
 0

Login Name ___________________ Name ______________________

Signature _____________________ Student ID __________________

 Final

 CSE 131B

 Spring 2006

Page 1 ___________ (22 points)

Page 2 ___________ (36 points)

Page 3 ___________ (31 points)

Page 4 ___________ (31 points)

Page 5 ___________ (32 points)

Page 6 ___________ (20 points)

Page 7 ___________ (19 points)

Page 8 ___________ (22 points)

Subtotal ___________(213 points)

Page 9 ___________ (12 points)

Extra Credit

Total ___________

 1

1. What keyword is used to modify a variable declaration to indicate to the compiler to not perform any code

improvement transformations in expressions containing this variable? (2 points each)

What is the 80/20 rule?

Give an example of a strength reduction optimization the compiler can perform.

In Phase III.2 of our code gen project, we asked you to implement the following dynamic check:
 Run-time array bounds checks. Out-of-bounds accesses should cause the program to print the
 following message to stdout: "Index %D of array is outside legal range [0,%D).\n" and exit
 (call exit(1)).

Your partner claims that he/she has implemented the above check completely. However, knowing that his/her

previous partner divorced him/her, you decide to write your own test cases for this check. Assuming the

following array definition:

 VAR array : ARRAY 240 OF REAL;
 BEGIN
 (* Your test code would go here. If the test passes, print "SUCCESS".*)
 END.

Describe at least five test cases you would write to test thoroughly this dynamic array bounds check.

1)

2)

3)

4)

5)

C and C++ support a wide range of type casts. Given the following C/C++ pseudocode fragment:
 Type1 x; /* Type1 is some typedef'ed type. */
 Type2 y; /* Type2 is some typedef'ed type. */

What is the type of the following expressions?

&x ____________________________

* (Type2 *) &x ____________________________

(Type2 *) &x ____________________________

 2

2. In object-oriented languages like Java, determining which overloaded method code to bind to (to execute) is

done at run time rather than at compile time (this is known as dynamic dispatching or dynamic binding).

However, the name mangled symbol denoting a particular method name is determined at compile time. Given

the following Java class definitions, specify the output of each print() method invocation. (30 pts)

class Peter {
 public void print(Peter p) {
 System.out.println("1");
 }
}

class Lois extends Peter {
 public void print(Lois l) {
 System.out.println("2");
 }

 public void print(Peter p) {
 System.out.println("3");
 }

}
public class Overloading_Final_Exam {
 public static void main (String [] args) {
 Peter meg = new Peter();
 Lois chris = new Lois();
 Peter stewie = new Lois();

 meg.print(meg); _____
 meg.print(chris); _____
 meg.print(stewie); _____

 chris.print(meg); _____
 chris.print(chris); _____
 chris.print(stewie); _____

 stewie.print(meg); _____
 stewie.print(chris); _____
 stewie.print(stewie); _____

 ((Peter)chris).print(meg); _____
 ((Peter)chris).print(chris); _____
 ((Peter)chris).print(stewie); _____

 ((Lois)stewie).print(meg); _____
 ((Lois)stewie).print(chris); _____
 ((Lois)stewie).print(stewie); _____
 }
}

In C++, static compile time binding is the default. What is the method modifier (keyword) that turns off static

binding and turns on dynamic binding? (1 pt)

In Java, what are the three method modifiers (keywords) that turn off dynamic binding and turn on static

compile time binding? (3 pts)

Why is static binding more efficient than dynamic binding? (2 pts)

 3

3. In your Project 2, how did you (and your partner if you had a partner) implement the address-of operator? Be

specific how your project implemented this! (5 points)

Given the following Oberon program and a real compiler's code gen as discussed in class, fill in the values of

the global and local variables and parameters in the run time environment when the program reaches the label

(* HERE *). (26 pts)

 TYPE t = RECORD

 a : INTEGER; b : BOOLEAN; c : REAL; memory locations

 END; low memory

 VAR x : INTEGER;
 VAR y : REAL;

 PROCEDURE f(REF i : INTEGER; z : REAL);
 VAR j : INTEGER;
 VAR a2 : ARRAY 2 OF t;
 VAR r2 : POINTER TO INTEGER;
 BEGIN
 NEW(r2);
 z := 24.5;
 a2[0].a := -4;
 a2[1].a := 34;
 a2[1].c := 2.40;
 a2[0].b := FALSE;
 j := -73;
 a2[0].c := 32.5;
 a2[1].b := TRUE;
 r2^ := 529;
 i := 37;

 (* HERE *)
 END;

 BEGIN
 f(x, y);
 END.

 high memory

x: 4000

.

.

.

.

.

.

Heap

8000

.

.

.

...

%fp

20000

20100

y:

 4

4. Given the following SPARC assembly code, write the equivalent Oberon code that would have generated

this. There is one parameter named "a" and one local variable named "b". All types are INTEGER. You do not

need to write the BEGIN END. of main(). (18 points)

Using the Right-Left rule (which follows the operator precedence rules) write the definition of a variable named

foo that is an array of 9 pointers to functions that take a pointer to char as a single parameter and return a

pointer to a pointer to an array of 6 pointers to struct fubaz. (7 points)

In C, ______________________ equivalence is used for _____________________ while all other types use

_______________________ equivalence. (6 points)

/* SPARC Assembly */

 .section ".text"

foo:
 set .fooSAVE, %g6
 save %sp, %g6, %sp

 st %g0, [%fp - 4]

 ld [%i0], %l0
 ld [%fp - 4], %l1
 cmp %l0, %l1
 bge .L1
 nop

 set 15, %l2
 st %l2, [%i0]

 ba .L2
 nop

.L1:
 set 20, %l2
 st %l2, [%fp - 4]

.L2:
 ld [%i0], %i0
 ret
 restore

 .fooSAVE = -(92 + 4) & -8

(* Equivalent Oberon code *)

 5

5. Given the array declaration

 C Oberon-like
 short b[4][3]; VAR b : ARRAY 4, 3 OF SHORTINT;

Mark with a B the memory location(s) and Mark with a C the memory location(s)

where we would find where we would find
 b[1][2] b[2][1]
b:

low memory high memory

Each box above represents a byte in memory.

Show the SPARC memory layout of the following struct/record definition taking into consideration the SPARC

data type memory alignment restrictions discussed in class. Fill bytes in memory with the appropriate

struct/record member/field name. For example, if member/field name p takes 4 bytes, you will have 4 p's in the
appropriate memory locations. If the member/field is an array, use the name followed by the index number.

For example, some number of p0's, p1's, p2's, etc. Place an X in any bytes of padding. Structs and unions are
padded so the total size is evenly divisible by the most strict alignment requirement of its members.

struct foo { low memory
 char a[6]; fubar:
 double b;
 float c;
 short d;
 int e[3];
}

struct foo fubar;

 high memory

What is the offsetof(struct foo, e[1])? _______

What is the sizeof(struct foo)? _______

If struct foo had been defined as union foo instead, what would be the sizeof(union foo)? _______

If you rearranged the order of the struct members in struct foo to minimize padding, how many bytes of

padding would you need? _______ And what would be the size of this modified struct? _______

 6

6. Given the following function definitions and their already slightly optimized corresponding assembly code:
--
int f(int x, int y) { | f: save %sp, -96, %sp
 int z; | add %i0, %i1, %l0
 z = x + y; | mov %l0, %i0
 return z; | ret
} | restore
--
int main() { | ! START
 int x,y,w; | ! First call to f():
 scanf("%d %d", &x, &y); | mov %l0, %o0
 | mov %l1, %o1
 // START | call f
 w = f(x,y) + f(y,x); | nop
 // END | mov %o0, %l3
 | ! Second call to f():
 printf("%d\n", x); | mov %l1, %o0
} | mov %l0, %o1
 | call f
 | nop
 | ! Addition on the results:
 | add %o0, %l3, %l2
 | ! END
--
Assume x is in %l0 and y is in %l1 at START, and the result w must be in %l2 at END.

A) How many assembly instructions are executed between START and END? _______

B) Can you fill the "nop" in the delay slot of the "call" instructions with the "mov" instruction immediately

above the "call f" instruction (the mov instruction with %o1 as the destination register)? _______

Can you fill the "nop" in the delay slot of the "call" instructions with the "mov" instruction two instructions

above the "call f" instruction (the mov instruction with %o0 as the destination register)? _______

Assuming you correctly filled the "nop"s to the "call" instructions, now how many assembly instructions are

executed between START and END? _______

C) Rewrite f() as a leaf subroutine (no save or restore) and optimize that leaf subroutine implementation as

much as you can.

Using your rewrite of f() as a leaf subroutine, now how many assembly instructions are executed between

START and END? _______

D) Further optimization can be performed by in-lining (open-coding) f() as an open subroutine. Rewrite the

assembly code between START and END to inline f() and perform any additional optimizations you can.

Now how many assembly instructions are executed between START and END? _______

f:

! START

! END

 7

7. For the following Oberon code, generate the corresponding unoptimized assembly code. Also, take into

account the "Dereference a NIL Pointer" error check before FREEing a pointer, as described in Project II. A

framework of the assembly code is provided for your convenience. (19 points)

(* Oberon Code *)
TYPE recp = POINTER TO RECORD
 a: ARRAY 20 OF INTEGER; b: ARRAY 5 OF REAL;
 END;

VAR x : recp;

BEGIN
 NEW (x);
 (* ... *)
 FREE (x);
 RETURN 0;
END.

 .section ".bss" /* Partial SPARC Assembly */

x: _______________

 .section ".text"
main:
 save %sp, -96, %sp

 ! NEW (x)
 mov 25, %o0

 mov _________, _________

 call ___________
 nop

 set x, ________ ! map x into %l2

 st _________, [_________]

 /* ... other code ... */

 ! FREE (x)
 set x, ________ ! map x into %l2

 ld [_________], %o0

 cmp %o0, _________

 be PtrBAD
 nop

 call ___________
 nop

 st _________, [_________]

 mov _________, _________

 ret
 restore

PtrBAD:

 set errorMsg, %o0 ! NIL ptr dereference msg
 call printf
 nop

 mov _________, _________

 call ___________
 nop

 8

8. Given the following program, specify the order of the output lines when run and sorted by the address

printed with the %p format specifier on a Sun SPARC Unix system. For example, which line will print the

lowest memory address, then the next higher memory address, etc. up to the highest memory address?

(16 points)

#include <stdio.h>
#include <stdlib.h>

void foo1(int *, int); /* Function Prototype */
void foo2(int, int *); /* Function Prototype */

int main(int argc, char *argv[]) {

 int a;
 int b = 420;

 foo1(&argc, b);

/* 1 */ (void) printf("1: argv --> %p\n", &argv);
/* 2 */ (void) printf("2: foo2 --> %p\n", foo2);
/* 3 */ (void) printf("3: argc --> %p\n", &argc);
/* 4 */ (void) printf("4: a --> %p\n", &a);
/* 5 */ (void) printf("5: b --> %p\n", &b);
}

void foo1(int *c, int d) {

 int e = 404;
 static int f;
 int g;

/* 6 */ (void) printf("6: f --> %p\n", &f);
/* 7 */ (void) printf("7: g --> %p\n", &g);
/* 8 */ (void) printf("8: c --> %p\n", &c);
/* 9 */ (void) printf("9: malloc --> %p\n", malloc(50));
/* 10 */ (void) printf("10: d --> %p\n", &d);
/* 11 */ (void) printf("11: e --> %p\n", &e);

 foo2(f, &d);

}

void foo2(int h, int *i) {

 int j = 101;
 int k;
 static int l = 37;

/* 12 */ (void) printf("12: k --> %p\n", &k);
/* 13 */ (void) printf("13: l --> %p\n", &l);
/* 14 */ (void) printf("14: h --> %p\n", &h);
/* 15 */ (void) printf("15: i --> %p\n", &i);
/* 16 */ (void) printf("16: j --> %p\n", &j);

}

Give an example of something (either in C/C++ or our Nano-Oberon) that is: (2 points each)

 a) an r-value (neither addressable nor assignable)

 b) an l-value (an object locator that is addressable but not assignable).

 c) a modifiable l-value (an object locator that is addressable and assignable)

_________ smallest value

 (lowest memory address)

_________ largest value

 (highest memory addresses)

 9

9. Extra Credit (12 points)

What is the value of each of the following expressions?

char *a = "End this, please!"; /* char a[] = "End this, please!"; */

"I loved Compilers B!"[6] _______

a[1] _______

*a _______

toupper(a[strlen(a) – 2] + 1) _______

*"I loved Compilers B!" _______

*a + 1 _______

*("This Blows Me Away!" + 14) _______

*(&a[5] + 7) _______

*&a[5] _______

0["This Blows Me Away!"] _______

Tell me something you learned in this class that is extremely valuable to you and that you think you will be able

to use for the rest of your programming/computer science career. (1 point if serious; you can add non-serious

comments also)

Crossword Puzzle (next page) (1 point)

 10

Scratch Paper

 11

Scratch Paper

