
CS 294-114 Fine-Grained Complexity and Algorithms Fall 2015

Lecture 12: Algorithms for NP-Complete Problems

Lecturer: Russell Impagliazzo Scribe: Tyler Linderoth

Last class:

If there is any improved circuit-SAT algorithm, then NEXP * P/poly.
How close are we to getting this type of algorithm?
Special cases of SAT?
Improved SAT for super linear size circuits provide super linear lower bound for ENP (JMV).

Today:

What does the complexity of satisfiability tell us about the complexity of other problems (e.g. hard
problems)? Accordingly, how much can we improve NP-complete problems?

Consider a circuit with n inputs, X1 = g1,...,Xn = gn, and m gates, gn+1 = opn+1(in+1, jn+1),...,gm.

To reduce to 3-SAT, ask: ∃ X1,...,Xn, g1,...,gm so that gi = opi(gji, gki), where gm = 1? Each gi
involves 3 variables so that it can be written as a 3-CNF.

If 3-SAT can be solved in TIME(2εn), we can solve circuit-SAT in TIME(2εm).

If we can find an algorithm for 3-SAT that is time 2o(n), then we prove a circuit lower bound.

ETH (Exponential Time Hypothesis) states that no such algorithm exists: ∃ε so that no 2εn time
algorithm can solve 3-SAT.

Best known 3-SAT (K-SAT) algorithms:

1) Algorithm based on the switching lemma; probability zero error, ran in time O(2n(1−
1
ck

)) to
solve K-SAT. Note that as K gets larger, our savings get smaller. Note also that by SETH (Strong
Exponential Time Hypothesis), ∀ε > 0 ∃K so that K-SAT is not solvable in 2(1−ε)n time.

2) Algorithm by Peturi, Pudlàk, and Zane that uses compression method: randomly permute the
variables and for each variable set it to a random value UNLESS it is forced from previous choices
(i.e. there is a clause, C , Xi∨,...,∨Xik−1

so that we’ve already set Xi1 ,Xi2 ,...,Xik−1
to FALSE). We

hope that we set a satisfying assignment. IF C is satisfiable, we find a set assignment.
X ∨ Y ∨ Z ∧ Z ∨W ∨ U
set U=FALSE:
X ∨ Y ∨ Z ∧ Z ∨W∨ U
set W=TRUE:
X ∨ Y ∨ Z∧ Z ∨W ∨ U
set X=FALSE:
X∨Y ∨ Z∧ Z ∨W ∨ U
set Y=FALSE:
X ∨ Y ∨ Z ∧ Z∨W ∨ U
Z is forced to TRUE

12-1

Lecture 12: Algorithms for NP-Complete Problems 12-2

What if the formula had just one assignment that satisfied it?
X1,...,Xn

Xi → ¬Xi ⇐= flip Xi from satisfying to not satisfying
C = C1 ∧ ... ∧ Cm ⇐= all were true
Now the flip made at least one of C ’s Cis false.
∀i,∃ Xi ∨X, ...,∨Xk

Cji : Xi is the only literal satisfying Cj
Cji is called the ”critical clause” for Xi.

Prob(PPZ algorithm outputs X)
= Prob(all random decisions are equal to X)
= 2−(# random decisions on the path consistent with X)

= 2−n+# forced decisions on the path consistent with X

When does Cji force Xi?
IF Xi is the last variable branched on in Cji
Prob(Xi is the last) ≤ 1

k

Therefore,
Expected # of forced decisions on the path consistent with X ≥ n

k

Expectation(PPZ algorithm outputs X) ≥ 2−n+
n
k = 2−n(1−

1
k
)

ith neighbor Xi → Xi (differs in 1 bit)
D(X) = # neighbores that also satisfy C
i.e. D(X) is the degree of X.
n−D(X) variables with critical clauses.

Expected(# of forced moves) ≥ n−D(X)
k

We want the algorithm to return X, but we are just as happy if a neighbor of X is returned if the
neighbors are SAT:

Lecture 12: Algorithms for NP-Complete Problems 12-3

∀X ∈ SAT assignment,

P(PPZ returns X) ≥ 2−n+
n−D(X)

k ≥ 2−n(1−
1
k
)−D(X)

k

P(PPZ returns some satisfying assignment) ≥ 2−n(1−
1
k
)∑
X

2
−D(X)

k

Now let’s say we have a graph where the nodes represent satisfying assignments and the edges
represent the index of variables.
Ei = # of pairs that differ only in Xi

Harper’s Lemma: For any set of size S, the average degree is ≤ log|S|.

Entropy, H: measures randomness of a distribution.
H(D) = −

∑
X, P(X)≥0

P(X)log(P(X))

H(X,Y) = (expected Y of entropy of X|this value of Y)

H(< Xi, ..., Xn >) =
n∑
i=1

H(Xi|X1, ..., Xi−1)

Pick X ∈ S at random and let Xi be the ith bit of X.

log|S| = H(X) =
n∑
i=1

H(Xi|X1, ..., Xi−1)

≥
n∑
i=1

H(Xi|X1, ..., Xi−1, Xi+1, ..., Xn)

= Expected(D(X))

Then,∑
X

2
−D(X)

k ≥ S2
−log|S|

k (increase with k).

