











in-bounds) at the cost of increased memory usage.

That brings us to another important design decision
related to security and the application stack. Languages
such as C traditionally place a function’s return address
on the stack, and jump indirectly through that address as
part of the function-return instruction. Stack overflows
in buggy or malicious code can overwrite that entry on
the stack, however, causing the function to return to a
different address. We leverage the compiler to insert
code to bounds-check the return address before every
function return. Furthermore, we place the top of the
app stack below the app’s data in the app’s data/stack
segment, and allow the stack to grow downward. The
compiler and linker can compute the size of the app’s data
region, and estimate the maximum stack depth, to ensure
the data/stack segment is large enough for the app’s needs.
If the app overflows its stack, for example by too-deep
recursive calls, it will cross an MPU boundary into an
execute-only code region and trigger a fault.

Memory accesses: An important role for the runtime
system is to handle application faults; when the app at-
tempts an invalid memory access, it jumps to a FAULT
function to log app-specific information about the fault.
At compile time, the AFT uses its transformation tools
to verify that the app only calls approved API functions
and reads approved system global variables, and to insert
code that verifies (at run-time) every pointer dereference
before it occurs. Notice that every one of these checks
is a simple comparison against a constant, followed by
a conditional branch (jump) to the fault-handling code.
Because all app code is processed by the AFT, and the app
cannot inline any of its own assembly code, the resulting
code is guaranteed to check every pointer used by the app.

Context Switches: The AmuletOS provides an API
for applications to access utilities and system services.
We need to swap MPU configurations and change stacks
on each transition, and we need to carefully handle
application-provided pointers passed through API calls
to the OS. Furthermore, because each app, and the OS,
has a separate stack segment, we need to change the stack
pointer on every transition between the OS and an app.

AFT Implementation: We extend the AFT to imple-
ment the MPU and software-only method checks previ-
ously mentioned. These tasks are accomplished by the
AFT in a four-phase code analysis. In the first phase, the
AFT checks for any still unsupported language features —
such as inline assembly and GOTO statements. In addi-
tion, the AFT enumerates each memory access and OS
API call on an app by app basis. Examination of the ap-
plication call graph and the stack frame for each function
determines the maximum stack size for each app. In the
event of recursion, the maximum stack size cannot be
determined and the AFT cannot guarantee a large enough
stack to prevent overflow. During the second phase, the

. No Feature Software
Operation Isolation Limited MPU Only
Memory Access 23 41 29 32
Context Switch 90 90 142 98

Table 1: Average cycle count for basic memory isolation operations.

MPU configuration code and the previously mentioned
memory access checks (with placeholder values for app
boundaries) are injected into the code. The third phase
marks apps with memory section attributes for the linker,
as well as injecting the assembly code needed to manipu-
late the stack pointer. The last phase involves determining
the code size of each app, updating the linker script to
place each app in high memory (as detailed in Figure 1),
and updating the memory access checks from phase two
with the correct app boundaries. The AFT completes by
recompiling the modified code into the final firmware
image.

4 Evaluation

In this section we evaluate the costs of application isola-
tion. Our proposed system allows developers to write pure
C, instead of a constrained Amulet C, enabling them to
more easily write (or port) application code to the Amulet
platform. We look at the isolation overhead of a large set
of Amulet applications for three methods in Section 4.1,
and see that while the overhead of our isolation method is
higher than a feature-limited Amulet C, the impact of the
overhead on battery lifetime is negligible. In Section 4.2
we describe three benchmark applications, and the trade-
offs they display between computation-intensive and OS-
intensive applications.

4.1 Isolation Overhead

We use the Amulet Resource Profiler (ARP) and the ARP-
view tool to count the number of memory accesses and
context switches per state and transition, per application.
Using ARP-view, we can account for the rate of environ-
mental, user, and timer events set by the developer, com-
bine this information with the counted number of memory
accesses and context switches, and extrapolate the num-
ber of cycles of overhead for isolating applications. We
can then convert the estimated cycles into energy cost
(in Joules) to estimate the negative impact of isolation
on battery lifetime. The results of this experiment are
shown in Figure 2 for nine applications that are part of the
Amulet platform. These applications comprise thousands
of lines of code, and many have been deployed in user
studies [2, 3]. For all applications, isolation using ei-
ther the MPU or Software Only methods has less than
a 0.5% impact on battery lifetime.
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Figure 2: Isolation overhead in billions of cycles per week, and battery lifetime
impact percentage for a variety of applications. Gathered using the Amulet Re-
source Profiler infrastructure.

4.2 Benchmark Applications

We further explore the system overhead of application iso-
lation through several benchmark applications with vary-
ing levels of memory accesses. We designed a Synthetic
App a simple application whose purpose is to test the two
fundamental actions that incur memory-protection over-
heads: memory accesses and context switches. We then
investigate two major functions in our Activity Detection
App, which correspond to Activity Case I and Activity
Case 2 in Figure 3. These functions have a high number of
memory accesses compared to context switches. Finally,
we design a Quicksort App: an application that runs the
quicksort algorithm with a high number of memory ac-
cesses and no context switches. Each application was run
200 times and a hardware timer on the MSP430FR5969
MCU was used to measure the time of each iteration (with
a precision of 16 cycles).
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Figure 3: Percentage slowdown for each memory isolation method calculated by
comparing them to running apps with no isolation method.

The results from the synthetic app test in Table 1 show
that our MPU method had the fastest memory accesses,
but the slowest context switches. This result was expected,
and validates the simulation results, as our method only
requires half the number of bounds checks as the Soft-
ware Only approach, but incurs extra overhead for re-
configuring the MPU during context switches. Figure 3
further confirms the results from Table 1, which is that
our method is the most effective when used for computa-
tionally heavy applications.

5 Discussion and Conclusion

In this paper we explore the challenge of memory iso-
lation on ultra-low-power microcontrollers, which offer
primitive hardware support for memory protection. Tra-
ditional approaches use a range of language limitations,
compiler analysis, or dynamic checks (inserted by com-
piler or other tools); few have leveraged the capabilities
of emerging MPUs.

Our solution employs MPU hardware to protect most
regions of memory from inappropriate access by appli-
cation code. Our proof-of-concept implementation (on
an Amulet) is limited by the capabilities of the MSP430
MPU, which cannot protect the region below the current
app’s allocation; thus, the compiler still needs to insert
some code for bounds checks — albeit half as many as in
the software-only solution. We envision extending our
approach to work with more advanced MPUs to further re-
duce our runtime overheads; MPUs that can protect all of
memory and support 4 or more regions would negate the
need for our compiler-inserted bounds checks. We may
also explore more robust error handling techniques, such
as restart policies for applications that trigger a memory
access fault, or the use of a shadow return-address stack
to prevent applications from jumping outside their code
bounds.

In conclusion, our exploration shows that (1) it is possi-
ble to efficiently support memory isolation without resort-
ing to language limitations, as in the original Amulet ap-
proach, and (2) a hybrid approach that leverages compiler-
inserted code and MPU-hardware support can provide per-
formance benefits over a software-only approach. While
our approach leveraging the MPU was not effective for
apps that make frequent API calls, our MPU isolation
approach had, for all applications, less than 0.5% impact
on battery lifetime.
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