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Abstract

Reliable sensor network software is difficult to create: appli-
cations are concurrent and distributed, hardware-based mem-
ory protection is unavailable, and severe resource constraints
necessitate the use of unsafe, low-level languages. Our work
improves this situation by providing efficient memory and
type safety for TinyOS 2 applications running on the Mica2,
MicaZ, and TelosB platforms. Safe execution ensures that
array and pointer errors are caught before they can corrupt
RAM. Our contributions include showing that aggressive op-
timizations can make safe execution practical in terms of re-
source usage; developing a technique for efficiently enforc-
ing safety under interrupt-driven concurrency; extending the
nesC language and compiler to support safety annotations;
finding previously unknown bugs in TinyOS; and, finally,
showing that safety can be exploited to increase the avail-
ability of sensor networks applications even when memory
errors are left unfixed.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]:
real-time and embedded systems; C.4 [Performance of Sys-
tems]: performance attributes; D.4.5 [Operating Systems]:
Reliability; D.2.3 [Software Engineering]: Coding Tools
and Techniques; D.2.5 [Software Engineering]: Testing and
Debugging—error handling and recovery

General Terms

Languages, Performance, Reliability
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wireless sensor networks, type safety, memory safety, nesC,
TinyOS, Deputy, cXprop, Safe TinyOS
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1 Introduction

Imagine that you have deployed tens or hundreds of wire-
lessly networked sensors and are using them to collect data.
To get to this point, your team has written thousands of lines
of interrupt-driven nesC code, which

e runs on motes with just a few kB of RAM, and without
a user-kernel boundary or memory protection;

e must cope with highly dynamic situations in which
other nodes are failing, rebooting, and going in and out
of radio range; and,

e cannot rely on useful abstractions such as blocking
threads or a heap.

Given these difficulties, errors such as null pointer deref-
erences, out-of-bounds array accesses, and misuse of union
types are difficult to avoid. Now consider two scenarios.

In the first, a memory safety error in your application
corrupts RAM on the faulting node. Such coding errors
can have surprisingly hard-to-trace effects, especially on the
AVR-based Mica2 and MicaZ motes where the processor’s
registers are mapped into the bottom of the address space.
For example, if p is defined as

struct { char x[28]; int y; } *p;

and then dereferenced while null

p = NULL;
. many lines of code ...
p=>y = z;

the AVR processor’s registers 28 and 29 are modified to con-
tain the low and high bytes of z’s value, respectively. Be-
cause this pair of registers is heavily used as a memory index,
further memory corruption is likely to result.

In general, the behavior of a corrupt node is Byzantine.
With many buggy nodes over time, one would expect sen-
sor data to be corrupted, false network routes to be adver-
tised, secret keys to be revealed, and so on. Depending on
circumstances, the node may recover, crash, or continue in
a faulty manner. It can even be difficult to distinguish be-
tween failures induced by software bugs and those caused
by hardware-related problems. However, whereas hardware
faults can be fixed by swapping out defective parts, software
faults persistently degrade the effectiveness of a sensor net-
work. Time is consequently lost pointing fingers, manually
rebooting nodes, and staring at code.
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In the second scenario, a run-time check detects the im-
pending memory error just before it happens and control is
transferred to a fault handler. Depending on how the node
is configured, it either reboots or powers down after send-
ing a failure report to its base station. The failure report is
concise—a small integer—but serves to uniquely identify the
specific error that occurred as well as its location in the orig-
inal source code. The effectiveness of the sensor network
may be degraded until the code can be debugged and rede-
ployed, but in the meantime, the bug has been located and its
effects contained.

The first scenario above characterizes the kind of prob-
lems that sensor network application developers currently
face. The goal of our research is to enable the second sce-
nario by implementing safe execution for sensor network ap-
plications, in a way that is practical given the realities of
sensor network software development. Practicality imposes
three important constraints. First, we must make existing
code safe rather than requiring developers to reimplement
applications in a new language or OS. Second, safety must
be cheap in terms of programmer effort. Third, because re-
sources are precious on microcontrollers, the run-time over-
head of safety must be small.

Our approach to efficient, backward-compatible, safe ex-
ecution for sensor network nodes is Safe TinyOS. “Regular”
TinyOS is a popular and open-source platform for sensor net-
work software [12}|18]. A TinyOS-based application is writ-
ten in nesC [9], a component-oriented but unsafe dialect of
C. Our Safe TinyOS platform builds atop regular TinyOS
and ensures that programs execute safely, meaning that they
respect both type safety and memory safety. A type-safe pro-
gram cannot conflate types, e.g., treat an integer as a pointer.
A memory-safe program cannot access out-of-bounds stor-
age. Together, these properties keep memory errors from
cascading into random consequences.

Because safety cannot be fully guaranteed when a pro-
gram is compiled (in general), the Safe TinyOS toolchain
inserts checks into application code to ensure safety at run
time. When a check detects that safety is about to be vio-
lated, code inserted by Safe TinyOS takes remedial action.
In short, Safe TinyOS creates a “red line” [[L]—a boundary
between trusted and untrusted code—that separates an appli-
cation running on a sensor node from the small Safe TinyOS
kernel that takes control when an application misbehaves.

Our red line enforces safety properties as described above,
and the Safe TinyOS toolchain uses cXprop [4]—our pow-
erful static analyzer for embedded C code—to minimize the
run-time costs of the red line within Safe TinyOS programs.
The measured cost of this safety is low in comparison to the
state of practice: i.e., the resources used by unsafe programs
as compiled by the regular TinyOS toolchain. One can also
apply our cXprop tool by itself to optimize unsafe TinyOS
programs, and we present data for this scenario to put the
costs of Safe TinyOS in greater perspective.

In summary, this paper makes two primary contributions.
The first is a detailed presentation of Safe TinyOS, address-
ing key research challenges in implementing safe execution
of sensor network software in a resource-efficient manner.
The second is to show that Safe TinyOS is a practical sys-

Average change in resource use

vs. regular vs. TinyOS

TinyOS toolchain | tools + cXprop

ROM (code) +13% +26%
RAM (data) -2.3% +0.22%
CPU (duty cycle) +5.2% +17%

Table 1: Summary of the costs incurred by Safe TinyOS appli-
cations. Each percentage shows the average change in resource
use for Safe TinyOS programs relative to the corresponding
unsafe TinyOS programs (as produced by the default TinyOS
toolchain) or relative to the corresponding unsafe TinyOS pro-
grams optimized by cXprop.

tem for the development of reliable sensor network software.
Notably:

e (Section|3]) Safe execution can be implemented effi-
ciently, even in the presence of interrupt-driven concurrency.
Safe TinyOS efficiently and effectively reports the location
of run-time type and memory safety failures.

e (Section 4]) The resource costs of safe execution are
modest, as summarized in Table|l} We believe that the over-
heads of safety are acceptable even on the highly RAM-,
ROM-, and energy-constrained mote platforms.

o (Section]) The burden of Safe TinyOS on application
developers is low. Just 0.74% of all the source lines within
our benchmark TinyOS applications needed to be annotated
or modified to create their Safe TinyOS counterparts.

e (Section[5]) Safe TinyOS did indeed help us to discover
and fix interesting safety violations in existing TinyOS code.
In addition, even when bugs are left unfixed, dynamic fail-
ure detection can enable significant increases in application
availability.

2 Background
Safe TinyOS builds upon TinyOS 2, Deputy, and cXprop.

2.1 TinyOS

TinyOS 1 [12] and TinyOS 2 [18]] are the dominant sys-
tems for programming wireless sensor network devices. A
TinyOS application is an assembly of components plus a
small amount of runtime support. Typically, a programmer
writes a few custom components and links them with com-
ponents from the TinyOS library. Components are written
in nesC [9], a dialect of C with extensions for components,
generic (template-like) programming, and concurrency. The
nesC compiler translates an assembly of components into
a monolithic C program, which is then compiled and opti-
mized by GCC.

To conserve energy, a TinyOS application typically has
a low duty cycle: it sleeps most of the time. Applications
are interrupt-driven and follow a restrictive two-level con-
currency model. Most code runs in tasks that are scheduled
non-preemptively. Interrupts may preempt tasks (and each
other), but not during atomic sections. Atomic sections are
implemented by disabling interrupts.

TinyOS is popular for at least four reasons. First, nesC
is quite similar to C—the predominant language of embed-



ded software. This heritage is important for user adoption
but entails many of the problems normally associated with
C code. Second, TinyOS provides a large library of ready-
made components, thus saving much programmer work for
common tasks. Third, the nesC compiler has a built-in race
condition detector that helps developers avoid concurrency
bugs. Finally, TinyOS is designed around a static resource
allocation model, which helps programmers avoid hard-to-
find dynamic allocation bugs. Static allocation also helps
keep time and space overhead low by avoiding the need for
bookkeeping.

Because TinyOS is popular, we chose to use it as the ba-
sis of our approach for developing more dependable software
for sensor networks. This meant that we had to deal not only
with a legacy language but also a legacy code base as de-
scribed above. Fortunately, we found that we could exploit
the properties of sensor network applications and TinyOS—
including its concurrency and allocation models—to imple-
ment Safe TinyOS in a practical way.

2.2 Deputy

Deputy [3} 16] is a source-to-source compiler for ensuring
type and memory safety for C code. It is based on the insight
that the information necessary for ensuring safety, such as ar-
ray bounds, is usually already present somewhere in the pro-
gram. For instance, consider the declaration of a TinyOS 2
message-reception event:

event message_t *receive(message_t *msg,
void *payload,
uint8_t len);

A TinyOS programmer knows that msg points to a single
message and that the storage pointed to by payload is guar-
anteed to be len bytes long. Furthermore, implementers of
this event must return a pointer to a single message.

To use Deputy to get type safety, a programmer must in-
form the compiler of this previously implicit information us-
ing type annotations. Code compiled by Deputy relies on
a mix of compile- and run-time checks to ensure that these
annotations are respected, and hence that type and memory
safety are respected. Using Deputy, the receive event is
written as follows:

event message_t *SAFE
receive(message_t *SAFE msg,
void *COUNT(len) payload,
uint8_t len);

COUNT’s argument is a C expression that specifies the length
of the storage region referenced by the declared pointer.
The SAFE annotation is shorthand for COUNT (1), indicating
a pointer-to-singleton that (in general) will not be used in
pointer arithmetic Deputy supports a number of other an-
notations, for example to declare null-terminated strings and
to indicate which branch of a union is selected. More details
can be found in Deputy’s manual [6]].

Deputy transforms its input program to contain run-time
checks, as needed, to ensure that type annotations are re-

IStrictly speaking, the SAFE declarations are not necessary, as
Deputy assumes that unannotated pointers point to a single element.

spected. The following example illustrates these checks. It
contains two main parts: an implementation of a receive
event, which is invoked to process message data, and a
function called dispatch that signals a message-reception
event. Below, the non-italicized code represents our input to
Deputy. (As we describe later, nesC code is actually trans-
lated to C before being processed by Deputy.) Deputy pro-
cesses the code and its annotations, and outputs a modified
program that contains the lines shown in italics.

typedef struct {
int len;
char buffer[36];
} message_t;

event ... receive(...,
void *COUNT(len) payload,
uint8_t len) {
int i = ...;
if (i >= len) deputy_fail(); // INSERTED
if (((char *)payload)[i])

}

void dispatch(message_t *SAFE m) {
if (m->len > 36) deputy_fail(); // INSERTED
signal receive(m, m->buffer, m->len);

}

The check in the receive event ensures that the payload
array access is within bounds. The second check prevents
dispatch from passing an array that does not respect the
COUNT annotation for receive.

An important characteristic of Deputy is that it does not
change C’s data representation. This is in contrast to CCured,
for example, which may replace a regular pointer in a C pro-
gram with a “fat pointer” that contains bounds information
needed to ensure safety [20]. Deputy’s behavior is important
to our Safe TinyOS system for two reasons. First, it helps
to keep memory requirements to a minimum, and it helps
programmers to understand the storage requirements of their
code. Second, it allows safe code (output by Deputy) to in-
teroperate with trusted code. Trusted code is either existing
binary code compiled without Deputy’s runtime checks (e.g.,
a library), or snippets of C code within a file compiled by
Deputy that need to violate type safety for one reason or an-
other. For instance, TinyOS code accesses memory-mapped
I/0 locations by casting integers to pointers, a classic unsafe
operation. Deputy allows this as long as the cast is marked
appropriately: for example,

*((volatile uint8_t *) TC(32)) = 1;

TC marks an expression that may be freely cast to any pointer
type; Deputy refers to these as trusted casts. Deputy sup-
ports a handful of other trust annotations as well, which are
described elsewhere [[60].

2.3 cXprop

cXprop [4] is our static analyzer and source-to-source opti-
mizer for embedded C programs. Its optimizations include
propagating constant scalars and pointers as well as remov-
ing useless conditionals, variables, synchronization, indirec-



tion, arguments, and return values. cXprop is based on an
interprocedural and flow-sensitive, but path- and context-
insensitive, dataflow analysis. To mitigate the effects of con-
text insensitivity, a function inlining pass can be performed
prior to analysis. This is particularly useful for TinyOS pro-
grams, which tend to contain many small functions. cXprop
is built on CIL [21]), a parser, type-checker, and intermediate
representation for C.

cXprop’s analysis tracks dataflow in the value set and
pointer set abstract domains. These domains represent ab-
stract values as explicit sets of concrete values. For example,
if cXprop determines that x has the value set {—1,3,52} at
some program point, then in all possible executions of the
system, x must take one of these values at that point. If the
cardinality of a value set exceeds a predetermined value, the
abstract value goes to L, the element of the domain repre-
senting the set of all possible values. Increasing the maxi-
mum size of value sets improves analysis precision but slows
down cXprop. For this paper we set the maximum set size
to 16, which empirically achieves a good balance between
performance and precision. The pointer set domain, which
serves as the basis for both must-alias and may-alias anal-
yses, is analogous to the value set except that it contains
special support for pointers about which nothing is known
except that they are non-null. The maximum size for pointer
sets is 64.

cXprop tracks the flow of values through scalars, point-
ers, structure fields, and arrays, including those with global
scope. Arrays are modeled using a collapsed representation
in which a single abstract value summarizes the contents of
all array cells.

A particularly useful feature of cXprop when applied to
TinyOS applications is that it can soundly analyze variables
that are shared between interrupt handlers and the main pro-
gram. It does this by explicitly taking into account the im-
plicit control flow edges between the main context and in-
terrupt handlers (and between different interrupts, if an ap-
plication allows nested interrupts). The naive approach of
adding a flow edge from each node in the program graph to
each interrupt handler results in prohibitive analysis times.
cXprop, on the other hand, provides efficient static analysis
by exploiting the insight that flow edges to interrupt handlers
only need to be added at the end of each nesC atomic section.

3 Practical Safety for TinyOS Applications

Safe TinyOS is our software platform—component set and
toolchain—for sensor network applications that are fail-fast
with respect to software defects that cause memory access
errors.

3.1 Safe TinyOS toolchain

An ordinary, unsafe TinyOS application is compiled by in-
voking the nesC compiler, which translates a collection of
components into a monolithic C file that is then compiled by
GCC. In contrast, Figure[I|shows the Safe TinyOS toolchain
for producing efficient, safe programs. Safe TinyOS uses a
modified nesC compiler to process annotated nesC compo-
nents (Section [3.2) and then uses four new source-to-source

nesC components and interfaces
with Deputy annotations

'

run modified nesC compiler

tailored Deputy
runtime library +
Safe TinyOS
failure handlers

enforce safety
using Deputy

enforce
concurrency safety

'

compress error
messages into FLIDs

offline error message
decompression and
reconstruction

whole program optimization
using cXprop

run gcc

Figure 1: The Safe TinyOS toolchain

transformation steps. The first adds safety checks by running
the Deputy compiler. The second ensures that type safety is
maintained under interrupt-driven concurrency (Section[3.3).
The third compresses bulky diagnostic information about
safety violations (Section [3.4), and the fourth performs
whole-program optimization using cXprop (Section 3.5).
The Safe TinyOS toolchain is easy to invoke. For exam-
ple, to build a safe application for the MicaZ platform, a de-
veloper simply types “make micaz safe” rather than the
customary TinyOS build command “make micaz.”

3.2 Supporting Deputy annotations in nesC

In Safe TinyOS components, Deputy annotations appear
in nesC source files. These source files are translated to
(Deputy-annotated) C code by our modified nesC com-
piler. Deputy’s annotations do not have any effect on nesC’s
compile-time checking and code generation, but they must
be preserved and sometimes translated by the nesC compiler.

The contrived nesC component shown in Figure[2]demon-
strates the issues involved. The translation to C involves
adding a unique prefix (Mod1$) to all global symbols and
their uses, including the use of length in the second COUNT
annotation. Note however that the use of length in the first
COUNT annotation is not renamed, as it refers to a field in the
same structure.

Preserving the Deputy annotations turns out to be rela-
tively straightforward: Deputy’s annotations are actually C
macros that expand to uses of GCC’s __attribute__ exten-
sion, which is already supported and preserved in nesC’s out-
put. However, doing the appropriate renaming is not straight-
forward as it requires understanding Deputy’s non-standard
rules for C expressions, e.g., that names such as length are
looked up in the current structure (if any) before checking
in-scope variables. Furthermore, Deputy argument expres-
sions sometimes cause compile-time errors in the nesC com-
piler, e.g., by referring to unknown variables (according to



// nesC module ‘Modl’.

module Mod1l { }

implementation {
// Annotation using a structure field
struct strange {

int length;
void *COUNT(length + sizeof (struct strange))
data;
} s;
// Annotation using a module variable
int length;
uint8_t *COUNT(length) buffer;
}

// C code output by our modified nesC compiler.
struct Modi$strange {
int length;
void *COUNT(length + sizeof (struct Modil$strange))
data;
} Modi$s;

int Modl$length;
uint8_t *COUNT(Mod1$length) Modi$buffer;

Figure 2: A Deputy-annotated nesC file and its translation to C.
The nesC compiler must translate the annotations.

the standard C scoping rules).

Our current implementation is a simple, quick fix to
these problems: we modify the nesC compiler to suppress
compile-time errors while parsing the __attribute__ dec-
larations When outputting the C code for arguments to
__attribute__, our modified nesC compiler only renames
those variables that were found using C’s scoping rules, and
leaves the others unchanged. In practice we have found
that this works well—for instance, the example in Figure 2]
is handled correctly. However, if the module-level length
variable were declared before struct strange, the output
would be incorrect. In the near future, we will extend nesC
to understand Deputy’s annotations and their scoping rules.

3.3 Handling concurrency

Deputy enforces safety for sequential programs only. Con-
current code can subvert the type system by, for example,
modifying a shared pointer between the time it is checked
and the time it is dereferenced. To ensure safe execution,
each check inserted by Deputy must execute atomically. Fur-
thermore, as part of the atomic operation, the checked value
must be copied into private temporary storage. The obvious
but highly inefficient solution to this problem is to add locks
around all checks inserted by Deputy.

We leveraged the nesC concurrency model to make
concurrent code safe in a much more efficient way. In
TinyOS applications, most variable accesses are atomic due
to the nature of nesC’s two-level concurrency model. Syn-
chronous variables—those that are not accessed from inter-

ZSuppressing these errors will not cause any errors to be missed,
as the attributes will be subsequently checked by GCC or Deputy.

rupt handlers—are always manipulated atomically because
TinyOS tasks are scheduled non-preemptively. Most asyn-
chronous variables—those that may be accessed by an in-
terrupt handler—are explicitly protected by atomic sections,
and are therefore also manipulated atomically. Whenever
a Deputy-inserted check refers only to atomically manip-
ulated variables, that check is inherently atomic with re-
spect to use of those variables, so no additional synchro-
nization is required. On the other hand, when a check
refers to one or more variables that are manipulated non-
atomically at one or more program points (what nesC calls
“racing variables”), the check requires explicit locking in or-
der to preserve Deputy’s safety invariants. Fortunately, as
just described, racing variables are relatively rare by design
in TinyOS code.

Thus, our technique for implementing safety efficiently
is to add explicit locking only on checks that involve rac-
ing variables. The nesC compiler includes a static analysis
that finds racing variables in a TinyOS application. However,
nesC’s analysis is unsound because it does not find racing
variables that are accessed through pointers. To overcome
this problem, we developed a new race condition detector
that is sound in the presence of pointers. We then imple-
mented a program transformation that adds locking to en-
sure that safety checks on racing variables are atomic. Our
transformation also ensures that the checked value is read
into a temporary variable (that is not accessed concurrently),
which is used in subsequent computation. In this way, the
Safe TinyOS toolchain prevents modify-after-check attacks
on the type system without introducing a significant amount
of run-time overhead.

3.4 Handling safety violations

When a non-embedded program tries to violate safety, the
Deputy runtime prints a verbose error message to the con-
sole. There are two problems with this strategy for sensor
network programs. First, message strings and other meta-
data are stored with the running program, where they use
precious memory. Second, sensor network platforms lack an
output device suitable for displaying error messages.

For Safe TinyOS, we replace Deputy’s error-handling
routines with a custom, resource-conserving system that
works as follows. As illustrated in Figure [I] we use Deputy
to produce the initial, safe C code for the applications we
compile. The code that is output by Deputy contains spe-
cial error-handling statements, inserted by Deputy, that use
verbose strings to describe run-time safety violations. These
strings identify the source locations of errors, the error types,
and the assert-like safety conditions that fail. We wrote a
separate tool, also shown in Figure[I] to extract these failure
messages from the code that Deputy produces. It replaces
the verbose but constant strings in our trusted error-handling
code with small integers that represent those strings. We re-
fer to these integers as fault location identifiers, or FLIDs.
In addition to changing the error-handling code in our em-
bedded applications, our tool outputs a separate file that
maps FLIDs back to the complete strings that they repre-
sent. Using this file—a simple lookup table—a FLID can
be turned back into a verbose failure message by a program



that runs separately from the sensor network, e.g., on a de-
veloper’s PC. In effect, we implemented a lossless data com-
pression scheme to reduce the size of failure messages within
Safe TinyOS applications without reducing the amount of in-
formation that those messages convey.

We make FLIDs available to developers in two ways.
First, for platforms with three controllable LEDs, we disable
interrupts, convert the FLID into base-4, and report it via
the mote’s LEDs. Second, we optionally create a network
packet containing the FLID and attempt to send it over the
platform’s radio and also to an attached PC over the serial
port. After reporting the FLID, various options are avail-
able. For debugging purposes, we program a node to display
its FLID in an infinite loop. For deployments, we generally
configure a node to broadcast its FLID for a short period of
time, optionally write the FLID into flash memory, and then
reboot or halt.

Consider the following example in which a mote encoun-
ters a safety violation while executing in the radio stack.
Clearly it cannot at this point successfully use the radio to
send a FLID to its base station. Instead, the mote blinks the
FLID as a sequence of eight base-4 digits, which a human
can provide to our command-line diagnostic tool:

decode_flid 00131303

decode_f1lid produces an error message nearly identical to
the one that the Deputy runtime might have printed directly,
if the mote had console I/O and other resources:

tos/chips/cc2420/CC2420ReceiveP.nc:241:
CC2420ReceiveP$receiveDone_task$runTask:
Assertion failed in upper bound coercion:
CC2420ReceiveP$m_p_rx_buf->data + length <=
CC2420ReceiveP$m_p_rx_buf->data + 28

In other words, the variable length is out-of-bounds with
respect to a receive buffer’s data field at line 241 of
CC2420ReceiveP.nc.

3.5 Whole program optimization

The Deputy compiler inserts safety checks in two steps.
First, it introduces many checks into an application’s code.
Second, it uses an aggressive optimizer to remove as many
of these checks as possible, when they can be shown to be
unnecessary. Even so, there is significant residual overhead.

To further reduce code size and run-time overhead, we
process the code output by Deputy using cXprop. For Safe
TinyOS, cXprop serves as a powerful whole-program opti-
mizer. Unlike Deputy’s optimizer, which attempts only to
remove its own checks, cXprop will remove any part of a
program that it can show to be dead or useless.

Precise analysis of pointers is important to Safe TinyOS
because many of Deputy’s checks involve pointer arithmetic.
Before we tailored cXprop for Safe TinyOS, cXprop at-
tempted to represent pointers into arrays precisely: for exam-
ple, it would distinguish between the pointer values &a[3]
and &a[4]. This tended to result in large pointer sets, caus-
ing cXprop to lose precision when the maximum pointer set
size was exceeded. (See Section[2.3])

To overcome this problem, we modified cXprop to inter-
pret a pointer into an array as pointing to an arbitrary element

| Change | Oce. [ SLOC |
TinyOS Components

annotations:
COUNT 17 15
SAFE 53 45
SIZE 8 8
trust annotations (TC, etc.) 18 18

code modifications (incl. annots):
getPayload 41 62
packet access 8 19
other 4 9

TinyOS Interfaces

annotations:
COUNT 11 11
SAFE 34 33

Applications

annotations:
COUNT 1 1
SAFE 4 3

code modifications (incl. annots):
getPayload 13 13

Total without double-counting

[ 182 193 |

Table 2: Summary of changes for Safe TinyOS

of that array. Although it may seem counter-intuitive, weak-
ening the precision of the pointer set domain in this fashion
improved the precision of cXprop as a whole.

4 The Cost of Safety

Making TinyOS applications safe incurs costs in two primary
areas: source-code modifications and mote resources. This
section evaluates these costs.

4.1 Code annotations and modifications

Table 2] summarizes the changes that we made to “plain”
TinyOS 2 components and applications in order to create
their Safe TinyOS counterparts. Although the details of the
table data are somewhat subtle (as described below), the
two main messages are clear. First, the great majority of
our changes occur in the core parts of TinyOS—parts that
are not typically changed by TinyOS application develop-
ers. Application programmers can inherit and benefit from
these changes “for free.” Second, as shown at the bottom of
the table, the total size of all our changes is very small. We
changed 193 source lines—just 0.74% of all the lines refer-
enced in our test applications—to create Safe TinyOS.

The TinyOS source code consists of (1) the implementa-
tion of a core component set, available for use by applica-
tions, (2) the declarations that define the interfaces to those
components, and (3) a set of example applications (the apps
directory in the TinyOS source tree). For each part, Table 2]
describes our changes in terms of annotations and modifica-
tions. An annotation is the insertion of a single Deputy type
annotation. A modification is a change to nesC code, possi-
bly including (but not merely being) the insertion of Deputy
annotations. Thus, the two categories are overlapping—an



annotation that is part of a larger modification is counted
twice—but each includes changes that the other does not.

For each kind of change, Table @] shows the number of
occurrences and the total number of source lines of code
(SLOC) that were affected. An occurrence of an annota-
tion is a single Deputy directive, whereas an occurrence of a
modification is a locus of changed nesC source lines. To get
a total number of occurrences and changed lines of code, one
cannot simply tally the columns: some changes are counted
in both the annotation and modification views, and some
lines contain more than one kind of change. The totals at the
bottom of Table [2]are computed so as to avoid such double-
counting.

Altogether, the TinyOS 2 applications that we compiled
include 253 nesC files for a total of 26,022 lines of nesC
code. Thus, only 0.74% of the nesC source lines, or one
in 135 lines, required a change. Most changes are ex-
tremely straightforward—many are just a single Deputy an-
notation. On the other hand, we had to perform two system-
atic changes that affected the whole TinyOS tree (the “get-
Payload” and “packet access” lines in Table[2)).

The first of these systematic changes is an API modifica-
tion. TinyOS 2 defines a Packet interface that contains:

command void *getPayload(message_t *msg,
uint8_t *len);

getPayload returns a pointer to the payload portion of mes-
sage buffer msg, and sets *1en to the number of bytes avail-
able in the payload. The “obvious” Deputy annotation for
this command is:

command void *COUNT (*len)
getPayload(message_t *msg, uint8_t *len);

Unfortunately, Deputy does not allow pointer dereferences
in arguments to CDUNT To avoid this problem, we changed
the getPayload command to:

command void *COUNT(len)
getPayload(message_t *msg, uint8_t len);

which is defined as returning a pointer to the payload in msg,
as long as it is at least 1en bytes long. If it isn’t long enough,
a null pointer is returned insteadﬂ

This modification required pervasive but small changes
to TinyOS components (62 SLOC) and applications
(13 SLOC). We found that the change was always straight-
forward and that this new API was as easy—and sometimes
easier—to use as the original definition of getPayload. As
a result of our Safe TinyOS research, the TinyOS 2 Core
Working Group is incorporating this API change into a fu-
ture version of TinyOS (version 2.1).

The second systematic change we made was in code used
in TinyOS communication layers to access packet headers
and footers. Following TEP 111 [17], the typical code to
access a packet header from a message buffer msg is:

3The reason for this ultimately lies in the difficulty of perform-
ing precise alias analysis for C programs.

4Deputy performs run-time checks for null-pointer derefer-
ences.

Application | SLOC | Description ]

Blink 3,561 | Toggles the LEDs

RadioSenseTolLeds | 10,974 | Broadcasts sensor
reading and displays
incoming broadcasts

Oscilloscope 11,019 | Data collection

BaseStation 13,976 | Serial and radio
comm. bridge

MViz 21,503 | Multihop collection

AntiTheft 25,773 | Node theft detection

Table 3: The TinyOS 2.0.2 applications in our benchmark suite.
The middle column shows lines of C code output by the nesC
compiler.

serial_header_t* getHeader (message_t* msg) {
return (serial_header_t *)
(msg->data - sizeof(serial_header_t));

}

where data points to the payload above the link layer and
is preceded by a byte array whose size is guaranteed to be
greater than that of serial header_t. Deputy does not like
this code because it involves crossing a structure field bound-
ary using pointer arithmetic. Instead, such functions must be
written as:

serial_header_t* getHeader(message_t* msg) {
return (serial_header_t *SAFE)
TC(msg + offsetof (message_t, data)
- sizeof(serial_header_t));

}

Note that this is logically equivalent to the original code
and does not affect the function’s interface.

There are 8 such functions in TinyOS components we use,
leading to a total of 19 lines of code changes and accounting
for three COUNT annotations, five SAFE annotations, and eight
TC annotations.

In summary, we made very few changes to existing
TinyOS 2 code in order to create Safe TinyOS, and the
changes that we did make were generally simple and
straightforward. Most changes are located in the core com-
ponents of TinyOS, where they can be directly used by ap-
plication developers. Because our approach fits well with
existing TinyOS practices and code, we are receiving sup-
port from the TinyOS maintainers toward incorporating our
changes into mainstream TinyOS.

4.2 Resource costs

We measured the resource costs of safety in applications that
are compiled by the Safe TinyOS toolchain. Our results show
that Safe TinyOS yields no RAM overhead and only modest
overhead in code size (ROM) and CPU utilization.

Table [3] describes our benchmark suite, which derives
from the applications that ship with the TinyOS 2 distribu-
tion. Each program was compiled for the Mica2 sensor net-
work platform: a Mica2 mote includes an Atmel AVR 8-bit
processor with 4kB of RAM and 128 kB of flash memory.
We measured the resulting executables as described below.



We do not report results for the MicaZ or TelosB platforms,
but rather observe that these generally seem to be very simi-
lar to our results on the Mica?2 platform.

We performed our experiments with Safe TinyOS based
on TinyOS 2.0.2, and with Deputy and cXprop from CVS
as of early August 2007. Safe TinyOS compiles applications
using nesC’s default GCC options whenever possible. For
the Oscilloscope and AntiTheft applications, we use GCC’s
-0 flag in conjunction with a collection of other optimiza-
tion flags that, together, closely approximate the -0Os opti-
mization level that nesC prefers, but that avoid triggering
some known GCC bugs. In all cases, Deputy’s optimizer was
turned to its strongest setting. We obtained code- and data-
size results by inspecting the generated object files. We ob-
tained CPU usage results using Avrora [28], a cycle-accurate
simulator for networks of Mica2 motes.

4.2.1 Code size

Figure [3[a) shows the effect of various compilation strate-
gies on the code size of Safe TinyOS applications, relative
to a baseline of the original, unsafe applications as com-
piled by the default TinyOS 2 toolchain. Naively applying
Deputy to TinyOS applications proved to be impractical be-
cause Deputy includes strings in its output that are used to
print useful error messages when a safety violation is de-
tected. The AVR GCC compiler places strings into RAM by
default, and since the Mica2 motes have only 4 kB of RAM,
the resulting executables almost always overflowed the avail-
able storage. Thus the graphs in Figure [3]do not include data
for this default method of compilation.

In Figure Eka), the leftmost bar in each cluster shows the
code size when Deputy’s error strings are placed in ROM us-
ing AVR-specific compiler pragmas. Code size is greatly
bloated for all applications (often well beyond the 100%
limit of our graphs), but since the ATmegal28 processor has
plentiful code space (128 kB) the applications can at least be
run. We judged that an obvious alternative to bloating RAM
or ROM with error strings—Ileaving out error messages—
was unacceptable because debugging failures without the ac-
companying information is difficult. Note that an obvious
minimal error message to report—the address of the failing
check, which can be cheaply retrieved from the call stack—
is not very useful for TinyOS applications due to the nesC
compiler’s aggressive function inlining.

The second bar of each cluster in Figure [3[a) illustrates
the impact of compressing error messages as FLIDs: the av-
erage code bloat due to safety drops to 35%. The third bar
in each cluster shows that whole-program optimization using
cXprop reduces the average code-size cost of safety to 13%.
Fortunately, if safety must be “paid for” with some resource,
code memory (flash) is often the preferred currency since
microcontroller platforms have much more flash than RAM.
(RAM is precious because it often dominates the sleep power
consumption of a sensor network node.) Unless program
memory is near its limit, exchanging code memory for in-
creased run-time dependability is the deal we would most
often like to strike.

The final bar of each cluster in Figure[3[a) shows that the
whole-program optimizations performed by our cXprop tool

can reduce the code size of an unsafe TinyOS application by
an average of 11%. Thus, cXprop represents a tradeoff. It
can typically optimize a safe program so that its code size
is acceptably close to that of the unsafe original, or it can
shrink the unsafe program. One might reasonably measure
the net cost of safety against the original baseline—the state
of TinyOS practice—or the “new baseline” established by
cXprop. In either case, cXprop succeeds at our goal of mak-
ing safety a practical option in terms of code size.

4.2.2 Data size

Deputy’s type system exploits bounds information already
present in programs (Section [2.2), avoiding the need to al-
locate RAM to store array and pointer bounds. Therefore,
as Figure [3[(b) shows, Safe TinyOS without cXprop has no
impact on RAM usage in our benchmark applications. (As
described in the previous section, we omit results for the de-
fault Deputy compilation that leaves error strings in RAM,
as this has prohibitive overhead for all but the smallest ap-
plications.) Figure [3(b) also shows that cXprop is able to re-
duce the RAM usage of safe and unsafe applications slightly
by rendering some global variables unused, using techniques
such as constant propagation and dead code elimination.

It was surprising to us that one of our safe, optimized
applications uses a little less RAM than the corresponding
unsafe, optimized application does. Upon investigation, we
found that the dead code elimination (DCE) pass that runs as
part of Deputy’s optimizer covers a few cases that are missed
by cXprop’s DCE pass, permitting it to eliminate a few extra
variables. These variables remain in the unsafe versions of
the applications, because (obviously) we do not use Deputy
to compile the unsafe applications.

4.2.3 Processor use

Measuring the CPU efficiency of a sensor network applica-
tion is not entirely straightforward, because applications are
reactive and motes tend to sleep a lot of the time. Our evalu-
ation of processor use is in terms of applications’ duty cycle:
the percentage of time that the processor is awake. This met-
ric is useful because the processor is a major consumer of
energy. We measured duty cycles by creating a reasonable
sensor network context for each benchmark, and then run-
ning it in Avrora for five simulated minutes.

Figure [3[c) shows the change in duty cycle across ver-
sions of our applications, again relative to the duty cycles of
the original, unsafe TinyOS programs. On average, Deputy
increases CPU usage by 24%, whereas the full Safe TinyOS
toolchain increases CPU usage by 5.2%.

We expect that increasing processor use by 5.2% is ac-
ceptable in most cases. If the processor accounts for half
of a mote’s total energy consumption, the decrease in mote
lifetime due to safety would be 2.6%. Nevertheless, we plan
to continue working toward further optimizing Safe TinyOS
applications. Consider for example that for the previous ver-
sion of our toolchain [22], which was based on CCured and
TinyOS 1, safe optimized applications actually had lower
duty cycles, on average, than the original unsafe applica-
tions. We attribute our prior success largely to the fact that
TinyOS 1 was coded much less tightly than TinyOS 2 is. The
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message_t *rxBufPtr;

void rxData(uint8_t in) {
cc1000_header_t *rxHeader = getHeader(rxBufPtr);
uint8_t rxLength = rxHeader->length +
offsetof (message_t, data);

// Reject invalid length packets
if (rxLength > TOSH_DATA_LENGTH +
offsetof (message_t, data))
return;
. code using rxBufPtr->data ...

Figure 4: Code for bug #1 (comments are ours)

extra redundancy in TinyOS 1 applications made them more
amenable to optimization.

S The Benefits of Safety

This section describes several bugs that we found in TinyOS,
three of which were unknown at the time they were found. In
addition, we demonstrate the utility of safe execution toward
the goal of automatically increasing the availability of buggy
applications.

5.1 Bug #1: ChipCon CC1000 radio stack

Context Figure[d]shows a simplified version of the rxData
function that adds a byte to a received packet in the ChipCon
CC1000 radio stack for the Mica2 platform. The if state-
ment is designed to reject packets with an invalid length.

Symptoms Safe Mica2 applications would occasionally get
run-time failures in the rxData function. The fault occurred
when casting rxBufPtr->data, an array of TOSH_DATA_
LENGTH bytes, to a pointer annotated with COUNT(len),
where len was equal to rxHeader->length. (This code
is not shown in the figure.) Investigation of these failures
revealed that in these cases, the packets had large, illegal
lengths like Oxff. In these cases, the addition in the as-
signment to rxLength wraps around, so those packets are
not caught by the if statement that was intended to reject
packets with invalid lengths. We note that this bug was men-
tioned, but not explained, in previous work [3]].

Fix The TinyOS 2 maintainers moved the addition of
offsetof (message_t, data) so that it occurs after the
length test.

5.2 Bug #2: Serial stack

Context The TinyOS 2 serial stack is interrupt-driven and
sends bytes out of a buffer provided by higher-level compo-
nents. The module SerialDispatcherP implements state
machines for transmission and reception of different kinds of
serial packets based on a generic lower-level serial interface.
The lower-level serial component signals a nextByte event
that SerialDispatcherP handles by returning a new byte
of data.

// Precondition: ‘sendIndex’ is a valid index
// into the send buffer
async event uint8_t SendBytePacket.nextByte() {
uint8_t b;
uint8_t indx;
atomic {
// This buffer access goes out of bounds
b = sendBuffer[sendIndex];
sendIndex++;
indx = sendIndex;
}
if (indx > sendLen) {
call SendBytePacket.completeSend();
return O;
}
else {
return b;
}
}

Figure 5: Code for bug #2 (comments are ours)

// Precondition: ‘current’ is a valid index into
// the queue
event void
AMSend.sendDone [am_id_t id] (message_t* msg,
error_t err) {
// When the precondition is violated,
// this access is out of bounds

if (queue [current] .msg == msg) {
sendDone (current, msg, err);

}

else {

. print debug message ...
3
}

Figure 6: Code for bug #3 (comments are ours)

Symptoms While running the safe version of the BaseSta-
tionCC2420 application on a MicaZ mote, a safety violation
occurred in the nextByte event handler. The problem, il-
lustrated in Figure [3] is that this function’s precondition is
violated because (in code not shown) a large buffer length
is accidentally passed into the serial code. This leads to the
sendLen variable being set to an incorrect value, causing
subsequent buffer indexing to go out of bounds.

Fix The TinyOS 2 maintainers have incorporated an ex-
plicit check for inappropriate buffer lengths in the serial
stack.

5.3 Bug #3: Unexpected event

Context The AMQueue component performs round-robin
scheduling of the network link among multiple clients. This
component maintains a state variable current to keep track
of which client is currently being serviced. This variable is
set to an out-of-bounds value to indicate a lack of clients.

Symptoms While running the safe version of the MViz ap-
plication on a network of Mica2 motes, a safety violation oc-



// Loop to find a free buffer
for (i = 0; i < NUM_BUFFERS; i++) {
if (m_pool[i].msg == NULL) break;

}

// Loop post-condition: either

// (a) i indexes a free buffer

// or (b) i is an out-of-bounds index

// pointing one entry past the end
// of the buffer pool

// 1f case (b) holds, the following access

// violates memory safety

if (m_pool[i].msg == NULL) {
// The following store corrupts RAM in
// the unsafe application when case (b)
// of the post-condition holds and the
// null check (by chance) succeeds
m_pool[i] .msg = _msg;

Figure 7: Code for bug #4 (comments are ours)

curred when AMQueue’s sendDone event was called at a time
when its precondition was not satisfied. The bug is not in
AMQueue per se; rather, this module unexpectedly receives a
sendDone () event when it has no clients. This event causes
the sendDone () handler, shown in Figure @ to use the in-
valid array index. This was a tricky bug to replicate because
it only occurs after several minutes and only when a substan-
tial number of nodes are involved.

Fix The TinyOS 2 maintainers have modified AMQueue to
ignore spurious sendDone () events.

5.4 Bug #4: Incorrect search-failure check

Context By reading one of the TinyOS mailing lists, we
learned of a research group that had been stalled due to a
bug from June to August 2006 on the development of a time-
synchronization and leader-election application for TelosB
motes. We contacted the authors of this application, who sent
us their source code. After processing by the nesC compiler,
it was 13,800 non-blank, non-comment lines of C.

Symptoms The developers of this application experienced
unpleasant symptoms: after about 20 minutes of execution,
RAM on a node would become corrupted, causing the node
to drop out of its network. Our safe version of this appli-
cation signaled a fault after running for about 20 minutes.
The problem, shown in Figure[7} was an out-of-bounds array
access in the line that tests m_pool [i] .msg for null.

We note that this bug was first discovered with our previ-
ous work, a CCured-based version of Safe TinyOS [22]. We
have verified that our current Deputy-based toolchain also
finds this error.

Fix Although this bug had proven almost impossible to
find, it is easy to fix: the index variable i must be bounds-
checked before being used in pointer arithmetic. The bug
turns out to be in a third-party networking component, which
explains why the application developers were not able to find

it: they were focused on their own code. The bug is an un-
fortunate one because it only manifests when the send buffer
overflows—an event that is expected to be quite rare.

After fixing this bug, the sensor network application ap-
pears to run indefinitely without any memory safety viola-
tions. The application’s authors confirmed that this bug was
responsible for the RAM corruption they were seeing. We
note that by the time we found this bug, it had been fixed in
the latest release of the third-party component. However, the
fix dated from August 2006—two months too late to help the
developers with whom we interacted.

5.5 Increasing application availability

As an alternative to helping developers find a bug, safe ex-
ecution can—under certain circumstances—be used to in-
crease application availability. For example, we changed the
failure handler in the buggy time synchronization applica-
tion from “Bug #4” above to reboot the sensor node imme-
diately upon detecting a safety fault. This masks the bug
by exploiting the ability of a sensor network node to restart
rapidly. Since the bug in the time synchronization applica-
tion occurs roughly every 20 minutes, and since the applica-
tion is able to rebuild its soft state from neighboring nodes
in about one minute, an average node availability of about
95% 1is achieved. In contrast, the long-term average node
availability of the original unsafe application is zero, since
nodes never recover from memory corruption—they simply
drop off the network. Of course, this bug-masking strategy
will not work if the ratio of the application’s recovery time
to its mean time to failure is too high.

6 Discussion

In doing this work, we found four ways in which Deputy
fits well with TinyOS. One could even argue that Deputy
is a better fit for TinyOS and nesC than it is for C code on
desktop machines.

First, the fact that TinyOS does not use dynamic memory
deallocation closes the loophole that Deputy does not check
the safety of explicit memory deallocation (free).

Second, Deputy’s type system exploits bound information
that is already present in applications, avoiding the need to
waste memory storing explicit bounds. This RAM savings is
irrelevant on PC-class machines, but it is a substantial advan-
tage on mote platforms where memory is often the limiting
resource for application developers.

Third, nesC’s interfaces reduce the burden of using
Deputy’s annotations. For example, it is only necessary
to provide receive’s Deputy annotations once within the
Receive interface:

interface Receive {
event message_t *
receive(message_t *msg,
void *COUNT(len) payload,
uint8_t len);
command void *COUNT(len)
getPayload(message_t *msg,
uint8_t len);



Once this is written, all Receive.receive events declared
in any Safe TinyOS program will inherit the annotations.

In contrast, when using Deputy with C, all function dec-
larations must be annotated. This difference has important
practical implications in terms of programmer effort. For ex-
ample, Zhou et al. had to change 2.3% of all source lines
in their study to apply Deputy to Linux device drivers [29].
As we reported in Section [d] however, we needed to change
only 0.74% of the source lines in our TinyOS applications to
make them acceptable for Safe TinyOS.

Finally, a useful side effect of Deputy is that it mitigates
some unsoundness in cXprop. cXprop, like essentially all
other program transformation tools for C code (including
GCC), may change the behavior of a program that executes
certain kinds of behavior undefined by the C language. For
example, cXprop assumes that memory safety is respected:
a program must not manipulate a variable through a stray
pointer dereference. The guarantees provided by Deputy pre-
vent precisely this kind of unsafe operation, and we believe
that cXprop is sound with no additional assumptions about
program behavior when it is applied to Deputized code.

7 Related Work

Safe TinyOS builds upon our earlier work [22] which was
based on CCured [20] rather than Deputy. In addition, Con-
dit et al. [3] present a one-paragraph summary of early ex-
periences using Deputy with TinyOS. The present paper
expands greatly on those results, presenting the full Safe
TinyOS toolchain and evaluating its costs and benefits in
much greater detail on a much larger (> 3x) code base.

We know of three ongoing efforts to bring the bene-
fits of safe execution to sensor network applications. First,
t-kernel [[10] is an OS for sensor network nodes that supports
untrusted native code without trusting the cross-compiler.
This is accomplished by performing binary rewriting on the
mote itself; this incurs about a 100% overhead, as opposed
to 5.2% for Safe TinyOS. Second, Kumar et al. [23]] provide
memory protection in the SOS sensor network OS. This is
efficient, but the SOS protection model is weaker than ours:
it emulates coarse-grained hardware protection, rather than
providing fine-grained memory safety. Third, Virgil [27] is a
safe language for tiny embedded systems such as sensor net-
work nodes. Like nesC/TinyOS, Virgil is designed around
static resource allocation. The main distinction between Vir-
gil and Safe TinyOS is that Virgil focuses on providing ad-
vanced object-oriented language features whereas our sys-
tem maintains backwards compatibility existing TinyOS 2
nesC code.

Safe languages for constrained embedded systems have
been around for a long time: Java Card [26] targets smart
cards based on 8-bit microcontrollers, Esterel [2] is suited
to implementing state machines on small processors, and
Ada [13] was developed for embedded software program-
ming in the 1970s. Sun SPOT [25] is a new Java-based
hardware and software platform for wireless sensor appli-
cations. A Sun SPOT is not as constrained as a Mica2 mote:
it has 256 kB RAM/2 MB flash, of which 80kB/270kB is
consumed by the VM and runtime. Despite the existence of

these languages and platforms, most embedded software is
implemented in unsafe languages like C.

Language-based protection for C programs is an active
area of research. Control-C [[15] provides safety without run-
time checks by relying on static analysis and language re-
strictions. Dhurjati et al. exploit automatic pool allocation to
safely execute embedded software without requiring garbage
collection [8]], and to check array accesses [[7]. SAL [11] and
Cyclone [14] use pointer annotations similar to Deputy’s to
improve the safety of C code. SAL restricts itself to compile-
time checking, limiting the bugs it can catch, whereas Cy-
clone requires significant source code changes. Simpson
et al. [24] provide segment protection for embedded soft-
ware: an emulation of coarse-grained hardware protection
rather than fine-grained type safety and memory safety. Our
work differs from these efforts by targeting the more severely
constrained mote platform, by providing compressed error
messages, by handling concurrency and direct hardware ac-
cess, and by using aggressive whole-program optimization
techniques to reduce overhead.

A large amount of research has been devoted to the prob-
lem of engineering safe and dependable computer-based sys-
tems [16, [19]]. As far as we know, sensor networks are not
yet deployed in very many safety-critical applications, and
so our low-cost (in terms of developer time and machine re-
sources) approach to increasing dependability is appropriate
and practical. If—as seems likely—sensor networks become
an integral part of safety-critical systems such as those gov-
erning emergency response and health care [5], then it will
become appropriate to augment safe language techniques
with heavier-weight software engineering methods.

8 Conclusion

We have presented Safe TinyOS, our software platform for
improving the dependability of sensor network applications
by enforcing both type and memory safety. Safety helps de-
velopers catch bugs before a sensor network is deployed,
and—equally important—it prevents memory access errors
from cascading into random faulty behaviors in the field.
Our contributions are as follows. We showed that aggres-
sive whole-program analysis can minimize the overhead of
safe execution. On average, as compared to unsafe, state-of-
practice TinyOS applications, our benchmark Safe TinyOS
applications require 13% more ROM, need 2.3% less RAM,
and use 5.2% more CPU. These overheads are low com-
pared to existing work that we are aware of for enforcing
safety for C. We developed a technique based on sound
race-condition detection for efficiently enforcing safety un-
der interrupt-driven concurrency. We showed that the nesC
language can be modified to support programmer-supplied
safety annotations, and we showed that in the TinyOS appli-
cations we studied, only 0.74% of their source lines require
annotations or modifications for safety. We found signifi-
cant, previously unknown bugs in TinyOS. We ported Safe
TinyOS to the most popular TinyOS platforms: Mica2, Mi-
caZ, and TelosB. We developed several schemes for han-
dling safety violations, and we support compressed error
messages that have little impact on application resource us-



age and avoid sacrificing information content. Finally, we
showed that safety can increase the availability of sensor net-
work applications even when the underlying bugs remain un-
fixed.
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