Signature

Login Name

Name

Student ID

Midterm
CSE 131
Winter 2010

Page 1 (21 points)
Page 2 (27 points)
Page 3 (32 points)
Page 4 (9 points)
Page S (20 points)
Page 6 (16 points)
Subtotal (125 points = 100%)
Page 7 (7 points)
Extra Credit

Total



1. Given the following CUP grammar snippet (assuming all other Lexing and terminals are correct):

Expr ::=

Des 1=

Des2 ::=

Des3

’

AssignOp

’

Des AssignOp Expr {: System.out.println("00"); :}
Des {: System.out.println("0"™); :}

T STAR {: System.out.println("1"); :} Des {: System.out.println("2"); :}

T PLUSPLUS {: System.out.println("3"); :} Des {: System.out.println("4"); :}
T AMPERSAND {: System.out.println("5"); :} Des {: System.out.println("6");
Des2 {: System.out.println("7"); :}

Des2 {: System.out.println("8"); :} T PLUSPLUS {: System.out.println("9");
Des3 {: System.out.println("10"); :}

T ID {: System.out.println("11"); :}

::= T ASSIGN {: System.out.println("12"); :}

What is the output when parsing the follow expression (you should have 18 lines/numbers in your output):

Output

X = *y = z++

1}

In the above grammar, does the assignment operator have left-to-right associativity or

right-to-left associativity?

If variable z is defined to be type int *, what types must variables y and x be defined
for this expression to be semantically correct?

Yr Xy




2. Give the order of the typical C compilation stages and on to actual execution as discussed in class

0 — Loader 6 — ccomp (C compiler)

1 — Program Execution 7 —1d (Linkage Editor)

2 — as (Assember) 8 — Source file (prog.c)

3 — Object file (prog.o) 9 — Assembly file (prog.s)
4 — prog.exe/a.out (Executable image) 10 — cpp (C preprocessor)

5 — Segmentation Fault (Core Dump) / General Protection Fault

gce > - > > > - - - > >

Given the following C++ definitions (similar to Reduced-C)

struct S1 { int a; };
struct S2 { int a; };

void foo ( struct S2 &b ) { }

struct S1 a;

acallto foo( a ) passingin a as the actual argument will cause a compile error. Why?

Fix the function call foo ( a ) belowtopass a to foo () without causing a C++ compile error.

foo ( a )

Using Reduced-C syntax, define an array of an array of floats with dimensions 3x9 named bar such that
bar[2][8] = 42.24; isa valid expression. This will take two lines of code.

Modifiable L-vals, Non-Modifiable L-vals, R-vals

Using the Reduced-C Spec (which closely follows the real C language standard), given the definitions below,
indicate whether each expression evaluates to either a

A) Modifiable L-val B) Non-Modifiable L-val C) R-val
function : int * foo() { /* Function body not important. */ }
structdef R1 { int a; float b; };

float[9] a;

R1 b;

R1 * c;

int * d;

++b.a c+1 &b (int)al[3] c->a % b.a

foo () &al2] (R1 *)foo() al[l] = *foo() ++*d++



3. Given the following C++ definitions (similar to Reduced-C):

void fool( int a ) { ...}
void foo2( int & a ) { ... }
int foo3() { ...}
int x;

float vy;

int *ptr;

For each of the following function calls, indicate the type of error (if any) that should be reported (using the
Project I spec for this quarter which is similar to the C++ rules). Use the letters associated with the available
errors from the box to the right.

A) Argument not equivalent to reference param
B) Argument not assignable to value param
C) Arg passed to reference param is not a modifiable L-val

D) No Error
fool( ptr ); L foo2 ( ptr ); -
fool ( *ptr ); o foo2 ( *ptr ); -
fool ( *ptr++ ); L foo2 ( *ptr++ ); L
fool ( *++ptr ); o foo2 ( *++ptr ); L
fool( ++*ptr ); o foo2 ( ++*ptr ); -
fool ( ++*ptr++ ); L foo2 ( ++*ptr++ ); .
fool ( *&x ); o foo2 ( *&x ); -
fool( *&y )7 L foo2 ( *&y ) L
fool( (int)s&*ptr ); L foo2 ( (int)&*ptr ); -
fool ( *&ptr ); L foo2 ( *&ptr ); .
fool( 42 ); L foo2( 42 ); -

foo2( *(int *)&y ); -

foo2 ( foo3() ); -

Using the Right-Left rule write the C definition of a variable named fubaz that is a pointer to a 2-d array of 19
rows by 4 columns where each element is a pointer to a function that takes a pointer to a pointer to a short as a
single parameter and returns a pointer to an array of 8 elements where each element is a pointer to a struct fubar.



4. Consider the following struct definitions in Reduced-C (similar to C/C++). Specify the size of each struct on
a typical RISC architecture (like ieng9) or 0 if it is an illegal definition.

structdef FOO1l {

structdef FOO02 {

structdef FOO3 {

int a; int a; FOO3 *a;
float b; float b; float b;
function : void bar() function : void bar() function : void bar( FOO3 &x)
{ { {
FOOl x; FOO2 *x; x.d[0] = *x.c;
} } }
FOOl *c; FO0O2 «c[2]; int *c;
int da[(2]; int *d; int da(2];
}i }i }s
Size Size Size

Fill in the blanks of the following Reduced-C program with correct types to test if your Phase 0 fix to the
scoping bug present in the starterCode works correctly. If the scoping bug is fixed, this program should compile
without error. If the bug is not fixed, this program should generate an assignment error at the line x =y;

X; // global x
function : int main() {
X; // local x
bool vy;

X =YVYs

return 0;

}

// If fixed in Phase 0,
// If not fixed in Phase O,

this line will not cause an error!
this line will cause an error!

Describe briefly what you/your group did to fix this scoping bug in the starter code.

Given the following Reduced-C code below, fill in the blanks of the compile error that should be reported
according to this quarter's Project I spec. Use the letters associated with the words in the box below.

B. F2

D. Il

F.int

H. Sleep

J. assignable
L. modifiable

y; // Compile error reported here. Assume this stmt is inside a function.

typedef float F1l;
typedef Fl1 F2; A.Fl
typedef int I1; C. float
typedef I1 I2; E. I2
G. 5-hour Energy
i = L. equivalent
F2 i K. addressable
X =z =
Value of type not to variable of type .



5. Show the memory layout of the following C struct definition taking into consideration the SPARC data type
memory alignment restrictions discussed in class. Fill bytes in memory with the appropriate struct
member/field name. For example, if member/field name p takes 4 bytes, you will have 4 p's in the appropriate
memory locations. If the member/field is an array, use the name followed by the index number. For example,
some number of p [0]s, p[1]s, p[2]s, etc. If the member/field is a struct, use the member name followed by
its member names (e.g. p.a, p.b). Place an X in any bytes of padding. Structs and unions are padded so the total
size is evenly divisible by the most strict alignment requirement of its members.

low memory
fubaz:

struct foo {
short a;

char bl(4];
double c;
short d;

b

struct fubar {

char el[5];
int * £;
struct foo g;
char h{3];
char i,

}i

struct fubar fubaz;

high memory

What is the sizeof ( struct fubar )? What is the offsetof ( struct fubar, g.b[1l] )?

If struct fubar had been defined as union fubar instead, what would be the sizeof (union fubar)?

What is the resulting type of the following expression?

* (char *) (& ( ((struct foo *) fubaz.e )->d ) + 2)

Write the equivalent expression that directly accesses this value/memory location without all the fancy casting
and & operators.

fubaz.




6. Given the following C program:

#define X 6
#define Y 4

int al[X]I[Y];
int * b[X];

int main ()

{

int 1i;

for (i = 0; i < X; i++ )
b[i] = malloc( sizeof(int) * Y );

return 0;

}

Match the following expressions with the corresponding type (think type equivalence) from the list A-P.
Use type equivalence rules, not assignability.

A. int
B. int *
. C. int[4]
a S D. int[6]
*b E. int[6] [4]
s F. int[4][6]
G. int (*)[6]
&b[1][2] H. int (*)[4]
T. int (*)[6][4]
a2 - J. int (*) [4][6]
&a K. int* [6]
L. int* [4]
&b S M. int* [6][4]
b N. int* [4][6]
0. int* (*)[6]
P. int* (*)[4]

Fill in the blanks to make the array expression below equivalent to the following pointer expression. Note: You
cannot use negative numbers in the array expression!

*(*(a + 2) - 3) is equivalent to al ]I ]

We can access the underlying data associated with a and b (as defined in the program above) using the same
array or pointer expressions. However their underlying structure is different from each other.

What is the total number of bytes allocated to the entire data structure for a?
What is the total number of bytes allocated to the entire data structure for b including any memory dynamically
allocated and associated with and reachable by b?

Assume we want to add a traversal pointer to more efficiently traverse the array a above. How would you
define and initialize this traversal pointer?

ptr = ;

Using this traversal pointer you just defined above, write a pointer expression (with no array brackets []) to
access the last array element in a (last row, last column).




Extra Credit

What gets printed when the following C program is executed?

#include <stdio.h>

int
main ()
{
char a[] = "Me? I want to go";
char b[] = "to Round Table Pizza Pub";
char c[] = "and don't you, too?";
char *ptr = b;

printf ( "%c\n", *(ptr = ptr + 9) + 1 );

printf( "%c\n", *c + 1 );
printf( "%c\n", *(a + 1) );
printf ( "%$c\n", *(&b[1l] - 1) );

printf ( "$c\n", *++ptr + 2);
printf ( "%c\n", ptr[sizeof (ptr) + 2] - 1 );
printf ( "%c\n", *ptr++ );

return 0;

A portion of the C Operator Precedence Table

Operator Associativity

++ postfix increment L to R
-- postfix decrement

[] array element

() function call

* indirection R to L
++ prefix increment

-- prefix decrement

& address-of

sizeof size of type/object
(type) type cast

* multiplication L to R
/ division

% modulus

+ addition L to R
- subtraction

= assignment R to L



Scratch Paper



Scratch Paper



