22/8/2015
Russell's cross, Section 1.

3 Ideas:
1) Art & design

2) Multidimensional cross, e.g. crossword puzzles, etc.

3) Reductions at finer grain, e.g., \(\text{2SAT} \in \text{TIME}(n^{1.5}) \)

Great complexity or NP-complete; meta-algorithmic aspects (i.e., input and output are representations of algorithms)

- Hard problem, circuits, program verification, circuit minimization, compiler design...

Breadth: circuits: introduced in Korkor & Sacharni, \(\log x \) on \(n \)-bit in \(2^n \) size \(S(2^n) \)

For any function we know how to consume, keep lower bound issues.

(Notre Dame, 3).

Proof: circuits: \(C_{\text{up}} \), \(C_{\text{down}} \), \(2^n \) upper bound

Exercise: prove that \(\text{Circuit Size}(R_{\text{up}}, 2^n) = \Omega(2^n) \)

Terms in \(\text{Circuit Size}(C_{\text{up}} \cap C_{\text{down}}) \leq \sum \text{Circuit Size} \)

\(\text{SAT} \): satisfiable \(\text{Circuit Size} \)

\(\text{K-SAT} \): \(k \)-circuit \(\leq \text{K-SAT} \)

Depth and unbounded fan-in circuit.

Randomly \(\lambda \), \(\nu \) or, \(\delta \), \(\alpha \), \(\beta \), \(\gamma \), \(\delta \), \(\alpha \), \(\beta \), \(\gamma \)

AC^0-equivalent \(\leftrightarrow \) polynomial-size \(\exists \)-uniform \(\forall \)-shredded memory

\(\text{Size}(C) \leq \text{Exp}(\sum C_{\text{up}}(\text{Circuit Size})) \), for \(\delta = \text{poly}\)

AJ & C:
First saw, sipper, bao, cai, Hasmed.

K-HSAT: when \(K \)-cut \(\leq 0 \), count \(12 \times 12 \) for \(12 \times 12 \) signs

Best cases: for \(K \)-SAT: \(2^{n(1-\alpha(K))} \), Schoning, PPSZ, IMP.

Different techniques, same expression

For \(K \)-HSAT: IMP.

Random restricted \(\text{K-SAT} \)

\(\text{Restricted K-SAT} \) method: \(\text{P} \), \(\text{Q}, \text{R} \), \(\text{S}, \text{T} \)

Håstad Switching lemma: \(\text{let P \in K-CUT} \)

Decision tree: \(\text{ Knows the unique incorrect vertex}$ \text{for some vertices, e.g., P \in K-CUT} \)

Håstad Switching lemma: \(\text{P} \) \text{is too weak, possible dual vertex is } P$
For $c = 0$ and $s
ightarrow z$, decision tree of $D(z) = T$. Decision tree of $D(z) = 0 \Rightarrow D(z) = 0$. If $D(z) = 0$, $D(z)$ is a canonical decision tree. For a CNF: Query on unsat clauses, then subqueries and simplify. Then next unsat clause.

If an unused empty clause, set α to true. If no unsat, output.

Most of switching lemma

Let G be a k-CNF. Let p be a random vector. Query on unsat clauses. Then $\Pr[\text{depth}(CD \cap G)] \leq \frac{1}{(1 - p)k^2} \leq \left(1 - \frac{1}{1 - p/k} \right)^{k^2}$

If $p \geq 1/k$, then each clause has decent chance of not disappearing. springs some round. For proving:

After one round, each clause loses at most $1/k$. After i rounds, there are $\frac{n}{(2i)^k}$ clauses. After i rounds, there $\frac{n}{(2i)^k} < \frac{1}{(1 - p/k)^k}$ rounds. So for rounds $n \leq \frac{1}{(1 - p/k)^k}$. For random \mathbf{p}, let $p = 1/k$. Divide input into $\log n$ rounds. Or use such partitions, even though are restricted.