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Abstract

Persistent, user-defined objects present an attractive abstraction for
working with non-volatile program state. However, the slow speed
of persistent storage (i.e., disk) has restricted their design and lim-
ited their performance. Fast, byte-addressable, non-volatile tech-
nologies, such as phase change memory, will remove this constraint
and allow programmers to build high-performance, persistent data
structures in non-volatile storage that is almost as fast as DRAM.
Creating these data structures requires a system that is lightweight
enough to expose the performance of the underlying memories but
also ensures safety in the presence of application and system fail-
ures by avoiding familiar bugs such as dangling pointers, multiple
free()s, and locking errors. In addition, the system must prevent
new types of hard-to-find pointer safety bugs that only arise with
persistent objects. These bugs are especially dangerous since any
corruption they cause will be permanent.

We have implemented a lightweight, high-performance persis-
tent object system called NV-heaps that provides transactional se-
mantics while preventing these errors and providing a model for
persistence that is easy to use and reason about. We implement
search trees, hash tables, sparse graphs, and arrays using NV-heaps,
BerkeleyDB, and Stasis. Our results show that NV-heap perfor-
mance scales with thread count and that data structures imple-
mented using NV-heaps out-perform BerkeleyDB and Stasis im-
plementations by 32× and 244×, respectively, by avoiding the op-
erating system and minimizing other software overheads. We also
quantify the cost of enforcing the safety guarantees that NV-heaps
provide and measure the costs of NV-heap primitive operations.

Categories and Subject Descriptors D.4.2 [Operating Systems]:
Storage Management—Storage hierarchies; D.3.4 [Programming
Languages]: Processors—Memory management (garbage collec-
tion); E.2 [Data]: Data Storage Representations

General Terms Design, Performance, Reliability

Keywords Non-volatile Heap, Persistent Objects, Phase-change
Memory, Spin-torque Transfer Memory, ACID Transactions,
Pointer Safety, Memory Management, Transactional Memory
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1. Introduction

The notion of memory-mapped persistent data structures has long
been compelling: Instead of reading bytes serially from a file and
building data structures in memory, the data structures would ap-
pear, ready to use in the program’s address space, allowing quick
access to even the largest, most complex persistent data structures.
Fast, persistent structures would let programmers leverage decades
of work in data structure design to implement fast, purpose-built
persistent structures. They would also reduce our reliance on the
traditional, un-typed file-based IO operations that do not integrate
well with most programming languages.

Many systems (e.g., object-oriented databases) have provided
persistent data structures and integrated them tightly into pro-
gramming languages. These systems faced a common challenge
that arose from the performance and interface differences between
volatile main memory (i.e., DRAM) and persistent mass stor-
age (i.e., disk): They required complex buffer management and
de(serialization) mechanisms to move data to and from DRAM.
Despite decades of work optimizing this process, slow disks ul-
timately limit performance, especially if strong consistency and
durability guarantees are necessary.

New non-volatile memory technologies, such as phase change
and spin-torque transfer memories, are poised to remove the disk-
imposed limit on persistent object performance. These technolo-
gies are hundreds of times faster than the NAND flash that makes
up existing solid state disks (SSDs). While NAND, like disk, is
fundamentally block-oriented, these new technologies offer both
a DRAM-like byte-addressable interface and DRAM-like perfor-
mance. This potent combination will allow them to reside on the
processor’s memory bus and will nearly eliminate the gap in per-
formance between volatile and non-volatile storage.

Neither existing implementations of persistent objects nor the
familiar tools we use to build volatile data structures are a good
fit for these new memories. Existing persistent object systems are
not suitable, because the gap between memory and storage per-
formance drove many design decisions that shaped them. Recent
work [13, 14] has shown that software overheads from the oper-
ating system, file systems, and database management systems can
squander the performance advantages of these memories. Remov-
ing these overheads requires significant reengineering of the way
both the kernel and application manage access to storage.

Managing non-volatile memory like conventional memory is
not a good solution either. To guarantee consistency and durabil-
ity, non-volatile structures must meet a host of challenges, many
of which do not exist for volatile memories. They must avoid dan-
gling pointers, multiple free()s, memory leaks, and locking errors,
but they also must avoid several new types of hard-to-find program-



ming errors. For instance, pointers from non-volatile data structures
into volatile memory are inherently unsafe, because they are mean-
ingless after the program ends. The system must also perform some
kind of logging if non-volatile structures are to be robust in the face
of application or system failure. Trusting the average programmer
to “get it right” in meeting these challenges is both unreasonable
and dangerous for non-volatile data structures: An error in any of
these areas will result in permanent corruption that neither restart-
ing the application nor rebooting the system will resolve.

This paper proposes a new implementation of persistent objects
called Non-volatile Memory Heaps (NV-heaps). NV-heaps aim to
provide flexible, robust abstractions for building persistent objects
that expose as much of the underlying memory performance as pos-
sible. NV-heaps provide programmers with a familiar set of simple
primitives (i.e., objects, pointers, memory allocation, and atomic
sections) that make it easy to build fast, robust, and flexible persis-
tent objects. NV-heaps avoid OS overheads on all common case ac-
cess operations and protect programmers from common mistakes:
NV-heaps provide automatic garbage collection, pointer safety, and
protection from several novel kinds of bugs that non-volatile ob-
jects make possible. NV-heaps are completely self-contained, al-
lowing the system to copy, move, or transmit them just like normal
files.

In designing NV-heaps, our goals are to provide safe access
to persistent objects, to make persistent objects easy to program,
and to achieve high performance. To this end, our system has the
following of properties:

1. Pointer safety. NV-heaps, to the extent possible, prevent pro-
grammers from corrupting the data structures they create by
misusing pointers or making memory allocation errors.

2. Flexible ACID transactions. Multiple threads can modify NV-
heaps concurrently. NV-heaps are robust against application and
system failure.

3. Familiar interface. The programming interface for NV-heaps
is similar to the familiar interface for implementing volatile data
structures.

4. High performance. Access to the data in an NV-heap is as fast
as possible relative to the speed of the underlying non-volatile
memory.

5. Scalability. NV-heaps are designed to scale to very large (many
gigabytes to terabytes) data structures.

The paper describes the NV-heaps model and our Linux-based
implementation in detail. It highlights the aspects of NV-heaps that
minimize software overheads and evaluates its performance using
emulated fast memories. We use a set of benchmarks that includes
several complex data structures as well as a non-volatile version of
SSCA [5], a sparse graph analysis application. We also convert a
persistent version of Memcached [16], the popular memory object
caching system, to use NV-heaps. We compare NV-heaps to Sta-
sis [53] and BerkeleyDB [46], two other interfaces to non-volatile
data that target conventional block devices (e.g., disks). We also
evaluate the performance scalability of NV-heaps, and evaluate the
impact of the underlying non-volatile storage technology on their
overall performance. In particular, we focus on phase-change mem-
ory (PCM) and spin-torque transfer memory (STTM) technologies.

Our results show that NV-heaps out-perform BerkeleyDB and
Stasis by 32× and 244×, respectively, because NV-heaps elimi-
nate the operating system from common-case operations and mini-
mize other software overheads. We also compare NV-heaps to a Rio
Vista-like [38] version of the system that provides no safety guaran-
tees and find that the cost of safety is a 11× drop in performance.
Our experience programming with NV-heaps and the unsafe ver-
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Figure 1. The NV-heap system stack This organization allows
read and write operations to bypass the operating system entirely.

sion of the system leads us to conclude that the benefits in terms of
ease-of-use more than make up for the performance cost.

The remainder of this paper is organized as follows. We present
an overview of NV-heaps in Section 2. Section 3 describes our im-
plementation of NV-heaps. Sections 4 and 5 describe our method-
ology and results. Section 6 concludes.

2. NV-heaps

The goal of NV-heaps is to make it easy to build and use robust, per-
sistent data structures that can exploit the performance that emerg-
ing non-volatile, solid-state memories offer. To achieve this, NV-
heaps provides an easy-to-use application-level interface to a per-
sistent object system tailored to emerging non-volatile memories.
The designs of previous persistent object systems [3, 10, 12, 34,
57, 61] focus on hiding disk latency rather than minimizing soft-
ware overhead, making them a poor fit for these new memory tech-
nologies.

NV-heaps provide a small set of simple primitives: persistent
objects, specialized pointer types, a memory allocator, and atomic
sections to provide concurrency and guard against system or appli-
cation failure. NV-heaps hide the details of locking, logging, and
memory management, so building a data structure in an NV-heap
is very similar to building one in a conventional, volatile heap.

To use an NV-heap, the application opens it by passing the NV-
heap library a file name. The library maps the NV-heap directly into
the application’s address space without performing a copy, which
is possible because the underlying memory is byte-addressable
and appears in the processor’s physical address space. Once the
mapping is complete, the application can access the NV-heap’s
contents via a root pointer from which all data in the NV-heap is
accessible.

Figure 1 shows the relationship between NV-heaps, the operat-
ing system, and the underlying storage. A key feature of NV-heaps
is that they give the application direct access to non-volatile mem-
ory, eliminating operating system overhead in most cases and sig-
nificantly increasing performance.

Below, we make the case for the strong safety guarantees
that NV-heaps provide. Then, we describe the transaction, pointer
safety, performance, and usability features that NV-heaps include
along with an example of NV-heaps in action. We discuss the dif-
ferences between NV-heaps and existing persistent object systems
throughout. Section 3 describes the implementation in detail.



2.1 Preventing programmer errors

Integrating persistent objects into conventional programs presents
multiple challenges. Not only must the system (or the programmer)
maintain locking and memory allocation invariants, but it must
also enforce a new set of invariants on which objects belong to
which region of memory. Potential problems arise if one NV-heap
contains a pointer into another NV-heap or into the volatile heap. In
either case, when a program re-opens the NV-heap, the pointer will
be meaningless and potentially dangerous. Furthermore, violating
any of these invariants results in errors that are, by definition,
persistent. They are akin to inconsistencies in a corrupt filesystem.

We believe that if persistent objects are to be useful to the aver-
age programmer, they must be fast and make strong safety guaran-
tees. Providing a low-level interface and expecting the programmer
to “get it right” has proven to be a recipe for bugs and unreliabil-
ity in at least two well-known domains: Memory management and
locking disciplines. In both of those instances, there is a program-
wide invariant (i.e., which code is responsible for free()ing an
object and which locks protect which data) that the source code
does not explicitly describe and that the system does not enforce. A
persistent object system must contend with both of these in addition
to the constraints on pointer usage in NV-heaps.

To understand how easy it is to create dangerous pointers in
NV-heaps, consider a function

Insert(Object * a, List<Object> * l) ...

that inserts a pointer to a non-volatile object, a, into a non-volatile
linked list, l. The programmer must ensure that a and l are part
of the same non-volatile structure, but there is no mechanism to
enforce that constraint since it is not clear whether a is volatile or
non-volatile or which NV-heap it belongs to. One incorrect call to
this function can corrupt l: It might, for instance, end up containing
a pointer from an NV-heap into volatile memory. In either case, if
we move l to another system or restart the program, l is no longer
safe to use: The pointer to object a that the list contains has become
a “wild” pointer.

There is also real-world evidence that non-volatile data struc-
tures are difficult to implement correctly. Microsoft Outlook stores
mail and other personal information in a pointer-based Personal
Folder File (PFF) file format [43]. The file format is complex
enough that implementing it correctly proved difficult. In fact, Mi-
crosoft eventually released the “Inbox Repair Tool” [44] which is
similar to fsck-style tools that check and repair file systems.

Another system, BPFS [17], highlights what it takes to build a
robust non-volatile data structure on top of raw non-volatile mem-
ory. BPFS implements a transactional file system directly atop
the same kind of byte-addressable non-volatile memories that NV-
heaps target. BPFS uses carefully designed data structures that ex-
ploit the file system’s tree structure and limited set of required
operations to make transactional semantics easy to implement in
most cases. In doing so, however, it enforces stringent invariants on
those structures (e.g., each block of data has only a single incoming
pointer) and requires careful reasoning about thread safety, atomic-
ity, and memory access ordering. BPFS is an excellent example of
what skilled programmers can accomplish with non-volatile mem-
ories, but average users will, we expect, be unwilling (or unable)
to devise, enforce, and reason about such constraints. NV-heaps re-
move that burden, and despite additional overheads, they still pro-
vide excellent performance (see Section 5).

Existing systems that are similar to NV-heaps, such as Rio
Vista [38] and RVM [51], provide direct access to byte addressable,
non-volatile memories and let the programmer define arbitrary
data structures. But these systems do not offer protection from
memory allocation errors, locking errors, or dangerous non-volatile
pointers. Concurrent work on a system called Mnemosyne [60]

goes further and provides a set of primitives for operating on data
in persistent regions. It would be possible to implement the key
features of NV-heaps using these primitives. Systems that target
disk-based storage have either implemented persistent objects on
top of a conventional database (e.g., the Java Persistence API [7])
or in a specialized object-oriented database [3, 10, 12, 34, 57,
61]. In these systems, the underlying storage system enforces the
invariants automatically, but they extract a heavy cost in terms of
software overhead.

2.2 Transactions

To make memory-mapped structures robust in the face of appli-
cation and system failures, the system must provide useful, well-
defined guarantees about how and when changes to a data struc-
ture become permanent. NV-heaps use ACID transactions for this
purpose because they provide an elegant method for mediating ac-
cess to shared data as well as robustness in the face of failures.
Programmer-managed locks cannot provide that robustness. Recent
work on (volatile) transactional memory [8, 22, 24, 26, 27, 50, 56]
demonstrates that transactions may also be easier to use than locks
in some cases.

Systems that provide persistence, including persistent object
stores [34, 37, 57, 61], some persistence systems for Java [7, 41],
Rio Vista [38], RVM [51], Mnemosyne [60], Stasis [53], Ar-
gus [36], and QuickSilver [25], provide some kind of transactions,
as do relational databases. However, the type of transactions vary
considerably. For example, Stasis provides page-based transactions
using write-ahead logging, a technique inspired by databases [45].
Mnemosyne also uses write-ahead logging, but operates at the word
granularity. RVM and Rio Vista provide transactions without isola-
tion, and RVM provides persistence guarantees only at log flushes.
Single-level stores have taken other approaches that include check-
points [55] and explicitly flushing objects to persistent storage [58].

2.3 Referential integrity

Referential integrity implies that all references (i.e., pointers) in
a program point to valid data. Java and other managed languages
have demonstrated the benefits of maintaining referential integrity:
It avoids memory leaks, “wild” pointers, and the associated bugs.

In NV-heaps, referential integrity is more important and com-
plex than in a conventional system. Integrity problems can arise in
three ways, and each requires a different solution.

Memory allocation NV-heaps are subject to the memory leaks and
pointer bugs that all programming systems face. Memory leaks,
in particular, are more pernicious in a non-volatile setting. Once
a region of storage leaks away, reclaiming it is very difficult. Pre-
venting such problems requires some form of automatic garbage
collection.

NV-heaps use reference counting, which means that space is
reclaimed as soon as it becomes dead and that there is never a
need to scan the entire NV-heap. The system avoids memory leaks
due to cycles by using a well-known technique: weak pointers that
do not affect reference counts. Several other garbage collection
schemes [33, 47] for non-volatile storage have been proposed, and
integrating a similar system into NV-heaps is a focus of our ongoing
work.

Previous systems have taken different approaches to mem-
ory management. Non-volatile extensions to Java [4, 41] pro-
vide garbage collection, but Rio Vista [38], RVM [51], and
Mnemosyne [60] do not. Java’s persistence API [7] requires
the programmer to specify a memory management policy via
flexible (and potentially error-prone) annotations. Object-oriented
databases have taken a range of approaches from providing simple



garbage collection [10] to allowing applications to specify complex
structural invariants on data structures [3].

Volatile and non-volatile pointers NV-heaps provide several new
avenues for creating unsafe pointers because they partition the ad-
dress space into a volatile memory area (i.e., the stack and volatile
heap) and one or more NV-heaps.

This partitioning gives rise to four new types of pointers: Point-
ers within a single NV-heap (intra-heap NV-to-NV pointers), point-
ers between two NV-heaps (inter-heap NV-to-NV pointers), point-
ers from volatile memory to an NV-heap (V-to-NV pointers), and
pointers from an NV-heap to volatile memory (NV-to-V pointers).

Ensuring referential integrity in NV-heaps requires that the sys-
tem obey two invariants. The first is that there are no NV-to-V
pointers, since they become meaningless once the program ends
and would be unsafe the next time the program uses the NV-heap.

The second invariant is that there are no inter-heap NV-to-
NV pointers. Inter-heap pointers become unsafe if the NV-heap
that contains the object is not available. Inter-heap pointers also
complicate garbage collection, since it is impossible to tell if a
given location in an NV-heap is actually dead if a pointer in another
(potentially unavailable) NV-heap may refer to it.

NV-heaps enforce these invariants via a simple dynamic type
system. Each pointer and each object carries an identifier of the
heap (NV-heap or volatile heap) that it belongs to. Mismatched as-
signments are a run-time error. As far as we know, NV-heaps are the
first system to explicitly identify and prohibit these types of dan-
gerous pointers. Rio Vista [38] and RVM [51] make no attempts
to eliminate any of these pointer types. Also, full-fledged persis-
tent object systems such as ObjectStore do not guard against these
dangerous pointers, leaving the system and underlying database
vulnerable to corruption [23]. However, other systems effectively
eliminate dangerous pointers. JavaCard [2], a subset of Java for
the very constrained environment of code running on a smart card,
makes almost all objects persistent and collects them in a single
heap. In Java’s persistence API [7] the underlying database deter-
mines which NV-to-NV pointers exist and whether they are well-
behaved. It prohibits NV-to-V pointers through constraints on ob-
jects that can be mapped to rows in the database.

Closing NV-heaps Unmapping an NV-heap can also create unsafe
pointers. On closing, any V-to-NV pointers into the NV-heap be-
come invalid (but non-null). Our implementation avoids this pos-
sibility by unmapping NV-heaps only at program exit, but other
alternatives are possible. For instance, a V-to-NV pointer could use
a proxy object to check whether the NV-heap it points into is still
open.

2.4 Performance and scalability

NV-heaps provide common case performance that is close to that of
the underlying memory for data structures that scale up to the ter-
abyte range. All common case operations (e.g., reading or writing
data, starting and completing transactions) occur in user space. NV-
heaps make system calls to map themselves into the application’s
address space and to expand the heap as needed. Entering the OS
more frequently would severely impact performance since system
call overheads are large (e.g., 6 µs for a 4 KB read on our system)
compared to memory access time.

The result is a system that is very lightweight compared to
previous persistent object systems that include sophisticated buffer
management systems to hide disk latency [11, 30, 34, 57, 61]
and/or costly serialization/deserialization mechanisms [7]. Unlike
these systems, NV-heaps operate directly on non-volatile data that
is accessible through the processor-memory bus, thereby avoiding
the operating system. Rio Vista [38] is similar to NV-heaps, since
it runs directly on battery-backed DRAM, but it does not provide
any of the safety guarantees of NV-heaps. Mnemosyne [60] also

provides direct access to fast, non-volatile memories, but providing
the level of safety in NV-heaps requires more effort.

We have designed NV-heaps to support multi-terabyte data
structures, so we expect that the amount of non-volatile storage
available in the system may be much larger than the amount of
volatile storage. To allow access to large structures, NV-heaps re-
quire a fixed, small amount of volatile storage to access an NV-heap
of any size. NV-heaps also ensure that the running time of opera-
tions, including recovery, are a function only of the amount of data
they access, not the size of the NV-heap.

2.5 Ease of use

To be useful, NV-heaps need to be easy to use and interact cleanly
with each other and with existing system components. NV-heaps
also need to make it clear which portions of a program’s data are
non-volatile and which NV-heap they belong to.

NV-heaps exist as ordinary files in a file system in a manner
similar to previous persistent object store implementations [57,
61]. Using files for NV-heaps is crucial because the file system
provides naming, storage management, and access control. These
features are necessary for storage, but they are not needed for
systems like [48, 49, 62] that simply use non-volatile memories
as a replacement for DRAM.

Like any file, it is possible to copy, rename, and transmit an NV-
heap. This portability means that NV-heaps must be completely
self-contained. The prohibition against NV-to-V and inter-heap
NV-to-NV pointers guarantees this isolation. An additional feature,
relative pointers (described in Section 3), provides (nearly) zero-
cost pointer “swizzling” and makes NV-heaps completely relocat-
able within an application’s address space.

We chose to make NV-heaps self-contained to make them easier
to manage with existing file-based tools. However, this choice
means that NV-heaps do not natively support transactions that span
multiple NV-heaps. Implementing such transactions would require
that NV-heaps share some non-volatile state (e.g., the “committed”
bit for the transaction). The shared state would have to be available
to both NV-heaps at recovery, something that self-contained NV-
heaps cannot guarantee. It is possible to move objects between non-
volatile data structures, but those structures need to reside in the
same NV-heap.

While NV-heaps make it easy to implement non-volatile data
structures, they do not provide the “orthogonal persistence” that
persistent object stores [34, 57, 61] and some dialects of Java [4, 18,
41] provide. Orthogonal persistence allows programmers to desig-
nate an existing pointer as the “root” and have all objects reachable
from that pointer become implicitly persistent regardless of their
type. This is an elegant abstraction, but using reachability to con-
fer persistence leads to several potential problems. For instance,
the programmer may inadvertently make more data persistent than
intended. In addition, the abstraction breaks down for objects that
cannot or should not be made persistent, such as an object rep-
resenting a network connection, a file descriptor, or a secret key.
Finally, it is possible for a single object to be reachable from two
roots, leading to the confusing situation of multiple copies of the
same object in two different persistent structures.

NV-heaps provide an alternative model for persistence. Each
NV-heap has a designated root pointer, and everything reachable
from the root is persistent and part of the same NV-heap. The
difference is that the program explicitly creates a persistent object
in the NV-heap and attaches it to another object in the heap
with a pointer. This does not prevent all errors (e.g., it is still
possible to inappropriately store a file descriptor in an NV-heap),
but it requires that the programmer explicitly add the data to the
NV-heap. It also prevents a single object from being part of two
NV-heaps.



class NVList : public NVObject {

  DECLARE_POINTER_TYPES(NVList);

public:

  DECLARE_MEMBER(int, value);

  DECLARE_PTR_MEMBER(NVList::NVPtr, next);

};

void remove(int k)

{

  NVHeap * nv = NVHOpen("foo.nvheap");

  NVList::VPtr a = 

            nv->GetRoot<NVList::NVPtr>();

  AtomicBegin {

    while(a->get_next() != NULL) {

      if (a->get_next()->get_value() == k) {

        a->set_next(a->get_next()->get_next());

      }

      a = a->get_next();

    }

  } AtomicEnd; 

}

Figure 2. NV-heap example A simple NV-heap function that
atomically removes all links with value k from a non-volatile linked
list.

This model for persistence is similar to what is imposed by
the Thor [37] persistent object store, but Thor does so through a
type-safe database programming language.

2.6 Example

The code in Figure 2 provides an example of how a program-
mer can create a non-volatile data structure using NV-heaps.
The code removes the value k from a linked list. Declaring the
linked list class as a subclass of NV Object marks it as non-
volatile. The DECLARE POINTER TYPES, DECLARE MEMBER,
and DECLARE PTR MEMBER macros declare the smart pointer
types for NV-to-NV and V-to-NV pointers (NVList::NV Ptr

and NVList::V Ptr, respectively) and declare two fields. The
declarations generate private fields in the class and public acces-
sor functions (e.g., get next() and set next()) that provide
access to data and perform logging and locking.

The program uses NVHOpen() to open an NV-heap and then
retrieves the root object, in this case a list of integers. It stores the
pointer to the linked list as a NVList::V Ptr. AtomicBegin starts
a transaction. When the atomic section is complete, the NV-heap
attempts to commit the changes. If it fails or if the system crashes,
it will roll the operations back.

In the next section we describe the implementation of the NV-
heap library in detail.

3. Implementing NV-heaps

Two considerations drove our implementation of NV-heaps: The
need for strong safety guarantees and our goal of maximizing
performance on fast, non-volatile memories. We implemented NV-
heaps as a C++ library under Linux. The system is fully functional
running on top of a RAM disk backed by DRAM. Below, we
describe the technologies that NV-heaps target and the support
they require from the OS and hardware. Then we describe our
implementations of memory management, reference safety, and
transactions. Finally, we discuss the storage overheads and how we
validated our implementation.

3.1 Fast, byte-addressable non-volatile memories

NV-heaps target solid-state memory technologies that present a
DRAM-like interface (e.g., via LPDDR [31]) and achieve perfor-
mance within a small factor of DRAM. To evaluate NV-heaps we
consider two advanced non-volatile memories: phase change mem-
ory (PCM) and spin-torque transfer memory (STTM).

PCM stores data as the crystalline state of a chalcogenide
layer [9] and has the potential to become a viable main mem-
ory technology as DRAM’s scaling falters [35, 49, 62]. PCM may
also eventually surpass flash memory in density according to the
ITRS [29]. The analysis in [35] provides a good characterization of
PCM’s performance and power consumption.

STTM stores bits as a magnetic orientation of one layer of a
magnetic tunnel junction [20]. We assume 22nm STTM technology
and base our estimates for performance on published papers [32,
59] and discussions with industry.

PCM and, to a lesser extent, STTM, along with most other
non-volatile memories require some form of wear management to
ensure reasonable device lifetime. Many wear-leveling schemes are
available [15, 19, 35, 48, 62] and some can provide excellent wear-
leveling at the memory controller level for less than 1% overhead.
NV-heaps (like BPFS [17]) assume that the system provides this
service to all the applications that use the storage.

3.2 System-level support

NV-heaps require a few simple facilities from the system. To the
file system, NV-heaps are normal files. To access them efficiently,
the file system should be running on top of byte-addressable non-
volatile memory that appears in the CPU’s physical address space.
To open an NV-heap, the system uses mmap(). Normally, the ker-
nel copies mmap()’d data between a block device and DRAM. In
a system in which byte-addressable non-volatile memories appear
in the processor’s address space, copying is not necessary. Instead,
mmap() maps the underlying physical memory pages directly into
the application’s virtual address space. In our kernel (2.6.28), the
brd ramdisk driver combined with ext2 provides this capability.

The second requirement is a mechanism to ensure that previ-
ous updates to non-volatile storage have reached the storage and
are permanent. For memory-mapped files, msync() provides this
functionality, but the system call overhead is too high for NV-heaps.
Instead, NV-heaps rely on architectural support in the form of the
atomic 8-byte writes and epoch barriers developed for BPFS [17]
to provide atomicity and consistency. Epoch barriers require small
changes to the memory hierarchy and a new instruction to spec-
ify and enforce an ordering between groups of memory operations.
Section 4 describes how we model the overhead for these opera-
tions. BPFS also provides durability support by incorporating ca-
pacitors onto the memory cards to allow in-progress operations to
finish in the event of a power failure. We assume similar hardware
support.

3.3 Memory management

The NV-heap memory management system implements allocation,
automatic garbage collection, reference counting, and pointer as-
signments as simple, fixed-size ACID transactions. These basic op-
erations form the foundation on which we build full-blown transac-
tions.

Atomicity and Durability The allocator uses fixed-size, non-
volatile, redo-logs called operation descriptors (similar to the
statically-sized transactions in [56]) to provide atomicity and dura-
bility for memory allocation and reference-counted pointer manip-
ulation. There is one set of operation descriptors per thread and the
design ensures that a thread only ever requires one of each type of
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Figure 3. Restartable object destruction Durable, atomic reference counting requires being able to restart the recursive destruction of a
potentially large numbers of objects. In this example the root node of a tree is destroyed and triggers the deletion of the entire tree. After a
system failure, the process resumes and completes during the recovery process.

descriptor for all operations. Epoch barriers ensure that the descrip-
tors are in a consistent state before the operation logically commits.

Concurrency To provide support for concurrent accesses to ob-
jects, each persistent object contains a lock that protects its refer-
ence count. The transaction system protects the other data in the
object.

Locks are volatile by nature because they only have meaning
during run-time. Therefore, to operate correctly, all locks must be
released after a system failure. This could necessitate a scan of the
entire storage array, violating our scalability requirement.

We avoid this problem by using generational locks: We asso-
ciate a current generation number with each NV-heap, and the
system increments the generation number when the NV-heap is
reloaded. A generational lock is an integer. If the integer is equal
to the current generation number, a thread holds it, otherwise, it
is available. Therefore, incrementing the NV-heap’s generation in-
stantly releases all of its locks.

Allocation The allocator uses per-thread free lists and a shared
global free list to reduce contention. If free space is not available,
the NV-heap library expands the file that holds the NV-heap and
maps that storage into the address space.

Prior work in memory management for multi-core systems
played a part in the design of the NV-heap allocator. Memory allo-
cators such as Hoard [6] use a global heap and per-thread heaps to
efficiently support parallel applications. McRT-Malloc is a memory
allocator designed specifically for a software transactional memory
system in a multi-core environment [28].

Deallocation When the reference counting system discovers that an
object is dead, it deallocates the storage. The deallocation routine
atomically calls the destructor, deallocates the memory, and sets the
requester’s pointer to NULL. Deallcoation is a potentially complex
process since the destructor may cause the reference counts on
other objects to go to zero, necessitating their destruction as well.

To implement atomic recursive destruction, the NV-heap
records the top level object to be destroyed in the root deletion op-
eration descriptor and then calls its destructor. When the destructor
encounters a pointer to another object, it checks that object’s refer-
ence count. If the reference count is one (i.e., this is the last pointer
to the object), it performs that deallocation using the non-root dele-
tion descriptor. If that deletion causes a further recursive deletion,
the non-root descriptor is reassigned to that deletion. The combi-
nation of the root and non-root descriptors provide a snapshot of

the recursive deletion process that 1) requires only two descriptors
regardless of recursion depth and 2) allows the process to restart in
the case of failure.

On recovery, the NV-heap processes the non-root descriptor first
to restore the invariant that all non-null pointers in the structure
point to valid objects. It then restarts the root deletion, which
will try to perform the same set of recursive destructions. It will
encounter NULL pointers up until the point of the system failure
and then resume deletion.

Figure 3 shows the algorithm in action. The system has just
begun to delete a tree rooted at Root since the last pointer to it
has just been set to NULL by the application. In (a), the operation
descriptor for the starting point for the deletion holds the address
of Root. The destruction proceeds by destroying the left child, L,
and setting the left child pointer in Root to NULL.

At this point (b), the system fails. During recovery, it finds a
valid operation descriptor and restarts the delete. Since the original
destruction of L was atomic, the pointer structure of the tree is still
valid and the destruction operation can destroy R (c) and Root

before invalidating the operation descriptor (d).
The only caveat is that an object’s destructor may be called

more than once. In most cases, this is not a problem, but some
idioms that require the destructor to, for instance, track the number
of live instances of an object will be more difficult to implement.
In our experience using the system, however, this has not been a
significant problem.

Recovery To recover from a system failure, the memory allocator
performs the following two steps. First, it replays any valid opera-
tion descriptors for basic storage allocation and deallocation oper-
ations. Then, it replays any reference count updates and reference
counting pointer assignments, which may include the recursive de-
struction process described above. When this is complete, all the
reference counts are valid and up-to-date and the recovery process
moves on to the transaction system.

3.4 Pointers in NV-heaps

The NV-heap library uses operator overloading to implement
pointer types for NV-to-NV, V-to-NV, and weak NV-to-NV point-
ers. Their assignment operators, copy constructors, and cast oper-
ators work together with the memory allocator to enforce correct
semantics for each pointer type.



The pointers play a key role in preventing the creation of inter-
heap NV-to-NV pointers and NV-to-V pointers. NV-to-NV point-
ers are “wide” and include a pointer to the NV-heap they belong to.
Non-volatile objects contain a similar pointer. The assignment op-
erators for the pointer check that the assignment is valid (i.e., that
the pointer and the object belong to the same NV-heap).

The smart pointer types also allow NV-heaps to be relocatable.
Instead of holding the actual address (which would change from
application to application or execution to execution), the pointer
holds an offset from the pointer’s address to the data it points to.

Below we describe the implementation of each pointer type.

NV-to-NV pointers NV-heaps support two types of NV-to-NV
pointers. Normal NV-to-NV pointers affect reference counts and
are the most common type of pointer in the applications we have
written. They reside in the NV-heap and point to data in the same
NV-heap.

Weak NV-to-NV pointers are similar but they do not affect an
object’s reference count. Weak pointers are required to implement
cyclic data structures (e.g., doubly-linked lists) without introducing
memory leaks. Ensuring that non-null weak NV-to-NV pointers
point to valid data requires that when the object they refer to
becomes dead (i.e., no more non-weak pointers refer to it), all the
weak pointers should atomically become NULL. This may lead to
an unexpected NULL pointer dereference, but it cannot result in
corrupted data.

We use proxy objects to implement this behavior. Weak NV-to-
NV pointers refer indirectly to the object via a proxy that contains
a pointer to the actual object. When an object dies, its destructor
sets the pointer in its proxy to NULL, instantly nullifying all the
weak pointers. The system manages proxy objects with reference
counting, similar to regular objects, because they must survive as
long as there are weak pointers that refer to them.

V-to-NV pointers There are three key requirements for V-to-NV
references. First, a V-to-NV reference must be sufficient to keep
an object alive. Second, when a program exits and all the V-to-
NV references are destroyed, the objects’ reference counts must
be adjusted accordingly. Third, the system must eventually reclaim
any objects that become dead when a program exits and destroys
all of the V-to-NV pointers.

To address the these issues, we add a second count of V-to-
NV references to each object. One attractive solution is to store
these counts in volatile memory. This would ensure they were reset
correctly on exit, but, in the event of a system or application failure,
the V-to-NV reference counts would be lost, making any dead
objects now impossible to reclaim.

Our implementation stores the count of volatile references in
non-volatile memory and uses the generation number technique we
used for non-volatile locks to reset it. To locate orphaned objects,
the NV-heap maintains a per-thread list of objects that only have
V-to-NV references. On startup, the NV-heap reclaims everything
in the list.

3.5 Implementing transactions

NV-heaps provide fine-grain consistency through atomic sections
that log all updates to the heap in non-volatile memory. Atomic sec-
tions for NV-heaps build on previous work developing transactional
memory systems for volatile memories [8, 22, 24, 26, 27, 50, 56].
The NV-heap transaction system is software-only (except for epoch
barrier support), and it relies heavily on the transactional memory
allocator and reference counting system described in Sections 3.3
and 3.4.

Transactions in NV-heaps Our implementation of NV-heaps pro-
vides ACID semantics for programs that meet two criteria: First, a
program must use the accessor functions to access object fields and

it must not use unsafe casts to circumvent the C++ type system.
Second, transactions should not access shared volatile state, since
the NV-heap transaction system does not protect it. We have not
found this to be a significant problem in our use of NV-heaps, but
we plan to extend the system to cover volatile data as well. Failure
to adhere to the second condition only impacts isolation between
transactions.

NV-heap’s log processing is the main difference relative to con-
ventional volatile transactional memory systems. NV-heaps main-
tain a volatile read log and a non-volatile write log for each trans-
action. When a transaction wants to modify an object, it must be
opened for writing, meaning the system will make a copy of the
object so that any changes can be rolled back in case of an abort or
system/application failure. When this happens, the running atomic
section must take ownership of the object by acquiring a volatile
lock in a table of ownership records indexed by the low-order bits
of the object’s unique ID. If another transaction owns the object,
a conflict has occurred, and the atomic section retries. Once the
atomic section becomes the owner, the NV-heap copies the object
into the log. To open an object for reading, NV-heaps store a pointer
to the object and its current version number in the read log.

After the system makes a copy of the object, the application
can safely modify the original object. If a system or application
failure occurs or the atomic section aborts, the NV-heap rolls back
the object to its original state by using the copy stored in the write
log.

We choose to copy entire objects to the log rather than indi-
vidual object fields, and this is a common trade-off in transac-
tional memory systems. In NV-heaps, each log operation requires
an epoch barrier which has some performance cost. Copying the
entire object helps to amortize this cost, and it pays off most when
transactions make multiple updates to an object, which is a com-
mon feature of the data structures that we studied.

NV-heaps borrow ideas from DSTM [26], RSTM [40], Dra-
coSTM [21], and McRT-STM [50]. The system logs entire objects
as opposed to individual fields, and uses eager conflict detection for
writes. It detects read conflicts by validating objects at access time
using version numbers. It stores undo logs for outstanding transac-
tions in non-volatile memory for recovery. The contention manage-
ment scheme [52] backs off and retries in case of conflict. NV-heaps
flatten nested transactions into a single transaction.

Transaction abort and crash recovery The processes for aborting
a transaction and recovering from a system or application failure
are very similar: NV-heaps roll back the transaction by restoring
the backup copies from the log. In the case of a crash, the system
first follows the recovery procedure defined in Section 3.3 to ensure
that the memory allocator is in a consistent state and all reference
counts are up-to-date.

An additional concern with crash recovery is that recovery must
be restartable in the case of multiple failures. NV-heaps recover
from failure by only rolling back valid log entries and using an
epoch barrier to ensure that an entry’s rollback is durably recorded
in non-volatile storage before marking the entry invalid.

3.6 Storage and memory overheads

The storage overheads of NV-heaps are small. Each NV-heap con-
tains a control region that holds the root pointer, pointers to the free
lists, the operation descriptors, version information, and the current
generation number. The storage requirement for the control area is
2 KB plus 1.5 KB per thread for operation descriptors. The NV-
heap also uses 0.5 KB of volatile memory.

NV-to-NV and V-to-NV pointers are 128-bits which includes
a 64-bit relative pointer and dynamic type information to prevent
assignments that would create unsafe pointers. Each object includes
80 bytes of metadata including reference counts, a unique ID,



ownership information, a generational lock, and other state. For
small objects such as primitive data types and pointers, we provide
an array object type to amortize the metadata overhead across many
elements.

Supporting transactions requires 80 bytes of per-thread transac-
tion state (e.g., pointers to logs) in addition to storage for the write
logs.

3.7 Validation

To validate our implementation of the NV-heap allocator and trans-
action system, we created a set of stress tests that create com-
plex objects and perform concurrent transactions on them. These
tests exercise the concurrency and safety of the memory alloca-
tion operations, pointer assignments, and the user-defined transac-
tions which run on top of them. We run these tests with up to eight
threads for long periods (many hours) and observe no deadlock or
data corruption.

To test recovery from failures, we run the tests and kill the
program with SIGKILL at random intervals. During the recovery
process we record which logs and operation descriptors the recov-
ery system processes. Then we perform a consistency check. Af-
ter killing our test programs thousands of times, we have observed
numerous successful recoveries involving each descriptor and log
type. In all cases, the recoveries were successful and the consis-
tency checks passed.

4. Modeling fast non-volatile storage

NV-heaps aim to support systems with many gigabytes of high-
performance non-volatile memory, but mature products based on
those memories will take several years to appear. In the meantime,
we use two emulation systems to run applications for many billions
of instructions while simulating the performance impact of using
advanced non-volatile memories.

4.1 Modeling byte-addressable storage

The first emulation system models the latency for memory-level
load and store operations to advanced non-volatile memories on
the processor’s memory bus. The system uses Pin [39] to perform a
detailed simulation of the system’s memory hierarchy augmented
with non-volatile memory technology and the atomicity support
that NV-heaps require. The memory hierarchy simulator accounts
for both the increased array read time and the added delay between
a write and the operations that follow, allowing it to accurately
model the longer read and write times of PCM and STTM mem-
ories. For PCM we use the performance model from [35] which
gives a PCM read time of 67 ns and a write time of 215 ns. We
model STTM performance (29 ns reads and 95 ns writes) based
on [59] and discussion with industry. The baseline DRAM latency
for our system is 25 ns for reads and 35 ns for writes, according to
the datasheet.

We run the simulation on the first 100 million instructions out
of each one billion instructions executed. The simulation provides
the average latency for last level cache hits and misses and for the
epoch barriers. After the simulation phase, we use hardware per-
formance counters to track these events on a per-thread basis, and
combine these counts with the average latencies to compute the to-
tal application run-time. The model assumes that memory accesses
execute serially, which makes our execution time estimates conser-
vative.

To calibrate our system we used a simple program that empiri-
cally determines the last-level cache miss latency. We ran the pro-
gram with the simulated PCM and STTM arrays and its estimates
matched our target latencies to within 10%.

4.2 Modeling block device based on advanced non-volatile
memory

In Section 5, we compare NV-heaps to two systems, Stasis [53]
and BerkelelyDB [46], that target a block device (i.e., a disk)
instead of a non-volatile main memory. To model a non-volatile
memory-based block device, we modified the Linux RAM disk
driver to let us insert extra delay on accesses to match the latency
of non-volatile memories. Measurements with a simple disk latency
benchmark show that the emulation is accurate to within about 2%.

5. Results

This section describes our evaluation of NV-heaps. We describe
the test system and then present experiments that measure basic
operation latency. Next, we evaluate its scalability and performance
on a range of benchmarks. We examine the overheads that NV-
heaps incur to provide strong safety guarantees. Then, we compare
NV-heaps to Stasis [53] and BerkeleyDB [46], transactional storage
systems that target conventional block devices. Finally, we evaluate
performance at the application level by implementing a version
Memcachedb [16], a persistent key-value store for dynamic Web
applications, with NV-heaps.

5.1 System configuration

We present results collected on two-socket, Core 2 Quad (a total
of 8 cores) machines running at 2.5 GHz with 64 GB of physical
DRAM and 12 MB L2 caches. These machines are equipped with
both a conventional 250 GB hard drive and a 32GB Intel Extreme
flash-based SSD. We configure the machines with a 32GB RAM
disk. We use 24 GB for emulated non-volatile memory and 8 GB
for program execution. For the experiments that use disks and the
SSD we report “wall clock” timing measurements.

5.2 Basic operation performance

Table 1 summarizes the basic operation latencies for several imple-
mentations of NV-heaps that isolate different overheads that NV-
heaps incur. BASE, SAFE, TX, and C-TX represent four layers
of the system that offer varying levels of safety and performance.
The BASE layer provides manual memory management and check-
pointing, yielding a system very similar to Rio Vista [38]. The
SAFE layer adds automatic memory management and pointer
safety. The third layer, TX, extends SAFE with transactions for
atomicity and durability in single-threaded programs. Layer C-TX
provides support for concurrency through multi-threaded transac-
tions. Finally, the version NoDur is a volatile transactional memory
system without support for durability. The table reports latencies
for each implementation of NV-heaps running on DRAM. It also
reports measurements for the C-TX version running on emulated
STTM and PCM.

The value for “new/delete” is the time to allocate and deallocate
a very small object. The three “ptr” rows give the time to assign to a
pointer and then set it to NULL. The “nop tx” is the time to execute
an empty transaction. “Log for read” and “Log for write” give the
times to log an object before access.

For C-TX (i.e., full-fledged NV-heaps), the most expensive op-
eration is logging an object for writing. This operation only occurs
once per modified object per transaction and requires an alloca-
tion, a copy, one pointer manipulation, and several epoch barriers.
The cost of an epoch barrier depends on the size of the epoch and
whether or not the corresponding cache lines have been written
back yet. Our operation descriptors tend to be small, so the cost
is often the time to flush a only single cache line.

In contrast, V-to-NV pointer manipulation and read logging
are extremely inexpensive, because they do not require durability
guarantees or, therefore, epoch barriers. In fact, these operations



Layer BASE SAFE TX C-TX NoDur

Storage technology
DRAM DRAM STTM PCM DRAM

(µs) (µs) (µs) (µs) (µs)

new/delete <0.1 <0.1 <0.1 <0.1 0.75 2.16 <0.1
V-to-NV ptr 0.03 0.05 0.11 0.13 0.13 0.13 0.08
NV-to-NV ptr 0.03 0.05 0.17 0.25 0.72 1.68 0.13
weak NV-to-NV ptr n/a 0.05 0.20 0.25 0.78 1.84 0.15
nop tx n/a n/a 0.05 0.05 0.05 0.05 0.05
log for read n/a n/a 0.17 0.26 0.26 0.26 0.21
log for write n/a n/a 1.68 1.99 5.55 12.67 1.00

Table 1. Basic operation latency for NV-heaps Support for durability at various levels and the increased latency for PCM and STTM both
exact a toll in terms of basic operation latencies. Latencies for “new/delete” are listed as <0.1 because of inconsistencies due to caching
effects.
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number of threads in order to show the effect of transaction size on
throughput.

can occur entirely in the CPU’s caches, so the impact of longer
memory latencies is minimal.

The PCM and STTM data show the impact that slower underly-
ing memory technology will have on basic operation performance.
PCM’s longer write latency increases the cost of write logging by
6.4× relative to DRAM. STTM shows a smaller increase — just
2.8×.

Figure 4 shows how performance scales with transaction size.
It measures throughput for updates to an array of one million el-
ements as we vary the number of updates performed in a single
transaction from one to 256. The overhead of beginning and com-
pleting a transaction is most pronounced for transactions that access
only a single element. Increasing the number of elements to four
amortizes most of this cost, and beyond that, the improvement is
marginal. Overall, the scaling is good: Eight threads provide 7.5×
the throughput of a single thread.

5.3 Benchmark performance

Because existing interfaces to non-volatile storage make it difficult
to build complex data structures in non-volatile memory, there are
no “off the shelf” workloads with which to evaluate our system.
Instead, we have written a set of benchmarks from scratch and
ported an additional one to use NV-heaps. Table 2 describes them.

Figure 5 shows the performance of the benchmarks. The num-
bers inside each bar are the operations (inserts/deletes for BTree,
RBTree, and HashTable; path searches for SixDegs; updates or
swaps for SPS; iterations through the outer loop of the final
phase for SSCA) per second. The graph normalizes performance
to NoDur with one thread.

Name Footprint Description
SPS 24 GB Random swaps between entries in

an 8 GB array of integers.
SixDegs 8 GB Concurrently performs two oper-

ations: 1) Search for a path of
length no more than six between
two vertices in a large, scale-free
graph 2) modify the graph by in-
serting and removing edges.

BTree 4 GB Searches for an integer in a B-tree.
Insert it if it is absent, remove it
otherwise.

HashTable 8 GB Searches for an integer in an open-
chain hash table. Insert it if it is
absent, remove it otherwise.

RBTree 24 GB Searches for an integer in a 24 GB
red-black tree. Insert it if it is ab-
sent, remove it otherwise.

SSCA 3 MB A transactional implementation of
SSCA 2.2 [5]. It performs sev-
eral analyses of a large, scale-free
graph.

Table 2. Workloads We use six workloads of varying complexity
to evaluate NV-heaps.

The difference between the NoDur and DRAM bar in each
group shows that adding durability to the transaction and mem-
ory management systems reduces performance by 40% on average.
The cost is largest for SixDegs, because it executes complex trans-
actions and requires frequent epoch barriers. The remaining bars
show that the impact of increasing latency of the underlying mem-
ory technology is roughly proportional to the change in latency.

Differences in program behavior lead to varied scaling behav-
ior. SPS, HashTable, and BTree scale very well (7.6×, 7.3×, and
7×, respectively, with 8 threads), while SixDegs and SSCA scale
less well due to long transactions and additional conflicts between
atomic sections with increasing thread count. We have found that
much of this contention is due to the applications rather than NV-
heaps. For instance, reducing the search depth in SixDegs from six
to one improves scalability significantly.

5.4 The price of safety

To understand the cost of NV-heap’s usability features, we have
implemented our benchmarks in the layers BASE, SAFE, TX, and
C-TX described previously. Figure 6 shows the performance of
our benchmarks implemented in each NV-heaps layer. The abso-
lute performance is given in operations per second in the BASE bar
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Figure 6. The price of safety in NV-heaps Removing safety guar-
antees improves performance by as much as 11×, but the resulting
system is very difficult to use correctly. The different layers high-
light the safety and performance trade-off.
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Figure 7. Comparison to other persistent storage systems NV-
heaps outperform Berkeley DB and Stasis by 33 and 244× on
average in large part because NV-heaps do not require system calls
to provide durability guarantees.



for each benchmark. For a single thread, BASE provides the high-
est performance, but SAFE results in only a modest performance
hit for most applications. One exception is BTree, which makes ex-
tensive use of NV-to-NV and weak NV-to-NV references, resulting
in 62% lower performance for SAFE. This suggests that, for many
applications, the extra safety that SAFE provides will be worth the
performance penalty.

TX exacts a larger toll, reducing performance by 82% on av-
erage versus SAFE. The cost of durability is due to the copying
required to log objects in non-volatile memory. The price is espe-
cially steep for BTree, because writing a node of the tree into the
log requires many pointer copies.

Adding support for concurrency and conflict detection in C-TX
has a small effect on peformance (30% on average relative to TX),
and allows HashTable, RBTree, and SPS to reclaim much of their
lost performance.

The gap in performance between BASE and C-TX, 11× on av-
erage for single-threaded programs, is the cost of safety in our sys-
tem. The increase in performance of BASE is significant, but the
price in terms of usability is high. The programmer must explicitly
manage concurrency, atomicity, and failure recovery while avoid-
ing the accidental creation of unsafe pointers. Whether this extra ef-
fort is worth the increased performance depends on the application
and the amount of time the programmer is willing to spend testing
and debugging the code. We found programming in this style to be
tedious and error-prone.

5.5 Comparison to other systems

This section compares NV-heaps to two other systems that also
provide transactional access to persistent state. We compare NV-
heaps to Stasis [53], a persistent object system that targets disk
and BerkeleyDB [54], a lightweight database. Both provide ACID
transactions.

NV-heaps, Stasis, and BerkeleyDB have a similar high-level
goal — to provide an easy-to-use interface to persistent data with
strong consistency guarantees. Stasis and BerkeleyDB, however,
target conventional spinning disks rather than byte-addressable
storage. This means they must use system calls to force updates
to disk and provide durability while NV-heaps take advantage of
fast epoch barriers to enforce ordering.

Figure 7 compares NV-heap DRAM, NV-heap STTM, and NV-
heap PCM to Stasis and BerkeleyDB running on three different
hardware configurations: An enterprise hard disk, an Intel Extreme
32 GB SSD, and a RAM-disk. We implemented the data struc-
tures in Stasis ourselves. We used BerkeleyDB’s built-in BTree and
HashTable implementations and implemented SixDegs by hand.
The vertical axis is a log scale. The data are for four threads. These
results are for smaller, 4 GB data sets to keep initialization times
manageable for the disk-based runs.

The first six bars in each group measure BerkeleyDB’s and
Stasis’ performance on disks, SSDs, and the RAM-disk. The data
show that while BerkeleyDB and Stasis benefit from running on
fast non-volatile memory (e.g., BerkeleyDB on the RAM-disk is
3.2× faster than on the SSD and 24× than running on disk), the
benefits are only a fraction of the raw speedup that non-volatile
memories provide compared to SSDs and hard disks.

The next three bars in each group show that NV-heaps do a
much better job exploiting that raw performance. NV-heap DRAM
is between 2 and 643× faster than BerkeleyDB, and the perfor-
mance difference for Stasis is between 13 and 814×. Two com-
ponents contribute to this gap. The first is the fsync() and/or
msync() required for durability on a block device. Removing this
overhead by disabling these calls (and sacrificing durability) im-
proves performance by between 2 and 10× for BerkeleyDB. The
remaining gap in performance is due to other software overheads.
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Figure 8. Memcached performance Using NV-heaps brings per-
formance to within 8% of the original, non-durable Memcached,
and the NV-heaps version achieves 39× higher throughput than
Memcachedb (BDB Safe) which provides similar safety guaran-
tees.

Comparing NV-heap performance to BerkeleyDB demonstrates
that NV-heaps are both flexible and efficient. The NV-heap PCM
BTree is 6.7× faster than BerkeleyDB running on the same tech-
nology, despite the fact that the BerkeleyDB version is a highly-
optimized, specialized implementation. In contrast, the NV-heap
implementation uses just the components that NV-heaps provide.
We see similar performance for SPS and HashTable. For SixDegs,
BerkeleyDB is nearly as fast as the NV-heaps, but this is, in part,
because the BerkeleyDB version does not include reference count-
ing. Removing dead nodes from the graph requires a scan of the
entire table that stores them.

It is worth noting that our results for comparing BerkeleyDB
and Stasis do not match the results in the original Stasis paper [53].
We suspect this is due to improvements in BerkeleyDB over the
past five years and/or inefficiencies in our use of Stasis. However,
assuming results similar to those in the original paper would not
significantly alter the above conclusions.

5.6 Application-level performance

This section measures the impact of NV-heaps at the application
level. We focus on Memcachedb [16], a version of Memcached [42]
that provides a persistent key-value store. By default, Memcachedb
uses BerkeleyDB to store the key-value pairs and provide persis-
tence.

Our version of Memcachedb uses the NV-heap open-chaining
hash table implementation we evaluated in Section 5.3 to hold the
key-value store. All operations on the key-value store are transac-
tional.

Figure 8 shows the throughput of insert/delete operations for the
original Memcached application, the Berkeley DB implementation
(Memcachedb), and our NV-heap implementation. All tests use
16 byte keys and 512 byte values. The multi-threaded client test
program uses the libMemcached [1] library, and it runs on the
same machine as the server to put maximum pressure on the key-
value store. We measure performance of the BerekeleyDB-based
version of Memcachedb with (BDB Safe) and without (BDB Fast)
synchronous writes. Memcachedb uses the BerkeleyDB hash table
implementation and runs on a RAM disk.

Compared to the original Memcached running in DRAM,
adding persistence with NV-heaps results in only an 8 to 16% per-
formance penalty depending on the storage technology. When we
run NV-heaps without durability (NoDur), performance is within



just 5% of Memcached, indicating that the overhead for durability
can be low in practice.

The data show that our hash table implementation provides
much higher throughput than BerkeleyDB and that the overhead for
providing transactional reliability is much lower with NV-heaps.
NV-heap DRAM outperforms BDB Safe by up to 39× and NV-
heap NoDur outperforms BDB Fast by 3.9×. BerkeleyDB provides
many features that our hash table lacks, but for this application
those features are not necessary. This highlights one of the advan-
tages of NV-heaps — they allow programmers to provide (and pay
the performance penalty for) only the features they need for a par-
ticular application.

6. Conclusion

We have described NV-heaps, a system for creating persistent data
structures on top of fast, byte addressable, non-volatile memories.
NV-heaps prevent several classes of well-known programming er-
rors as well as several new types of errors that arise only in persis-
tent data structures. As a result, NV-heaps allow programmers to
implement very fast persistent structures that are robust in the face
of system and application failures. The performance cost of the pro-
tections that NV-heaps provide is modest, especially compared to
the overall gains that non-volatile memories can offer.
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