a storage device,
object-based storage systems [1, 8, 32], store objects addressed by
name. They provide a layer of abstraction mapping between ob-
ject names and physical storage in the device. Moneta-D performs
a similar mapping in its user space library, mapping between file
descriptor and offset. Shifting these translations into the hardware
has several drawbacks for a system like Moneta-D. First, the file
system would require significant alterations, breaking the generic
support that Moneta-D currently enables. Second, performing the
translations directly in hardware could limit Moneta-D’s perfor-
mance if the lookups take more than a few hundred nanoseconds.
Finally, dedicated DRAM in Moneta-D for storing lookup infor-
mation might be better located in the host system where it could be
repurposed for other uses when not needed for translations.



PIO

DMA

Request 
Queue Pe

rm
 

Ch
ec

k

Re
ta

g

Tag Map and Free List

Error Queue

DMA Ctrl

Ring CtrlStatus Registers

virtual channel support

Perm Table Root Table

Transfer 
BuffersSc

or
e-

bo
ar

d

R
in

g 
(4

 G
B

/s
)

8 GB8 GB

8 GB8 GB

8 GB8 GB

8 GB8 GB

Figure 2. Controller architecture Components inside the dashed box provide support for virtualization and are the focus of this work. The
other components (at right) execute storage access commands.

R/W
Name Kernel User HW Description

Kernel global registers CHANNELSTATUS R - W Read and clear channel status and error bits
ERRORQUEUE R - W Read and pop one error from the error queue

User per-channel registers COMMAND W W R Issue a command to the device.
TAGSTATUSREGISTER R R W Read and clear tag completion bits and error flag.

Per-channel mapped
memory

TAGSTATUSTABLE W R/W W Tracks completion status of outstanding requests.
COMPLETIONCOUNT W R - Count of completed requests on each channel.

DMABUFFER - R/W R/W Pinned DMA buffer for data transfers.

Table 1. Moneta-D channel interfaces There are three interfaces that control Moneta-D: The kernel registers that the kernel uses to
configure channels, the per-channel user registers that applications use, and the per-channel mapped memory region shared between the
kernel and the application to maintain channel state.

4. Moneta-D Implementation
This section describes the changes to the Moneta [5] hardware and
software that comprise Moneta-D. The baseline Moneta system im-
plements a highly optimized SSD architecture targeting advanced
non-volatile memories. The Moneta-D modifications enable the
hardware and software to work together to virtualize the control
registers and tags, efficiently manage permission information, and
deliver IO completions to user space. We discuss each of these in
turn. Section 5 evaluates their impact on performance.

4.1 The baseline Moneta hardware
The right side of Figure 2 (outside the dotted box) shows the
architecture of the baseline array. It spreads 64 GB of storage across
eight memory controllers connected via a high-bandwidth ring. An
8-lane PCIe 1.1 interface provides a 2 GB/s full-duplex connection
(4 GB/s total) to the host system. The baseline design supports 64
concurrent, outstanding requests with unique tags identifying each.
The prototype runs at 250 MHz on a BEE3 FPGA prototyping
system [2].

The baseline Moneta array emulates advanced non-volatile
memories using DRAM and modified memory controllers that in-
sert delays to model longer read and write times. We model phase
change memory (PCM) in this work and use the latencies from [11]
— 48 ns and 150 ns for array reads and writes, respectively. The ar-
ray uses start-gap wear leveling [23] to distribute wear across the
PCM and maximize lifetime.

The baseline Moneta design includes extensive hardware and
software optimizations to reduce software latency (e.g. bypass-
ing the Linux IO scheduler and removing unnecessary context
switches) and maximize concurrency (e.g., by removing all locks
in the driver). These changes reduce latency by 62% compared to
the standard Linux IO stack, but system call and file system over-
heads still account for 65% of the remaining software overheads.

The baseline design implements one channel that the operating
system alone may access. It provides a set of configuration and
command registers and targets a single DMA buffer in the kernel’s
address space.

Figure 3 shows the latency breakdown for 512 B reads and
writes on Moneta-D. The hardware, DMA, and copy overheads
are common across the baseline and the extensions we describe in
this work. These, combined with the file system, system call, and
interrupt processing overheads bring the total request latency in the
baseline to 15.36 and 16.78 µs for reads and writes, respectively.

4.2 Virtual channels
Supporting virtual channels on Moneta-D requires replicating the
control registers, tags, and DMA buffers mentioned above, while
maintaining file coherency across multiple processes. This section
describes the hardware and software implementation of virtual
channels on Moneta-D. The dashed box in Figure 2 contains the
components that implement virtual channels.



Control registers and data structures The interface for a channel
comprises several memory-mapped hardware control registers and
a shared memory segment. Together, these allow the kernel and the
user space library to configure the channel, perform operations on
it, and receive notifications when they complete.

Table 1 describes the most important control registers and the
shared memory segment. The kernel’s global registers allow the
kernel to manage Moneta-D’s functions that apply to multiple chan-
nels, such as error reporting and channel status. The user per-
channel registers allow the process to access the hardware. Finally,
the per-channel mapped memory shared by the kernel and user con-
tains the channel’s DMA buffer and data structures used to notify
threads when operations complete. We discuss the role of these
components in detail below.

In the non-virtualized system, a single set of control registers
exposes Moneta’s interface to the kernel. In the virtualized system,
Moneta-D exposes 1024 channels, each with a private set of control
registers located at a unique physical address. Reading or writing to
any of these registers will send a PIO request to Moneta-D. Moneta-
D uses the address bits to determine which channel the command
targets. To give a process access to a particular channel, the ker-
nel maps the registers for the channel into the process’s address
space. The unique mapping of physical addresses to channels al-
lows Moneta-D to reliably know which process issued a particular
request and prevents processes from accessing channels other than
their own.

Request tags The baseline design supports 64 concurrent, out-
standing requests. To maximize performance and concurrency, each
channel needs its own set of tags. One option is to support 65,536
tags (64 tags for each of the 1024 channels) in hardware and stati-
cally partition them across the channels. In a custom ASIC imple-
mentation this might be possible, but in our FPGAs maintaining a
request scoreboard of that size is not feasible at our 250 MHz clock
frequency.

Instead, we provide each channel with 64 virtual tags and dy-
namically map them onto a set of 64 physical tags. The virtual tag
number comprises the channel ID and the tag number encoded in
the command word. The “retag” unit shown in Figure 2 assigns
physical tags to requests by drawing physical tags from a hardware
free tag list. If a physical tag is not available, the retag unit stalls
until a request completes and releases its physical tag.

DMA buffer Each channel has a private 1 MB DMA buffer
pinned in system DRAM that Moneta-D uses as the source and des-
tination for writes and reads. The target DMA address for a request
depends on its tag with each tag corresponding to one 16 KB slice
of the channel’s DMA buffer. If the process issues a command on
tag k, the DMA transfer will start at the kth slice. The access that
uses the tag can be larger than 16 KB, but it is the software’s re-
sponsibility to not issue requests that overlap in the buffer. Moneta-
D supports arbitrarily large DMA buffers, but since they must be
contiguous in physical memory allocating bigger DMA buffers is
challenging. Better kernel memory management would eliminate
this problem.

Asynchronous interface Moneta-D’s user space library provides
asynchronous versions of its pread() and pwrite() calls (i.e.,
read/write to a given offset in a file). The asynchronous software
interface allows applications to take advantage of the inherently
asynchronous hardware by overlapping storage accesses with com-
putation. For example, double buffering allows a single thread to
load a block of data at the same time as it processes a different
block. The asynchronous calls return immediately after issuing the
request to the hardware and return an asynchronous IO state struc-
ture that identifies and tracks the request. The application can con-

tinue executing and only check for completion when it needs the
data from a read or to know that a write has completed.

4.3 Translation and protection
The Moneta-D hardware, the user space library, and the operating
system all work together to translate file-level accesses into hard-
ware requests and to enforce permissions on those accesses. Trans-
lations between file offsets and physical storage locations occur
in the user space library while the hardware performs permission
checks. Below, we describe the role of both components and how
they interact with the operating system and file system.

Hardware permission checks Moneta-D checks permissions on
each request it receives after it translates virtual tags into physical
tags (”Perm Check” in Figure 2). Since the check is on the critical
path for every access, the checks can potentially limit Moneta-D’s
throughput. To maintain the baseline’s throughput of 1.8 M IOPS,
permissions checks must take no more than 500 ns.

Moneta-D must also cache a large amount of permission infor-
mation in order to minimize the number of “misses” that will occur
when the table overflows and the system must evict some entries.
These hard permission misses require intervention from both the
user space driver and the operating system to remedy, a process
that can take 10s of microseconds (Figure 3).

To minimize the number of permission entries it must store for
a given set of files, Moneta-D keeps extent-based permission infor-
mation for each channel and merges entries for adjacent extents.
All the channels share a single permission table with 16K entries.
To avoid the need to scan the array linearly and to allow channels to
dynamically share the table, Moneta-D arranges the extent informa-
tion for each channel as a balanced red-black binary tree, with each
node referring to a range of physical blocks and the permission bits
for that range. The ”Root Table” (Figure 2) holds the location of
the root of each channel’s tree. Using balanced trees keeps search
times fast despite the potentially large size of the permission tree:
The worst-case tree traversal time is 180 ns, and in practice the av-
erage latency is just 96 ns. With a linear scan, the worst-case time
would exceed 65 µs.

To reduce hardware complexity, the operating system maintains
the binary trees, and the hardware only performs look ups. The
OS keeps a copy of the trees in system DRAM. When it needs to
update Moneta-D’s permission table, it performs the updates on its
copy and records the changes it made in a buffer. Moneta-D then
reads the buffer via DMA, and applies the updates to the tree while
temporarily suspending protection checking.

User space translation When the user space library receives a
read or write request for a file on Moneta-D, it is responsible for
translating the access address into a physical location in Moneta-D
and issuing requests to the hardware.

The library maintains a translation map for each file descriptor
it has open. The map has one entry per file extent. To perform a
translation, the library looks up the target file location in the map. If
the request spans multiple extents, the library will generate multiple
IO requests.

The library populates the map on-demand. If a look up fails to
find an extent for a file offset, we say that a soft permissions miss
has occurred. To service a soft miss, the library requests informa-
tion for the extent containing the requested data from the operating
system. The request returns the mapping information and propa-
gates the extent’s protection and physical location information to
hardware.

Once translation is complete, the library issues the request to
Moneta-D and waits for it complete. If the request succeeds, the
operation is complete. Permission record eviction or an illegal
request may cause the request to fail. In the case of an eviction,



Component Latency R/W (µs)
1 extent 1K extents

Hardware + DMA 1.26 / 2.18
Copy 0.17 / 0.13
SW Extent lookup 0.12 0.23
HW Permission check 0.06 0.13
Soft miss handling 7.28 29.9
Hard miss handling 14.7 38.1
Permission update 3.23 3.26

File System Baseline 4.21/4.64
Moneta-D 0.21/0.29

System call Baseline 3.90/3.96
Moneta-D 0.00/0.00

Completion

Baseline (interrupts) 5.82 / 5.87
OS forwarding 2.71 / 2.36
DMA 2.32 / 2.68
issue-sleep 14.65 / 14.29
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Figure 3. Component latencies Software latencies required to manage permissions, tags, and user data all contribute to operation latency.
DMA and copying values are for 512 byte accesses. Cells with a single value have the same latency for both read and write accesses. The
graph at right shows the latency breakdown graphically, for 1K extents and using DMA completion.
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Figure 4. Extent merging to alleviate permission table con-
tention Merging permission entries improves performance because
it allows Moneta-D to take advantage of logically discontinuous file
extents that the file system allocates in physically adjacent storage.

the permission entry is missing in hardware so the library reloads
the permission record and tries again.

Permission management overheads Permission management
and checking add some overhead to accesses to Moneta-D, but they
require less time than the conventional system call and file system
overheads that provide the same functions in conventional systems.
Figure 3 shows the latencies for each component of an operation in
the Moneta-D hardware and software. To measure them, we use a
microbenchmark that performs 512 B random reads and writes to a
channel with one permission record and another with 1000 records
present. The microbenchmark selectively enables and disables dif-
ferent system components to measure their contribution to latency.

In the common case, accesses to Moneta-D incur software over-
head in the user space library for the file offset-to-extent lookup.
This requires between 0.12 and 0.23 µs, depending on the number
of extents. The hardware permission check time is much faster –
between 60 ns and 130 ns.

The miss costs are significantly higher: Handling a soft miss
requires between 4.1 µs and 26.8 µs to retrieve extent information
from the file system and 3.2 µs to update the permission tree in
hardware. In total, a soft miss increases latency for a 512 B access
by between 7.3 µs and 30 µs, depending on the number of extents
in use. The hard miss adds another 7.7 µs of latency on average,
because the user space library does not detect it until the initial
request fails and reports an error.

In the best case, only one soft miss should occur per file extent.
Whether hard misses are a problem depends on the number of
processes actively using Moneta-D and the number of extents they
are accessing. Since fragmented files will place more pressure
on the permission table, the file system’s approach to preventing
fragmentation is important.

XFS uses aggressive optimizations to minimize the number of
extents per file, but fragmentation is still a problem. We measured
fragmentation on a 767 GB XFS file system that holds a heavily-
used Postgres database [14] and found that, on average, each file
contained 21 extents, and ninety-seven percent of files contained
a single extent. However, several files on the file system contain
1000s of extents, and one database table contained 23,396.

We have implemented two strategies to deal with fragmentation.
The first is to allocate space in sparse files in 1 MB chunks. When
the library detects a write to an unallocated section of a file, it
allocates space by writing up to 1 MB of zeroed data to that
location before performing the user’s request. This helps reduce
fragmentation for workloads that perform small writes in sparse
files. The second is to merge contiguous extents in the hardware
permission table even if the file contents they contain are logically
discontiguous in the file. This helps in the surprising number of
cases in which XFS allocates discontinuous portions of a file in
adjacent physical locations.

Figure 4 shows the benefits of merging permission entries. It
shows aggregate throughput for a single process performing ran-
dom 4 KB accesses to between 2048 and 32,768 extents. The
two lines depict the workload running on Moneta-D with (labeled
”Moneta-D Merge”) and without (”Moneta-D NoMerge”) combin-
ing permission table entries. Moneta-D Merge combines entries if
they belong to the same channel, represent data from the same file,
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Figure 5. Completion strategies and bandwidth The graphs compare performance and CPU behavior for our three completion strategies
for 32 threads performing a 50/50 mix of random reads and writes. Graph (a) measures maximum sustained bandwidth and (b) measures
efficiency as the ratio of bandwidth to CPU utilization. For small accesses, DMA completion is the best alternative by both measures. For
larger accesses, however, issue-sleep enjoys a large advantage in efficiency.

have the same permission bits set, and cover physically adjacent
blocks. Moneta-D NoMerge does not merge extents.

Throughput remains high for Moneta-D NoMerge when there
are enough permission table entries to hold all the extent infor-
mation. Once all 16K permission table entries are in use, through-
put drops precipitously as the hard miss rate rises. For Moneta-D
Merge, performance remains high even when the number of ex-
tents exceeds the permission table size by 2⇥, because many ex-
tents merge into a smaller number of entries.

Avoiding hard misses requires having a sufficient number
of permission table entries available for the process accessing
Moneta-D directly. There are (at least) three ways to achieve this.
The first is to increase the permission table size. In a custom ASIC
implementation this would not be difficult, although it would in-
crease cost. The second is to detect over-subscription of the permis-
sion table and force some processes to use the conventional system
call interface by evicting all their permission table entries, refusing
to install new ones, and returning an error code informing the pro-
cess of the change in policy. Finally, enhancements can be made to
more aggressively avoid fragmention in the file system block allo-
cator.

4.4 Completing requests and reporting errors
Modern hardware provides no mechanism for delivering an inter-
rupt directly to a process, so virtualizing this aspect of the inter-
face efficiently is difficult. Moneta-D supports three mechanisms
for notifying a process when a command completes that trade-off
CPU efficiency and performance. Moneta-D also provides a scal-
able mechanism for reporting errors (e.g., permission check fail-
ures).

Forwarding interrupts The first notification scheme uses a tradi-
tional kernel interrupt handler to notify channels of request status
through a shared memory page. Moneta-D’s kernel driver receives
the interrupt and reads the CHANNELSTATUS register to determine
which channels have completed requests. The kernel increments
the COMPLETIONCOUNT variable for each of those channels.

After issuing a request, the user space library spins on both
COMPLETIONCOUNT and the TAGSTATUSTABLE entry for the
request. Once the kernel increments COMPLETIONCOUNT one

thread in the user space library sees the change and reads the per-
channel TAGSTATUSREGISTER from Moneta-D. This read also
clears the register, ensuring that only one reader will see each bit
that is set. The thread updates the TAGSTATUSTABLE entries for all
of the completed tags, signalling any other threads that are waiting
for requests on the channel.

DMA completion The second command completion mechanism
bypasses the operating system entirely. Rather than raise an in-
terrupt, Moneta-D uses DMA to write the request’s result code
(i.e., success or an error) directly to the tag’s entry in the chan-
nel’s TAGSTATUSTABLE. In this case, the thread spins only on the
TAGSTATUSTABLE.

Issue-sleep The above techniques require the issuing thread to
spin. For large requests this is unwise, since the reduction in latency
that spinning provides is small compared to overall request latency,
and the spinning thread occupies a CPU, preventing it from doing
useful work.

To avoid spinning, issue-sleep issues a request to hardware and
then asks the OS to put it to sleep until the command completes.
When an interrupt arrives, the OS restarts the thread and returns
the result code for the operation. This approach incurs the system
call overhead but avoids the file system overhead, since permission
checks still occur in hardware. The system call also occurs in
parallel with the access.

It is possible to combine issue-sleep on the same channel with
DMA completions, since the latter does not require interrupts. This
allows the user library to trade-off between completion speed and
CPU utilization. A bit in the command word that initiates a requests
tells Moneta-D which completion technique to use. We explore this
trade-off below.

Reporting errors Moving permission checks into hardware and
virtualizing Moneta’s interface complicates the process of report-
ing errors. Moneta-D uses different mechanisms to report errors
depending on which completion technique the request is using.

For interrupt forwarding and issue-sleep, the hardware enqueues
the type of error along with its virtual tag number and channel
ID in a hardware error queue. It then sets the error bit in the
CHANNELSTATUS register and raises an interrupt.



The kernel detects the error when it reads the CHANNELSTA-
TUS register. If the error bit is set, it extracts the error details from
the queue by reading repeatedly from the ERRORQUEUE register.
Each read dequeues an entry from the error queue. For interrupt
forwarding the kernel copies the error codes into the TAGSTATUS-
REGISTERs for the affected channels. For issue-sleep completion it
returns the error when it wakes up the sleeping thread. The kernel
reads from ERRORQUEUE until it returns zero.

For DMA completion, the hardware writes the result code for
the operation directly into the TAGSTATUSTABLE when the opera-
tion completes.

Completion technique performance The four completion
method lines of Figure 3 measure the latency of each complation
strategy in addition to the interrupt processing overhead for the
baseline Moneta design. Interrupt forwarding and DMA comple-
tion all have similar latencies – between 2.5 and 2.7 µs. Issue-sleep
takes over 14 µs, but for large requests, where issue-sleep is most
useful, latency is less important.

Figure 5 compares the performance of the three completion
techniques. The data are for 32 threads performing random ac-
cesses of the size given on the horizontal axis. Half of the ac-
cesses are reads and half are writes. Figure 5(a) measures aggre-
gate throughput and shows that DMA completion outperforms the
other schemes by between 21% and 171%, for accesses up to 8 KB.
Issue-sleep performs poorly for small accesses, but for larger ac-
cesses its performance is similar to interrupt forwarding. We use
DMA completion throughout the rest of the paper.

Figure 5(b) measures efficiency in terms of GB/s of bandwidth
per CPU. The two spinning-based techniques fare poorly for large
requests. Issue-sleep does much better and can deliver up to 7⇥
more bandwidth per CPU. The drop in issue-sleep performance
for requests over 128 KB is an artifact of contention for tags
in our microbenchmark: Threads spin while waiting for a tag to
become available and yield the processor between each check.
Since our microbenchmark does not do any useful work, the kernel
immediately reschedules the same thread. In a real application,
another thread would likely run instead, reducing the impact of the
spinning thread.

The data show that DMA completion is a good choice for all
request sizes, but that issue-sleep has a slight advantage for CPU-
intensive workloads. Issue-sleep is the best choice for accesses of
8 KB or larger because it is more CPU-efficient.

5. Results
Moneta-D’s virtualized interface reduces both file and operating
system overhead, but it also introduces new sources of potential
latency as described in Section 4. This section quantifies the overall
impact of these changes on Moneta-D’s performance using an
IO microbenchmark and several database applications. We also
evaluate the benefits of using asynchronous IO on Moneta-D rather
than the conventional synchronous operations.

5.1 Operation latency
Figure 6 shows how end-to-end single thread access latency varies
over a range of write request sizes from 512 B to 32 KB on the base-
line Moneta design and Moneta-D. Read latencies are similar. The
graph shows data for accesses running with 1000 permission table
entries installed. We collect these data using XDD [34], a flexible
IO benchmarking tool. Moneta-D extends the baseline Moneta’s
performance by a wide margin, while Moneta outperforms state-
of-the-art flash-based SSDs by up to 8.7⇥, with a harmonic mean
speedup of 2.1⇥ on a range of file system, paging, and database
workloads [5].
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Figure 6. Write access latency Moneta-D’s user space interface
eliminates most of the file system and operating system overheads
to reduce file system access latency by between 42% and 69%.

Figure 6 shows that Moneta-D eliminates most file system and
operating system overheads from requests of all sizes, since the
lines for Moenta-D FS and NoFS lay on top of each other. Figure 3
provides details on where the latency savings come from for small
requests. Assuming the access hits in the permission table, Moneta-
D all of this, reducing latency by 60%. Reducing software over-
heads for small (512 B) requests is especially beneficial because
as request size decreases, hardware latency decreases and software
latency remains constant.

5.2 Raw bandwidth
Since removing the operating and file systems from common case
accesses reduces software overhead per IO operation, it also in-
creases throughput, especially for small accesses. Figure 7 com-
pares the bandwidth for Moneta-D and baseline Moneta with and
without the file system. For writes, the impact of virtualization is
large: Adding a file system reduces performance for the original
Moneta system by up to 13⇥, but adding a file system to Moneta-D
has almost no effect. Moneta-D eliminates the gap for reads as well,
although the impact of the file system on the baseline is smaller (at
most 34%).

Reducing software overheads also increases the number of IO
operations the system can complete per second, because the system
must do less work for each operation. For small write accesses with
a file system, throughput improves by 26⇥, and Moneta-D sustains
1.8 M 512 B IO operations per second.

5.3 Application level performance
Table 2 describes the workloads we use to evaluate the application
level performance of Moneta-D compared to the baseline Moneta
design. The first two workloads are simple database applications
that perform random single-value updates to a large key-value store
in Berkeley-DB, backed either by a B+tree or a hash table. The
six MySQL and PGSQL workloads consist of full OLTP database
servers that aggressively optimize storage accesses and have strong
consistency requirements. They are running the OLTP portion of
the SysBench benchmark suite [30] which includes a variety of
OLTP operations including read-only lookups, single-value incre-
ments, and complex transactions with multiple lookups and up-
dates.

Table 3 shows the performance results for baseline Moneta and
the Moneta-D systems for all of our workloads. We also include
performance numbers from a FusionIO 80 GB Flash SSD for com-
parison. Moneta-D speeds up the Berkeley-DB applications by be-
tween 2.6⇥ and 5.7⇥ in terms of operations/second, compared to
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Figure 7. File system overhead Each pair of lines compares bandwidth with and without the file system for reads (a) and writes (b) for the
baseline system and Moneta-D. The data show that giving the applications direct access to the hardware nearly eliminates the performance
penalty of using a file system and the cost of entering the operating system.

Name Data footprint Description
Berkeley-DB Btree 45 GB Transactional updates to a B+tree key/value store
Berkeley-DB Hash 41 GB Transactional updates to a hash table key/value store

MySQL-Simple 46 GB Single value random select queries on MySQL database
MySQL-Update 46 GB Single value random update queries on MySQL database

MySQL-Complex 46 GB Mix of read/write queries in transactions on MySQL database
PGSQL-Simple 55 GB Single value random select queries on Postgres database
PGSQL-Update 55 GB Single value random update queries on Postgres database

PGSQL-Complex 55 GB Mix of read/write queries in transactions on Postgres database

Table 2. Benchmarks and applications We use eight database benchmarks and workloads to evaluate Moneta-D.

Raw Performance Speedup of Moneta-D vs.
Workload FusionIO Moneta Moneta-D FusionIO Moneta

Berkeley-DB Btree 4066 ops/s 8202 ops/s 21652 ops/s 5.3 ⇥ 2.6 ⇥
Berkeley-DB Hash 6349 ops/s 10988 ops/s 62124 ops/s 9.8 ⇥ 5.7 ⇥

MySQL-Simple 13155 ops/s 13840 ops/s 15498 ops/s 1.2 ⇥ 1.1 ⇥
MySQL-Update 1521 ops/s 1810 ops/s 2613 ops/s 1.7 ⇥ 1.4 ⇥

MySQL-Complex 390 ops/s 586 ops/s 866 ops/s 2.2 ⇥ 1.5 ⇥
PGSQL-Simple 23697 ops/s 49854 ops/s 63308 ops/s 2.7 ⇥ 1.3 ⇥
PGSQL-Update 2132 ops/s 2523 ops/s 5073 ops/s 2.4 ⇥ 2.0 ⇥

PGSQL-Complex 569 ops/s 1190 ops/s 1809 ops/s 3.2 ⇥ 1.5 ⇥
Harmonic mean 2.4 ⇥ 1.7 ⇥

Table 3. Workload performance Moneta-D provides significant speedups compared to baseline Moneta and FusionIO across a range of
workloads. The Berkeley-DB workloads benefit more directly from the increased IO throughput, while the full SQL databases see large gains
for write intensive queries. All of the data use the best performing thread count (between 1 and 16) for each workload. FusionIO performance
is provided for reference.
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Figure 9. Asynchronous performance (a) Moneta-D’s asynchronous interface improves single threaded performance by up to 3.5⇥ by
eliminating time spent waiting for completions. The data in (b) measure efficiency in terms of bandwidth per CPU with synchronous and
asynchronous 16 KB accesses for varying numbers of threads.

baseline Moneta and by between 5.3⇥ and 9.8⇥ compared to Fu-
sionIO. We attribute the difference in performance between these
two workloads to higher data structure contention in the B+tree
database implementation.

Figure 8 shows application performance speedup for varying
thread counts from 1 to 16 for the Berkeley-DB and complex
MySQL and Postgres databases. Other MySQL and Postgres re-
sults are similar. The results are normalized to 1-thread baseline
Moneta performance. Baseline Moneta out-performs FusionIO for
all thread counts across all of workloads, while Moneta-D pro-
vides additional speedup. Increasing thread counts on Moneta-D
provides significantly more speedup than on Moneta or FusionIO
for the Berkeley-DB workloads, and improves scaling on PGSQL-
Complex.

The larger database applications, MySQL and Postgres, see per-
formance improvements from 1.1⇥ to 2.0⇥ under Moneta-D, com-
pared to baseline Moneta. The data show that for these workloads,
write-intensive operations benefit most from Moneta-D, with trans-
action throughput increases of between 1.4⇥ to 2.0⇥. Read-only
queries also see benefits but the gains are smaller — only 1.1⇥

to 1.3⇥. This is consistent with Moneta-D’s smaller improvements
for read request throughput.

We found that Postgres produces access patterns that interact
poorly with Moneta-D, and that application level optimizations en-
able better performance. Postgres includes many small extensions
to the files that contain its database tables. With Moneta-D these
file extensions each result in a soft miss. Since Postgres extends
the file on almost all write accesses, these soft misses eliminate
Moneta-D’s performance gains. Pre-allocating zeroed out data files
before starting the database server enables Postgres to take full ad-
vantage of Moneta-D. Although Moneta-D requires no application
level changes to function, this result suggests that, large perfor-
mance improvements could result from additional optimizations at
the application level, such as allocating large blocks in the file sys-
tem rather than many small file extensions.

5.4 Asynchronous IO
Providing an asynchronous IO interface to Moneta-D allows appli-
cations to take advantage of its inherently asynchronous hardware
interface. Figure 9 compares the performance of Moneta-D with



and without asynchronous IO. Figure 9(a) shows sustained band-
width for the synchronous and asynchronous interfaces with 1 and 8
threads. Asynchronous operations increase throughput by between
1.1⇥ and 3.0⇥ on access sizes of 512 B to 256 KB when using 1
thread. With 8 threads, asynchronous operations boost performance
for requests of 4 KB or larger. Small request performance suffers
from software overheads resulting from maintaining asynchronous
request data structures and increased contention during tag alloca-
tion.

Figure 9(b) shows the efficiency gains from using asynchronous
requests on 16 KB accesses for varying numbers of threads. The
data show that for one thread, asynchronous requests are 2.8⇥more
efficient than synchronous requests with respect to the amount of
bandwidth per CPU. As the number of threads increases, the asyn-
chronous accesses slowly lose their efficiency advantage compared
to synchronous accesses. As the number of threads increases, the
per-thread performance decreases because of increased contention
for hardware bandwidth and tags.

To understand the application-level impact of an asynchronous
interface, we modified the ADPCM codec from Mediabench [12]
to use Moneta-D’s asynchronous IO interface and then used it to
decode a 100 MB file. Using the asynchronous IO interface results
in an 1.4⇥ speedup over the basic Moneta-D interface. By using
three buffers, ADPCM can process one block while reading in an-
other and writing out a third. ADPCM’s performance demonstrates
how overlapping data accesses with data processing enables signif-
icant gains. In this case, Moneta-D transformed an IO bound work-
load into a CPU bound one, shifting from 41% CPU utilization for
one thread on the baseline Moneta system to 99% CPU utilization
with the asynchronous interface.

6. Conclusion
As emerging non-volatile memory technologies shrink storage
hardware latencies, hardware interfaces and system software must
adapt or risk squandering the performance these memories offer.
Moneta-D avoides this danger by moving file system permission
checks into hardware and using an untrusted, user space driver to
issue requests. These changes reduce latency for 4 KB write re-
quests through the file system by up to 58% and increase through-
put for the same requests by 7.6⇥. Reads are 60% faster. These
increases in raw performance translate into large application level
gains. Throughput for an OLTP database workload increased 2.0⇥
and our Berkeley-DB based workloads sped up by 5.7⇥. Asyn-
chronous IO support provides 5.5⇥ better 4 KB access throughput
with 1 thread, and 2.8⇥ better efficiency for 512-B operations, re-
sulting in a 1.7⇥ throughput improvement for a streaming applica-
tion. Overall, out results demonstrate the importance of eliminating
software overheads in IO-intensive applications that will use these
emerging memories and point to several opportunities to improve
performance further by modifying the applications themselves.
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