
Discussion 6
CSE 131

overview
● phase 2
● some phase 3

short circuiting
● && and || are short circuiting operators

○ in A && B, if A evaluates to false, B is not evaluated
○ in A || B, if A evaluates to true, B is not evaluated

short circuiting
● think of how you handle an if-else statement
● short circuiting follows the same principle

○ in the A && B case
■ if not A then false, else B

○ in the A || B case
■ if A then true, else B

short circuiting
! RC: bool c = a && b
! load a and check if false

set a, %l0
ld [%l0], %l0
cmp %l0, %g0
be flabel
nop

! a is true, so check b
set b, %l0
ld [%l0], %l0
cmp %l0, %g0
be flabel
nop

! b is true, so result is true
mov 1, %l5
ba endlabel
nop

flabel:
mov 0, %l5

endlabel:
set c, %l0
st %l5, [%l0]

while loops
the ideal way the easier way

opposite logic to branch to
"end"

loop body

normal logic to branch to
"body"

start:

body:

end:

continue

break

opposite logic to branch to
"end"

loop body

branch always to start

start:

end:

continue

break

while loops
● similar to if-else statements, you'll need a

label stack of some kind to handle nested
while-loops

example (simplified)
! RC: while (x < 5) {
! cout << x;
! x = x + 1;
! }

.l1start:
set x, %l0
ld [%l0], %l0
set 5, %l1
cmp %l0, %l1
bge .l1end ! opposite logic
nop

set x, %l0
ld [%l0], %l0
mov %l0, %o1
set _intFmt, %o0
call printf
nop

set x, %l0
ld [%l0], %l1
add %l1, 1, %l1
st %l1, [%l0]
ba .l1start
nop

.l1end:

array/struct allocation
● when you declare a global array, allocate an

entire chunk in the BSS and have a variable
label at the beginning

● now x[0] is at x+0, x[1] is at x + 4, and so on

! int [7]x;
.section ".bss"
.align 4
.global x

x: .skip 28 ! 7 * sizeof(int)

array/struct allocation
● a useful attribute to have for arrays and

structs is "size", so you know how much
space to allocate
○ should have this from project 1 already

● offsets are also useful
○ for arrays, offsets are simply multiples of element

size
○ for structs, offsets are the collective size of the

preceding fields

array usage (simplified)
! RC: a = x[b] + 7;
! x is array of int

set b, %l0
ld [%l0], %l0
sll %l0, 2, %l0 ! b * 4 -> scaled offset
set x, %l1 ! x -> base address
add %l1, %l0, %l0 ! base + offset
ld [%l0], %l0 ! x[b]'s value

add %l0, 7, %l0 ! x[b] + 7
set a, %l1
st %l0, [%l1] ! a = x[b] + 7

struct usage
● very similar to array usage
● start at the base address of the struct
● move some offset to a specific field
● then, load or store depending on what you

wanted to do

pass/return by ref
● think of them as pointers

function : void foo(int &x) {
x = 10;

}

function : void foo(int *x) {
*x = 10;

}

passing arrays
● arrays must be passed by reference
● internally, pass the base address of the

array like you would any other argument

passing structs
● structs must be passed by reference
● internally, pass the address of the struct like

you would any other argument

value vs reference
● further reading

○ http://www.cse.ucsd.edu/~ricko/CSE131/RefVsValue.pdf

pointers
● consider p = q

○ this is just copying the address in q into p

set q, %l0
ld [%l0], %l0 ! get address in q
set p, %l1
st %l0, [%l1] ! store into p

pointers
● consider *p = *q

○ this is getting the actual value where q is pointing
and making where p points that value

set q, %l0
ld [%l0], %l0 ! get address in q
ld [%l0], %l0 ! additional load to get value
set p, %l1
ld [%l1], %l1 ! get address in p
st %l0, [%l1] ! store into place p points

pointers
● new

○ just a call to calloc() to allocate memory on the heap
that is zero-initialized

● delete
○ just a call to free() with the address
○ remember to set the pointer to nullptr afterwards

pointer return types
● don't forget functions can return pointer

types
○ in that case, you want to place the address (value of

the pointer) in the %i0 register
● that address can then be assigned into

another pointer like so:
○ ptr = foo(...)

example (simplified)
typedef int* PTRTYPE;
PTRTYPE myGlobal;

function : PTRTYPE foo() {
PTRTYPE myLocal;
new myLocal;
*myLocal = 42;
return myLocal;

}

function : int main() {
myGlobal = foo();
cout << *myGlobal;
return 0;

}

example (simplified)
.section ".bss"
.align 4
.global myGlobal

myGlobal:
.skip 4

.section ".text"

.align 4

.global foo
foo:

set SAVE.foo, %g1
save %sp, %g1, %sp

! new myLocal
set 1, %o0 ! numelem
set 4, %o1 ! sizeof(int)
call calloc
nop
st %o0, [%fp-4]

! *myLocal = 42
set 42, %l0
ld [%fp-4], %l1
st %l0, [%l1]

! return myLocal
ld [%fp-4], %i0
ret
restore

SAVE.foo = -(92 + 4) & -8

.global main
main:

save %sp, 96, %sp

! myGlobal = foo();
call foo
nop
set myGlobal, %l7
st %o0, [%l7]

example (simplified)
! cout << *myGlobal

set intfmt, %o0
set myGlobal, %l7
ld [%l7], %l0
ld [%l0], %o1
call printf
nop

mov %g0, %i0
ret
restore

tip
● use gdb!
● why?

○ helps locate bugs easily
○ print statements are too high level for debugging

code generators
○ provides an inside view of the processor state

■ memory, registers, etc
○ you can apply breakpoints at specific machine

instructions and step through them
○ saves a lot of time

using gdb
● make sure to compile with debug symbols

● run "gdb a.out" from the terminal
● gdb quick reference card

○ http://www.digilife.be/quickreferences/QRC/GDB%
20Quick%20Reference.pdf

CC=gcc
compile:

$(CC) -g rc.s input.c output.s $(LINKOBJ)

