
 0

Signature ___________________ Name ______________________

Login Name _________________ Student ID __________________

 Midterm
 CSE 131B
 Winter 2006

Page 1 ___________ (26 points)

Page 2 ___________ (17 points)

Page 3 ___________ (20 points)

Page 4 ___________ (19 points)

Page 5 ___________ (18 points)

Subtotal ___________(100 points)

Page 6 ___________ (5 points)
Extra Credit

Total ___________

 1

1. Give the order of the phases of compilation in a typical compiler as discussed in class

 A – Machine-specific code improvement (optional) F – Scanner (lexical analysis)
 B – Parser (Semantic analysis) G – Parser (syntax analysis)
 C – Machine-independent code improvement (optional) H – Code generation (for ex., assembly)
 D – Source language file (for example, C) I – Intermediate Representation
 E – Target language file (for ex., assembly)

______ –> ______ –> ______ –> ______ –> ______ –> ______ –> ______ –> ______ –> ______

Give the order of the typical C/C++ compilation stages and on to actual execution as discussed in class

 A – Program Execution F – ccomp (C compiler)
 B – as (assember) G – ld (Linkage Editor)
 C – Source file (.c/.cpp) H – exe/a.out (executable image)
 D – cpp (C preprocessor) I – loader
 E – Segmentation Fault (Core Dump)

gcc ______ –> ______ –> ______ –> ______ –> ______ –> ______ –> ______ –> ______ –> ______

Given the following ANSI/ISO C/C++ variable definitions, which line(s) would cause semantic compiler
errors?

A. Compiler error
B. No compiler error

int i;
int * iPtr = &i;
int ** pPtr = &iPtr;

*pPtr++; ____

++(&i); ____

++*pPtr++; ____

++(*pPtr)++; ____

++*++*pPtr++; ____

++++iPtr; ____

++**++pPtr; ____

++**++pPtr++; ____

2. Given the array declaration
 C Oberon-like
 int a[3][3]; VAR a : ARRAY 3,3 OF INTEGER;

Mark with an A the memory location(s) where we would find

 a[2][1] a[2,1]
a:

low memory high memory

Each box represents a byte in memory. (4 points)

Show the SPARC memory layout of the following struct/record definition taking into consideration the SPARC
data type memory alignment restrictions discussed in class. Fill bytes in memory with the appropriate
struct/record member/field name. For example, if member/field name p takes 4 bytes, you will have 4 p's in the
appropriate memory locations. If the member/field is an array, use the name followed by the index number.
For example, some number of p0's, p1's, p2's, etc. Place an X in any bytes of padding. Structs and unions are
padded so the total size is evenly divisible by the most strict alignment requirement of its members. (7 points)

struct foo { low memory
 char a; fubar:

 2

 short b[2];
 double c;
 char d[10];
 char e[3];
 int *f;
 char g;
}

struct foo fubar;

 high memory

What is the offsetof(struct foo, c)? _______ (2 point)

What is the sizeof(struct foo)? _______ (2 point)

If struct foo had been defined as union foo instead, what would be the sizeof(union foo)? _______
(2 points)

 3

3. For the following Oberon statements, indicate the correct error message using the list of given error
messages below (if there is no error, select option A): (2 pts each)

Possible Error Messages:
A - No error
B - Incompatible type to binary operator
C - Incompatible type to unary operator
D - Is not assignable (not a modifiable L-value)
E - BOOLEAN required for conditional test
F - Argument not assignable to value parameter
G - Argument not equivalent to VAR parameter
H - Non-addressable argument passed to VAR parameter

CONST t = TRUE;
TYPE foo = INTEGER;
TYPE bar = REAL;
TYPE baz = BOOLEAN;
VAR x : foo;
VAR y : bar;
VAR z : baz;
PROCEDURE p(a : REAL; VAR b : REAL);
 (* do nothing *)
END p;

BEGIN
 y := 99; ______

 z := x # y; ______

 z := ~x; ______

 t := z; ______

 p(x, x); ______

 p(9, 9.0); ______

 p(x, y); ______

 p(x DIV 1, y); ______

 p(z, y); ______

 IF (z & ~t) THEN END; ______
END.

4. Consider the following C-like code:

int x = 0;

int f()
{
 print(x);
 return x;
}

int g()
{
 int x = 1;
 print(x);
 return f();
}

int main()
{
 print(g());
}

What does the program output What does the program output

if the language uses static scoping? (3 points) if the language uses dynamic scoping? (3 points)
 _____ _____
 _____ _____
 _____ _____

Consider the following record/struct definitions:

 4

struct foo {
 int a;
 double b;
 struct foo c[2];
 short d[4];
};

struct foo {
 int a;
 double b;
 struct foo c;
 short d[4];
};

 A B C
 struct foo {

 int a;
 double b;
 struct foo *c;
 short d[4];
};

Which of the above record/struct definitions is/are semantically correct and why? (4 points)

Using the Right-Left rule write the definition of a variable named CSE that is a pointer to an array of 8 pointers
to functions that take a pointer to an float as the single parameter and returns a pointer to a double.
(9 points)

5. Given the following array definition
 /* C */ (* Oberon *)
 float x[3][5]; VAR x : ARRAY 3,5 OF REAL;

write the assembly level address calculation expression taking into account scalar arithmetic to access

 x[a][b] x[a,b]

((x + ___) + _______________________________________)

The result is the address of where we can find this array element. (8 points)

Fill in the names of the 5 areas of the C Runtime Environment as laid out by most Unix operating systems (and
Solaris on SPARC architecture in particular) as discussed in class. Then state what parts of a C program are in
each area. (10 points)

 low memory

 __

 __

 __

 __

 __
 high memory

 5

 6

Extra Credit (5 points)

Explain what is wrong with the following CUP rule/action. How would you fix this problem?

ExprList ::= Expr:_1
 {:
 Vector v = new Vector();
 v.addElement(_1);
 RESULT = v;
 :}
 | ExprList T_COMMA Expr:_2
 {:
 v.addElement(_2);
 RESULT = v;
 :}
 ;

