Switching Lemma: Let P be a k-CNF formula. Pick a random restriction p leaving p_n variables unset. Then there exists $c > 0$ s.t.

$$\Pr \left[\text{CDT}[P, 1_p] \geq D \right] \leq (c \cdot p \cdot k)^D$$

Proof idea: We'll code each p with $\text{CDT}[-p, 1_p] \geq D$ by a restriction, p_{code}, leaving $p_n - D$ variables unset and a 'hint' - a short message, of length $D \cdot [\log k + 2]$ bits.

There are relatively few (p_{code}, hint) pairs possible, so few p's have $\text{CDT}[P, 1_p] \geq D$.

Example:

```
\begin{array}{c}
\text{true, so prune } c_1 \\
\text{set to one}
\end{array}
```

Diagram of the CNF formula with variables and clauses represented.
We want to code 'long paths' in the decision tree.

Define D to be the

D' to be # of distinct variables queried.

$P_{code} = P \circ \sigma_1 \circ \ldots \circ \sigma_D$,

$P_{code} : P_{n-D}$ variables, unset

|Hint| : $D(\log k + 2)$ bits

Decoding algorithm: look at $P_{1P_{code}}$.

Let c_i be the first clause that is falsified.

Look @ hint to tell us which variables in c_i were unset.

Hint tells us how these values were set in σ.

We set them to their values in σ_i, and repeat

until D variables unset have been recovered.

What if our hint is random garbage? What's the probability of recovering P?

Imagine P is random, and random 'is P with some

\times replaced by random bits.

$n - pn + D$ bits, D of which are imposters.

All we do is pick randomly: we get what we want w.p.

$$\frac{\frac{\frac{\frac{D}{n-pn+D} \ldots \frac{1}{n-pn+1}}{D-1}}{n-pn+D-1}}{n-pn} \leq \left(\frac{\frac{D}{n-pn}}{D-1}\right)^D$$
The chance that \(\text{random} = \text{code} \) is \(\left(2^D \binom{p^n}{D} \right)^{-1} \)

Probability that \(\text{hint} \text{ random} = \text{hint} = \left(\frac{1}{4k} \right)^D \)

\[
\left(\frac{D}{n-p} \right)^D \geq \Pr \left[\text{Decide} \left[\text{random}, \text{hint random} \right] = \rho \right]
\]

\[
= \frac{\Pr \left[\text{Pr} \left[P \mid \rho \right] = D \right]}{\Pr \left[\text{Pr} \left[\text{hint random} = \text{hint} \right] \right]} \Pr \left[\text{Pr} \left[\text{random} = \text{case} \right] \right]
\]

We also have:

\[
\Pr \left[\text{decide} \left[P \mid \rho \right] = D \right] \leq \left(\frac{p^n}{D} \right) 2^D \left(4k \right)^D \left(\frac{D}{n-p} \right)^D
\]

\[
\leq \left(\frac{e p h}{D} \right)^D 2^D \left(4k \right)^D \frac{D}{n-p}^D
\]

\[
\leq \left(\frac{8 e p h}{1-p} \right)^D
\]

\[
= \left(c p h \right)^D
\]

\[
\text{Lemma: Let } P \text{ be a depth-} d \text{ formula where the number of gates at the top } d-1 \text{ levels is } s \text{ and the formula contains every gate at the bottom level } \leq \log s. \]

If \(P \) computes a parity of \(n \) variables,

\[
s \geq 2^{2^{\left(\frac{n}{d-1} \right)}}
\]

Case for \(d=2 \) was the exercise from last class.
Now for induction, restrict \(Y \) by \(p \). That leaves \(\frac{e^in}{\log s} \) variables unset, \(p = \frac{e^i}{\log s} \).

\(Y \) has \(\leq s \) CNF/DNF \(p_i \) that are \(\log s \)-CNF.

Probability that any of these have CDT \((p_i \land p) \leq \log s\) \(\leq e \cdot \frac{e^i}{\log s} \cdot \frac{1}{s} < \frac{1}{s} \)

so \(\exists p \) such that \(\forall p_i, \text{ CDT} (p \land p_i) \leq \log s \).

So replacing each CDT with DNF & blending at the next higher level, \(p \land p \) has \(\leq s \) gates \(\leq \log s \) at level \(d-1 \), and fan-in \(\leq \log s \) at level \(d-1 \).

Applying the inductive assumption with \(s, a-1, \frac{n'}{\log s} \):

\(n' \leq c \left(\frac{\log s}{\log s} \right)^{d-2} \)

so \(n \leq c \left(\frac{\log s}{\log s} \right)^{d-1} \)

Algorithmic application.

IN: \(k \)-CNF \(\phi \)

out: \# of \(\bar{x} \) s.t. \(\phi(\bar{x}) = \text{TRUE} \).

Exact randomized algorithm: partition, \(\@ \) random, variables into \(k \) groups: \(x_i = (1 - \frac{e^i}{k}) n \) \(\frac{1}{k} \).

\(|x_i| = \frac{e^i n}{k} \).
For each setting of the variable in \(a \), we look in the restriction \(p \).

Create \(\text{CDT}(p_{1p}) \) & count the # of solutions

Expected time: \(\text{exponential} \)

\[
\sum_0^\infty 0 \left(1 \text{CDT} \left[p_{1p} \right] \right) = 2^{n-pn} \text{Exp} \left(0 \left(1 \text{CDT} \right) \right)
\]