CS 294-114 Fine-Grained Complexity and Algorithms Fall 2015

Lecture 12: Algorithms for NP-Complete Problems
Lecturer: Russell Impagliazzo Scribe: Tyler Linderoth

Last class:

If there is any improved circuit-SAT algorithm, then NEXP ¢ P/poly.

How close are we to getting this type of algorithm?

Special cases of SAT?

Improved SAT for super linear size circuits provide super linear lower bound for EN* (JMV).

Today:

What does the complexity of satisfiability tell us about the complexity of other problems (e.g. hard
problems)? Accordingly, how much can we improve NP-complete problems?

Consider a circuit with n inputs, X1 = g1,...,X,, = gn, and m gates, gn+1 = 0Pn+1(int1, Jnt1),--sGm-

To reduce to 3-SAT, ask: 3 Xi,....Xy, g1,....9m so that g; = op;(gji, gri), where g, = 17 Each g;
involves 3 variables so that it can be written as a 3-CNF.

If 3-SAT can be solved in TIME(2"), we can solve circuit-SAT in TIME(2").
If we can find an algorithm for 3-SAT that is time 2°("), then we prove a circuit lower bound.

ETH (Exponential Time Hypothesis) states that no such algorithm exists: Je so that no 2 time
algorithm can solve 3-SAT.

Best known 3-SAT (K-SAT) algorithms:

1) Algorithm based on the switching lemma; probability zero error, ran in time 0(2”(1_5)) to
solve K-SAT. Note that as K gets larger, our savings get smaller. Note also that by SETH (Strong
Exponential Time Hypothesis), Ve > 0 K so that K-SAT is not solvable in 2(=9n time.

2) Algorithm by Peturi, Pudlak, and Zane that uses compression method: randomly permute the
variables and for each variable set it to a random value UNLESS it is forced from previous choices
(i.e. there is a clause, ¢, X;V,...,vX;,_, so that we've already set X;,,Xj,,....X;, , to FALSE). We
hope that we set a satisfying assignment. IF % is satisfiable, we find a set assignment.
XVYVZANZVW VU

set U=FALSE:

XVYVZANZVWVE

set W=TRUE:

X VYV INZBNT

set X=FALSE:

XVY V ZN AR

set Y=FALSE:

XY g A WO

7 is forced to TRUE

12-1



Lecture 12: Algorithms for NP-Complete Problems 12-2

What if the formula had just one assignment that satisfied it?
X1,..,Xn

X; — = X; < flip X; from satisfying to not satisfying

€ = C1 A ...\ Cp, <= all were true

Now the flip made at least one of %’s C;s false.
Vi,3X;VX,.. VX

Cj, : X; is the only literal satisfying C)

Cj, is called the "critical clause” for X;.

Prob(PPZ algorithm outputs X)

= Prob(all random decisions are equal to X)
— 9—(# random decisions on the path consistent with X)

— 9—n+7# forced decisions on the path consistent with X

When does Cj, force X;?
IF X is the last variable branched on in Cj,
Prob(X; is the last) < 1

Therefore,
Expected # of forced decisions on the path consistent with X >
Expectation(PPZ algorithm outputs X) > 27" % = 9-n(1-3)

neighborhood of X

—

satisfying assignment)_f'

ith neighbor X; — X; (differs in 1 bit)
D(X) = # neighbores that also satisfy &
i.e. D(X) is the degree of X.

n — D(X) variables with critical clauses.
Expected(# of forced moves) > %(X)

We want the algorithm to return X, but we are just as happy if a neighbor of X is returned if the
neighbors are SAT:



Lecture 12: Algorithms for NP-Complete Problems 12-3

VX € SAT assignment,

—n42=DE) —n(1-1
P(PPZ returns X) > 2 Eo>2 k
P(PPZ returns some satisfying assignment) > 27"(1=%) S" 27 %

D(X)
-2

Now let’s say we have a graph where the nodes represent satisfying assignments and the edges
represent the index of variables.
E; = # of pairs that differ only in X;

Harper’s Lemma: For any set of size S, the average degree is < log|S]|.

Entropy, H: measures randomness of a distribution.
H(D)=- >  P(X)log(P(X))
X, P(X)>0
H(X,Y) = (expected Y of entropy of X|this value of Y)
n

H(< Xi, .., X >) = Z H(Xl’XI, -~-7Xi—1)
i=1

Pick X € S at random and let X; be the ith bit of X.
log\S\ = H(X) = Z H(XZ“Xl, ...,Xi_l)
i=1

n

> > H(XG[ Xy, Xicr, X, s Xin)
i=1

= Expected(D(X))

Then,

D( —log| S|

SN2 R > S27 % (increase with k).
X




