CSE 291: INTERNET INFRASTRUCTURE

Infrastructure History

Aaron Schulman (Shalev)

Entire Internet (ARPANET) in 1973

UC San Diego
LOGISTICS

• Canvas
 • https://canvas.ucsd.edu
 • Course homepage has schedule
 • Online Q&A
 • Quizes, gradebook, some materials
• Each other!
GRADING

• Class project: 50%
• In-class participation: 25%
• After-class Quizzes (once a week on Fri): 25%
• Total: 100%
GOAL OF CSE 291

• Bring you up to the state of the art in Internet Infrastructure design and operation

 • [Mon] review of concept then [Wed]/[Fri] Papers

• Give you the skills needed to stay at the state of the art for your entire career

• Project: Work on a (small) research project of your own to study your own Internet infrastructure, culminating in a ~6 page research paper.

• Deadlines on schedule, seed ideas posted soon
CLASS PROJECT (DETAILS COMING NEXT WEEK)

• Study Internet Infrastructure in San Diego
 • Deploy your own Internet measurement system
 • Quite a bit of Internet infrastructure in San Diego:
 • Cox, Spectrum, AT&T (fiber), Verizon, AT&T (mobile), T-Mobile Campus (CENIC)
 • Observe the topology, performance, and reliability
 • Write a 6-page report
• Or reproduce research we discuss in this class...
Why? Primary source information about infrastructure is buried in jargon-filled technical documents (specs, internal docs).

Researchers do a good job of telling you what you need to know:

We will spend lots of time talking about the background sections of research papers

Researchers dig into why infrastructure works or does not work as expected.
WAYS OF READING

• There are many ways to read something
 • To get a broad overview of the main idea
 • To determine the main “takeaway points”
 • To find something specific (e.g. what is the repair protocol for the Pastry protocol again?)
 • “Close” readings
• We’re going to be doing close readings of 1 paper per class discussion
WHAT IS “CLOSE READING”?

• Not just “what”, but *WHY*
 • Why did they design the infrastructure in this way?
 • Why were alternatives ruled out?
 • Why does the system behave the way it does?
 • Could we make it better?

• What can you learn from their experiments? From the workloads used in the evaluation?
INTERNET INFRASTRUCTURE VS. TELECOM & TELEGRAPH (BARAN)

- "All-Digital" Communication Links
 - Receive, check if its correct (same bits as intended)
 - Store and Forward "relay" (can repeat msgs. over many hops)

- Packet Switching
 - Messages separated into "blocks" (packets) that contain their own addressing information
FIG. 9 - All Digital Network Composed of Mixture of Links
Circuit switching (not packet), but a perfect starter infrastructure for the Internet
LONG LINES IS STILL HERE...

Directional microwave antennas pointing northeast
• The Internet architects couldn’t convince AT&T to make their infra packet switched.
• Possibly delayed the adoption of the Internet!

Why?
UNDERSEA CABLES WERE ALSO ALREADY POPULAR

Became standard for overseas telephone and telegraph
FIRST COMMUNICATION SATELLITE (TELSTAR 1) 1962
GAME CHANGER: FIBER ALONGSIDE RAILROADS

Railroads had right-of-way permits across continents in 80s (and needed comms)

Fiber brought a massive growth in capacity and performance (way more than needed)
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Reading Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Long-Haul Terrestrial Internet Links</td>
<td>InterTubes: A Study of the US Long-haul Fiber-optic Infrastructure</td>
</tr>
<tr>
<td>Sep 29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>