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a) Our Method
32 rays / shading pt, 1 hr 48 min

b) Monte Carlo
40 rays, 1 hr 42 min

Equal Time

c) Our Method
32 rays, 1 hr 48 min

d) Monte Carlo
256 rays, 7 hrs 4 min

Equal Quality

e) Relighting output from (a)
30 seconds each

Figure 1: (a) A visualization of ambient occlusion produced by our method. This scene used 32 samples per shading point, 13 rays in
the sparse sampling pass (41 min) and 19 rays in the second pass in areas with contact shadows (1 hr 7 min). Total running time for both
passes was 1 hr 48 min. (b) Closeups of Monte Carlo using equal time (40samples, 1 hr 42 min), noise can be seen. (c) Closeups of our
method. (d) Closeups of Monte Carlo with equal quality (256 samples, 7 hrs 4 min). (e) At little extra cost our method can also compute
spherical harmonic occlusion for low frequency lighting. While computing (a) our method also outputs directional occlusion information for
9 spherical harmonic coe� cients (green is positive, blue is negative).

Abstract

Ambient occlusion and directional (spherical harmonic) occlusion
have become a staple of production rendering because they cap-
ture many visually important qualities of global illumination while
being reusable across multiple artistic lighting iterations. How-
ever, ray-traced solutions for hemispherical occlusion require many
rays per shading point (typically 256-1024) due to the full hemi-
spherical angular domain. Moreover, each ray can be expensive
in scenes with moderate to high geometric complexity. However,
many nearby rays sample similar areas, and the �nal occlusion re-
sult is often low frequency. We give a frequency analysis of shadow
light �elds using distant illumination with a general BRDF and nor-
mal mapping, allowing us to share ray information even among
complex receivers. We also present a new rotationally-invariant �l-
ter that easily handles samples spread over a large angular domain.
Our method can deliver 4x speed up for scenes that are computa-
tionally bound by ray tracing costs.
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1 Introduction

Modern production rendering algorithms often compute low fre-
quency hemispherical occlusion, where the surrounding environ-
ment is approximated to either be a solid white dome (ambient oc-
clusion), or a series of low frequency spherical harmonics. Two
di� erent bodies of work related to ambient occlusion were given
scienti�c Academy Awards in 2010 [AcademyAwards 2010], and
the movie Avatar used ray-traced ambient and spherical harmonic
occlusion for lighting and �nal rendering [Pantaleoni et al. 2010].
While fully sampling the surrounding illumination at each receiver
is the completely accurate way to compute global illumination,
these approximations of distant lighting work well in practice. An-
other advantage is that the ambient occlusion and spherical har-
monic calculations are independent of the �nal lighting environ-
ment and can be reused throughout the lighting process.

Ray-traced occlusion is often very expensive to compute due to the
large number of incoherent ray casts. The authors of the PantaRay
system state that they typically shoot 512 or 1024 rays per shading
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Figure 2: (a) We show a simple scene in �atland. Standard meth-
ods for computing ray-traced ambient occlusion shoot many rays.
(b) Our method shoots a sparse set of rays in a �rst pass and saves
them to a point cloud. Red dots are ray hits. (c) In a second pass we
use our theory to reproject and weight nearby rays to compute di-
rectional or ambient occlusion. The green dot represents the target
point of the unoccluded ray (the intersection between the orginal
ray and the mid depth plane).

point to compute occlusion [Pantaleoni et al. 2010]. One of their
test frames from the movie Avatar took over 16 hours and 520 bil-
lion rays to compute an occlusion pass. While our scenes do not
have the complexity of production environments, our method shows
substantial performance bene�ts with scenes of moderate complex-
ity. As scenes become more computationally bound by ray tracing,
the bene�ts of our method increase.

We propose a method that speeds up occlusion calculations by
shooting fewer rays and sharing data across shading points (shown
in Figure 2). We present a new frequency analysis of occlusion
from an omni-directional distant light source that also includes nor-
mal mapping and a general BRDF at the receiver point. Using this
analysis, we develop a method to share rays across the full hemi-
sphere of directions, vastly cutting down on the number of expen-
sive incoherent ray casts. Our method makes a number of important
contributions:

Frequency Analysis of Distant Lighting: We present a fre-
quency analysis of distant lighting from all possible incoming di-
rections over the hemisphere in Section3. Our work builds on the
recent analysis of Egan et al. [2011] for shadows from a compact
planar area light souce. We �rst derive new equations to handle
distant lighting by splitting up the spherical domain into linear sub-
domains (such as cube map faces). We then derive the appropriate
bandlimits and �lter sizes for each linear sub-domain. This theory
is used as the basis for our new rotationally-invariant �lter.

General BRDFs and Normal Mapping: We also show how the
occlusion signal interacts with general BRDFs. We show that the
sum of the lighting and BRDF bandlimit determines the cuto� fre-
quencies for occlusion. Furthermore, as long as the surface BRDF
is bandlimited, high frequency changes in the normal do not a� ect
our occlusion calculations. Our method takes advantage of this by
sparsely sampling occlusion, which greatly reduces the the num-
ber of expensive ray casts. We show results with sparse occlusion
sampling, glossy BRDFs and low frequency environment lighting
(Figure8).

Rotationally-Invariant Filter: We present a �lter that uses the
above theory, modi�ed such that it is rotationally-invariant (Sec-
tion 4). This property of our �lter allows us to handle large angular
domains without needing to stitch together linear sub-domains. The

�lter is intuitive, easy to implement, and constructed using the fre-
quency analysis in Section3. Results with our �lter are shown in
Figures1, 7, 8, and9.

2 Previous Work

Shadows and Ambient Occlusion: Ambient occlusion is an
approximation of global illumination that is simply the aggregate
visibility for a solid white dome [Zhukov et al. 1998; Landis 2008].
Spherical harmonic occlusion improves on this, computing the ag-
gregate visibility for a number of low order spherical harmonics.
We focus on the methods most closely related to our paper, and
we refer the reader to a survey of recent ambient occlusion tech-
niques [Méndez-Feliu and Sbert 2009].

The PantaRay system uses GPU ray tracing, various spatial hierar-
chies, and geometric LOD to compute spherical harmonic occlu-
sion [Pantaleoni et al. 2010]. Our method is complementary be-
cause we focus on reducing the number of rays cast, whereas Pan-
taRay focuses on reducing the cost per ray. Another recent method
reduces cost per ray by using similar sample patterns across many
receivers so that they can process multiple receivers in parallel on
the GPU [Laine and Karras 2010]. Pixar's RenderMan represents
distant occluding geometry using an octree that contains point sam-
pled data as well as spherical harmonics at parent nodes, and raster-
izes this data onto a coarse grid at each receiver [Christensen 2008].
We compare our results to point based occlusion, and discuss the
relevant tradeo� s with both methods in Section6.

Interactive techniques for approximating ambient occlusion are also
used. Ambient Occlusion Volumes compute analytic occlusion per
polygon [McGuire 2010]. Because some polygons may be double
counted, the method approximates the aggregate occlusion using a
compensation map, whereas our method samples occlusion using
ray tracing and does not su� er from double counting. Screen space
methods can be very e� cient, but may miss geometry that is not
directly visible to the camera [Bavoil and Sainz 2009]. Since we
focus on ray tracing our method accounts for all relevant occluders.

Frequency Analysis and Reconstruction: Our method
builds upon recent sheared �ltering techniques for re-
constructing light �elds, motion blur, and shadows from
planar light sources [Chai et al. 2000; Egan et al. 2009;
Egan et al. 2011]. Other methods have also examined occlusion
in the Fourier domain [Soler and Sillion 1998; Durand et al. 2005;
Ramamoorthi et al. 2005; Lanman et al. 2008]. We extend the
theory to include distant lighting, a general BRDF, and high
frequency normal maps. We also introduce a rotationally invariant
�lter that uses the theory for sheared �ltering but is able to orient
itself in any direction across a large angular domain.

A number of other techniques have also shared data between neigh-
boring receiver points to cut down on computation. Irradiance
caching is used to �lter sparse samples of low frequency indirect
lighting [Ward et al. 1988]. Irradiance caching aggregates angu-
lar information, and then shares it spatially, whereas our method
is able to share samples across both space and angle. Radiance
caching [K�rivánek et al. 2005] shares recorded radiance values and
gradients between surface points while assuming that the visi-
bility of shared radiance samples does not change between re-
ceivers. Our method determines which samples are appropriate
to share by setting the �lter radius based on the minimum and
maximum occluder depths. Irradiance decomposition uses low fre-
quency radiance caching for far-�eld components and switches to
a heuristic for occluders closer than a �xed depth chosen by the
user [Arikan et al. 2005]. Recently Lehtinen et al. [2011] devel-
oped a method that locally reconstructs multiple points within a
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Figure 3: For our theoretical derivation we split up the environ-
ment into distinct faces and use a linearized angle. We parameter-
ize the receiver based on the spatial o� set x from the origin. The
linearized anglev is the o� set from the central direction of the cube
map at a plane one unit away from the receiver. The occluders are
bounded by a range of distances[zmin; zmax] from the receiver.

pixel using the GPU. Unlike these methods, the signal processing
framework used by our method smoothly scales our �lter and tells
us how much information to share.

Sparse Transport Computation: Precomputed Radiance
Transport is the foundation for current relighting meth-
ods [Sloan et al. 2002; Ng et al. 2003]. However, the pre-
computation time required for these methods is often prohibitive
when using standard Monte Carlo sampling. A number of methods
have used various techniques to sparsely sample light transport.
Row-column sampling uses shadow maps to sparsely compute
light transport for a single surface point to all lights (one row), or a
single light to all surface points (one column) [Ha�san et al. 2007].
The big advantage of row-column sampling is the batch visi-
bility computation achieved by using shadow maps, whereas
our method uses ray tracing to avoid shadow map artifacts.
Huang et al. sparsely precompute the light transport matrix by
only densely sampling the angular domain at selected “dense”
vertices [Huang and Ramamoorthi 2010]. Our method extends this
by more intelligently sharing rays across space and angle. Our
method also computes �lter widths based on the range of depths of
the occluders.

3 Theory

We �rst discuss the basic re�ection equation and derive equations
for occlusion from distant lighting in the primal domain. We then
look at preliminary Fourier derivations taken from previous work,
before deriving new equations that give insight into occlusion and
re�ection under distant lighting. Our �nal reconstruction uses a
�lter that is based on our theory but uses geometric measures that
can rotate to any given sample in the hemispherical domain.

3.1 Occlusion from Distant Lighting

3.1.1 Preliminaries

The re�ected radianceh(x; ! o) at a surface pointx in direction! o
can be written as follows:

h(x; ! o) =
Z

r(x; ! i ; ! o)l(! i) f (x; ! i) d! i :

The re�ected radiance is computed by integrating over all incoming
light directions! i . Inside the integral is a product of the spatially

varying BRDFr(x; ! i ; ! o) (which includes the damped cosine term
for compactness), the distant lightingl(! i), and occlusionf (x; ! i).

Our method focuses on direct lighting with a �xed camera such that
the viewing angle! o is �xed for a given spatial locationx,

h(x) =
Z

r(x; ! i)l(! i) f (x; ! i) d! i : (1)

To compute ambient occlusion, we simply setl(! i) to a constant
value of 1, andr(x; ! i) to a clamped cosine max(n(x) � ! i ; 0)
in Equation 1 (where n(x) is the surface normal). For more
accurate low frequency relighting, we replace the lightingl(! i)
term with a set of low order spherical harmonic basis functions
[s0(! i); :::;sn(! i)], and a corresponding intermediate response func-
tion [h0

0(x); :::;h0
n(x)] (visualized in Figure1e). Using these interme-

diate values, we can then easily relight the scene by projecting any
distant lightingl(! i) into the orthonormal spherical harmonic ba-
sis, taking the resulting coe� cients [l0; :::;ln], and performing a dot
product:

h(x) =
nX

i=0

h0
i (x)l i : (2)

Directional and ambient occlusion are primarily used to aid in the
realistic approximation of slightly glossy or matte components of
a BRDF. If a BRDF has sharper specular re�ections this is usually
calculated more directly using a di� erent re�ection algorithm.

3.1.2 Distant Lighting in Primal Domain

The above angular parameterization using! is not easy to analyze
in a Fourier context. We could expand the lighting into spherical
harmonics, but proceeding to analyze the spatial-angular occlusion
of f (x; ! ) and subsequent transport becomes intractable. Thus, like
Durand et al. [2005], we use the Fourier basis with a linearized
measure of angle.

We �rst reparameterize the circle of angles in �atland to a square
map (the analog of a cube map in 3D). For each map face we de�ne
a linearized anglevmeasured against that map's central axis of pro-
jection. Thev measures a direction vector's o� set from the axis of
parameterization at a plane 1 unit away (shown in Figure3), similar
to previous methods [Soler and Sillion 1998; Durand et al. 2005;
Egan et al. 2011]. This parameteriztion allows us to analyze how
the relevant signals (distant lighting, occlusion and BRDF) interact,
as opposed to using spherical harmonics. We analyze the contri-
bution of each lighting “face” separately, and the �nal answer is
the sum of all face contributions. Our �nal �lter uses the follow-
ing derivations, but with a simpler geometric measure that does not
require reparameterization to cube maps.

We de�ne visibility along a ray asf (x; v) wherex is a spatial mea-
sure perpendicular to the central axis of projection (Figure3). We
�rst look at a single planar occluder de�ned by a binary visibility
functiong(x) at constant distancez from the receiver. We will ex-
tend this to occluders with a range of depths later.

f (x; v) = g(x + zv) : (3)

We now have a re-parameterized BRDFr(x; v) and distant lighting
function l(v). With this change of variables we have to adjust for
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Figure 4: (a) The occluder spectrum F in the Fourier domain. (b) The combined lighting and BRDF response has small angular extent for
low frequency transport (
 max

v ), but may have large spatial extent if the normal varies rapidly (
 max
x ). (c) The inner integral of Equation7

is a convolution across
 x. Note that F e� ectively becomes bandlimited by the
 max
v bandlimit of K. (d) The outer integral of Equation7

integrates over
 v. (e) The �nal result is H(
 x), the Fourier spectrum of the spatial occlusion function h(x).

the Jacobianj@!i=@vj, which we incorporate intol(v) (note that Ja-
cobian calculations will not be necessary for the �nal rotationally
invariant version of our �lter). Now the re�ection equation forh(x)
is:

h(x) =
Z

r(x; v)l(v) f (x; v) dv

=
Z

r(x; v)l(v)g(x + zv) dv : (4)

We now combine the BRDF and lightingr(x; v)l(v) into a new com-
bined response functionk(x; v),

h(x) =
Z

k(x; v)g(x + zv) dv: (5)

3.2 Fourier Analysis

3.2.1 Preliminaries

When we can express a two-dimensional functionf in terms
of a one-dimensional functiong in the form given in Equa-
tion 3, previous work has shown that the Fourier transform
of f (), which we nameF(), lies along a line segment in the
Fourier domain [Shinya 1993; Chai et al. 2000; Durand et al. 2005;
Egan et al. 2009]:

F(
 x; 
 y) = G(
 x)� (
 y � z
 x) : (6)

whereG() is the 1D Fourier transform ofg(), and � is the delta
function. Intuitively, if you have a 1D function embedded in a 2D
domain, it makes sense that the frequency spectrum is also 1D.

If all occluders are planar and lie along a single depthz then the
occlusion spectrum corresponds exactly to Equation6. In practical
scenes with a range of depths [zmin; zmax] the occlusion spectrumF
is a double wedge determined by the distance between the occluder
and the receiver [Chai et al. 2000; Egan et al. 2011]. The double
wedge can be thought of as a spectrum that is swept out by many
line segments that correspond toz values between [zmin; zmax]. This
is shown in Figure4a.

3.2.2 Fourier Spectrum for Distant Lighting

We now derive the occlusion spectrum for distant lighting, as well
as the interaction between the spectra considering complex occlud-

ers and a surface with a general BRDF and normal maps. Both of
these are novel contributions of our paper.

Response Function in the Fourier Domain: The response
function spectrumK(
 x; 
 v) is shown in Figure4b. Becauser and
l are multiplied the spectrumK is the convolutionR
 L. BecauseL
has no spatial dimension we can conclude that the spatial bandlimit
of K, 
 max

x , is simply the spatial bandlimit ofR. The angular ban-
dlimit of K, 
 max

v , is the sum of the angular bandlimits forR and
L.

Normal Mapping in the Fourier Domain: Rapid variation in
the normal rotates the BRDF and causes the spectrumK's spatial
bandlimit,
 max

x , to be large. However, rapid rotation in the normal
does not a� ect the angular bandlimit. To see that this is true we can
split up the 2D Fourier transform into two 1D transforms, and �rst
take the Fourier transform inv for a given �xed value ofx. After
transforming inv each slice of the angular transform along
 v = v0
is zero wherev0 > 
 max

v , and therefore the spatial Fourier transform
of this slice is zero. Therefore if the BRDF at everyx location is
bandlimited by
 max

v , then the �nal spectrumK will be bandlimited
by 
 max

v as well. We call the the portion of theF spectrum that is
non-zero after after bandlimiting by
 max

v the “visible frequencies”
of F, as seen in Figure5.

Lighting and Surface Re�ection in the Fourier Domain:
Taking the Fourier transform ofh(x) in Equation5 is not trivial
because the response functionk(x; v) has two dimensions but one
of the dimensions is integrated out (see Appendix A for the deriva-
tion). In the end we get the following:

H(
 x) =
Z  Z

F(
 x � s; � t)K(s; t) ds
!

dt; (7)

wheres is a temporary variable used to compute the inner 1D con-
volution across
 x (shown in Figure4c). Thet variable is used to
compute the outer integral across the
 v dimension of the resultant
spectrum (as seen in Figure4d). Finally we are left withH(
 x), the
spectrum of occlusion across the spatial axis (Figure4e).

Discussion: The above analysis includes a number of important
results. First, we have derived bandlimits for the occlusion spec-
trum from distant lighting. We split the angular domain of direc-
tions into sub-domains, and then reparameterized each sub-domain
separately using a linearized angle formulation.



Second, our frequency analysis of occlusion can handle surfaces
with a general BRDF and high frequency normal maps. We have
shown that the transport spectrumK may have high frequencies in
the spatial domaindue to high frequency changes in the normal.
However, an important result is that the visible portion of the oc-
clusion spectrumF is still low frequency in theangular domain
and is bandlimited by
 max

v (Figure4c).

Our method directly reconstructs visibilityf (x; v) using sparse ray
casting. We can use sparse sampling because the compact shape of
the sheared �lter in the Fourier domain lets us pack Fourier repli-
cas closer together. Our method densely samples the combined
lighting-BRDF termk(x; v) which is much cheaper to sample and
may include high frequency normal maps. Attempting to share the
integrated producth(x) directly, as in irradiance caching, has less
bene�t because of the possible high spatial frequencies inH(
 x).

3.3 Sheared Filtering Over Linear Sub-Domains

Now that we have de�ned the sparse shape of the visible occluder
spectrum, we can design a sheared �lter that compactly captures
the frequency content of the signal we care about. We can then
transform the �lter back to the primal domain where it is used
to reconstruct our �nal answer, while allowing for sparse sam-
pling and the sharing of information across pixels [Chai et al. 2000;
Egan et al. 2009; Egan et al. 2011]. The shape of the sheared �lter
will guide our design of our rotationally-invariant �lter in Section4.

The visible parts of the occlusion spectrumF that we need to cap-
ture are shown in Figure5. The Fourier footprint for a standard
reconstruction �lter is shown in Figure5a, and a sheared �lter that
tightly bounds the visible parts ofF is shown in Figure5b. By
applying a scale and shear we can transform the �lter shown in Fig-
ure5a to the one shown in Figure5b.

We can see from the measurements in Figure5 that, in the Fourier
domain, our �lter is scaled along the
 x axis and sheared in
 x per
unit 
 v. In the primal domain we need to scale along thex-axis by
the inverse amount, and shear inv per unitx:

primalScale=
2
 max

pix


 max
v

" 
1

zmin

!
�

 
1

zmax

!#� 1

; (8)

primalShear= �
1
2

" 
1

zmin

!
+

 
1

zmax

!#
: (9)

where 
 max
pix represents the smallest wavelength that can be dis-

played. We set
 max
pix to be (0:5=shadingDiameter), meaning that

the highest frequency that can be captured is half a wavelength per
output diameter. We set
 max

v to be 2.0, which approximates that the
BRDF * lighting function can be captured with two wavelengths per
unit of linearized angle (45 degrees).

In areas of sharp contact shadows the visible portion ofF may
extend beyond the
 max

pix bandlimit of the standard �lter. In this
case we must make sure that our �lter does not capture any por-
tion of F outside the
 max

pix bandlimit. We check this by testing if

 max

v =zmin > 
 max
pix , and if so we revert to brute force Monte Carlo.

Our implementation stores separatezmin values for di� erent por-
tions of the hemisphere, see Section5 for details.

We can now use Equations8 and9 to construct a �lter that operates
over a linearized sub-domain of the sphere (as shown in Figures5c).
Intuitively this takes a nearby sample, and warps it to create an ef-
fective ray that originates at the current receiver point, pictured in
Figure5d. However, splitting the sphere into multiple sub-domains
requires stitching together the results from each �ltering operation.
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Figure 5: (a) The visible spectrum of F is shown, as well as the
Fourier transform of a standard �lter that is axis-aligned in x and
v. (b) A sheared �lter that tightly bounds the visible parts of F. (c)
The theoretical sheared �lter graphed in(x; v) space. The sheared
�lter e � ectively reprojects rays along the shear axis which is based
on harmonic average of depth bounds[zmin; zmax]. However, the
sheared �lter uses a linearized anglev that depends on a �xed axis
of projection. (d) A visualization of how a sheared �lter shares
samples in the primal domain. We use this as inspiration for the
rotationally invariant �lter presented in Section4 that does not re-
quire a �xed axis of projection.

We solve this problem by introducing our rotationally-invariant �l-
ter.

4 Rotationally-Invariant Filter

We now develop our rotationally-invariant �lter that allows us to
easily �lter over large angular domains. The sheared �lter from the
previous section essentially has two outputs: what �lter weight to
apply to a given sample, and also what is the e� ective ray direction
when we warp a nearby sample to the receiver point. The direc-
tional information is useful when we bucket e� ective ray directions
to account for non-uniform sampling densities across the receiver.

Implementing a set of �nite linear subdomains has a number of
drawbacks. There may be discontinuities where the linear subdo-
mains meet, and we have to account for the Jacobian of the lin-
earization in the transfer functionk(x; v). One possible strategy
would be to subdivide the sphere into even more subdomains. Of
course this may reduce possible artifacts but we would still have
to worry about discontinuities and Jacobians. Our approach is to
take the limit of subdivision where each sample that we consider is
de�ned to be in its own in�nitesimal subdomain. This leads to a
rotationally-invariant �lter that uses the theory from Section3 and
is easy to implement.

Figure5d and Equation9 together show that warping a sample ray
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Figure 6: (a) To use our rotationally invariant �lter �lter we �rst
compute target positions for the current receiver. Unoccluded rays
use an intersection with a plane that goes through the harmonic
average of[zmin; zmax] for the current receiver. (b) The e� ective di-
rections for the samples simply connect the current receiver to the
target positions. To calculate e� ective distance we compute the in-
tersection of the original ray and a plane that goes through the
current receiver and is perpendicular to the e� ective direction.

to an e� ective ray originating from the current receiver is based on
the shear, and the shear in turn is based on the harmonic mean of
zmin andzmax. If we consider each sample to be in its own in�nites-
imally small subdomain, then for occluded rays we can say that
the occluder hit point is the only occlusion distancez that we care
about. In this case the e� ective ray direction is simply the vector
from the receiver to the sample hit point. If the ray is unoccluded,
we make a ray “target” point where the ray intersects a mid depth
plane based on the harmonic mean of occluders in a surrounding re-
gion. The calculation of the depth plane will be explained in more
detail in Section5.

To compute a �lter weight we must compute thex coordinate for
the sample. Using an in�nitesimal subdomain our axis of projec-
tion is de�ned to be the same as our e� ective ray direction. The
x measure needs to be tangent to our axis of projection, and we
compute the intersection point between the sample ray and plane
that is perpendicular to the e� ective ray direction and goes through
the receiver point. Thex measure is simply the o� set vector from
the receiver to this intersection point. Our rotationally-invariant �l-
ter with the computed target point for a given sample is shown in
Figure6a, and the �lter e� ective direction and spatialx value are
shown in Figure6b.

Given a ray target point we compute an e� ective direction that orig-
inates from the origin, and then compute the tangentx coordinate
for the ray sample. These computations are tightly bound with the
derivations in Section3. We used Equation9 and the intuitive no-
tion of the �lter shear (Figure5d) to guide setting the e� ective di-
rection for a sample. Thex coordinate andprimalS calefrom Equa-
tion 8 are used as the input and scale respectively for computing
�lter weights.

Discussion: Our rotationally-invariant �lter operates on an in�-
nite number of of small subdomains, and it is fair to ask how this
a� ects the earlier Fourier derivations. In Equations8 and 9 the
only Fourier bandlimit that is a� ected is the transfer function
 max

v
angular bandlimit. Instead of computing
 max

v for a �xed set of lin-
ear subdomains, we can instead precompute the largest
 max

v over
a range of di� erent localized areas and orientations both for each
BRDF and for the distant lighting. As stated before, the
 max

v value
for the transfer spectrumK is the sum of angular bandlimits for the
BRDF and lighting.

// Filtering algorithm for one shading point
// 1. Calculate hemisphere cell info
foreach s in S ampleImageCachedo1

if s:isOccludedthen2
targetPoint= s:hitPoint;3
if InCorrectHemi(targetPoint)then4

(x; v) = ComputeFilterCoords(s, targetPoint);5
cell = GetCell(v);6
UpdateCellMinMaxDepth(cell, s);7

end8

end9

end10
foreachcell in HemisphereCellArray do11

cell:spatialRadius= ComputeSpatialRadius(cell);12
cell:midDepth= ComputeMidDepth(cell);13

end14

// 2. Filter over neighboring samples
cellResults= InitializeArray(numCells);15
foreach s in S ampleImageCachedo16

if s:isOccludedthen17
f ocusPoint= s:hitPoint;18

else19
initCell = GetInitialCell(s);20
targetPoint= ComputeTarget(s, initCell);21

end22
if InCorrectHemi(targetPoint)== FALSEthen continue;23
(x; v) = ComputeFilterCoords(s, targetPoint);24
cell = GetCell(v);25
if IsMarkedForBruteForce(cell)then continue;26
weight = ComputerFilterWeight(x / cell:spatialRadius);27
(BRDF,light) = ComputeBRDFandLighting(v);28
AddWeightedSample(cellResults[cell:index],29

weight, BRDF, light, s:visibilit y);30

end31
NormalizeWeights(cellResults);3333
return cellResults3535

Algorithm 1 : Our algorithm for �ltering results at each shading
point (this is implemented in our C++ RenderMan plugin). For
each shading point we return an array of values, one per hemi-
sphere cell. Each value either represents a �ltered BRDF * lighting
value, or a �ag that tells the calling RenderMan shader to brute
force the corresponding hemispherical cell.

5 Implementation

Our implementation takes a two pass approach: sampling followed
by �ltering. Our �rst pass shoots a sparse set of rays (4 - 32 rays
per shading point) and writes the rays to a point cloud. This is
similar to common Monte Carlo implementation, except for the low
number of rays used (Figure2b). The second pass reads in the point
cloud and �lters over a large number of nearby ray samples at each
shading point to compute a smooth and accurate result (Figure2c).

We implemented our algorithm by writing shaders and a C++ plu-
gin for a RenderMan compliant renderer [Pixar 2005]. The core
�ltering algorithm runs inside our plugin for each shading point
and can be seen in Algorithm 1. At a high level we compute depth
bounds for di� erent sections of the hemisphere (lines 1 to 14 in Al-
gorithm 1), then use these depth bounds to �lter neighboring sam-
ples (lines 15 to 35).

Computing Bounds for the Hemisphere The �rst thing we
do is compute the [zmin; zmax] depth bounds for the current receiver
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Figure 7: This scene shows complex occluders and receivers with displacement. (a) Our method with 32 rays per shading point (9 rays in
the �rst pass, 23 rays in the second pass). As an inset we also show a visualization of where our method reverted back to brute force Monte
Carlo. We decide whether to �lter over neighboring samples or use Monte Carlo at each hemisphere cell, so many shading points use a mix
of both methods. In (c) and (d) the error in our method comes from overblurring and missing occlusion within some creases. Point based
occlusion has larger error and over darkens the creases. Green error values are areas that are too bright, red error values are areas that are
too dark. In (e) and (f) our method can be seen to have some noise (dueto some cells of the hemisphere requiring Monte Carlo integration).
The point based result is consistently too dark, but smoother.

(lines 1 to 14). To compute tighter depth bounds we divide the
hemisphere of visible directions into cells of equal projected area
and compute depth bounds per cell (our implementation subdivides
the disk into 8x8 cells). We also �lter results per cell, which helps
to compensate for possible non-uniform sample densities.

In our implementation, a user-speci�ed screen space radius deter-
mines the set of potential neighbor samples (for our results we used
a radius of 8-16 pixels). For each neighbor sample that is occluded
and whose hit point is in the correct hemisphere, we compute the
e� ective sample distancex and e� ective directionv (line 5 as de-
scribed in section4). We then use the directionv to lookup the
appropriate cell (line 6) and update the cell's depth bounds (line 7).

After all samples are processed, we compute the spatial radius and
mid depth for each cell (lines 12 and 13). We compute the spa-
tial radius by multiplying the current micro polygon diameter by
primalScale (from Equation8). In Equation9 we can see that
the shear value is simply the harmonic average of the minimum and
maximum depths. Therefore we store the harmonic average ofzmin
andzmax for the cell's mid depth. If a cell has zero samples, or if

 max

v =zmin > 
 max
pix (see Section3), theComputeSpatialRadius()

function marks the cell as requiring brute force computation.

Filtering Samples Now that we have [zmin; zmax] depth bounds
at each cell we can �lter over neighboring samples (lines 15 to 35
in Algorithm 1). We �rst compute the target point of each sample
(lines 17 to 22). For occluded samples, the target point is simply the
hit point of the occluded ray (line 18). For non-occluded samples,
we use a two step process to compute the target point. We �rst
lookup an initial cell based purely on the ray direction (line 20). We
construct a plane that is perpendicular to the central direction of the
cell and whose distance to the current receiver is the same as the
mid depth of the cell. We set the target point to be the intersection
of the sample ray with this plane (line 21).

Once we have the target point we can compute the �nal sample dis-
tancex and e� ective directionv (line 24). Using the directionv we
can lookup the �nal cell for the sample (line 25). Using the sam-

ple distancex and the cell's spatial radius we can compute the �lter
weight (line 27). Using the e� ective incoming light directionv we
can also compute the BRDF and lighting response (line 28). Many
implementations let the user fade out occlusion beyond a certain
distance, so that distant occluders are not counted [McGuire 2010].
This is especially necessary for indoor scenes. We have incorpo-
rated this in our method by testing the distance from the receiver to
the sample target point and reducing visibility accordingly.

After we have processed all of the samples, we normalize the total
contribution per cell based on the weight in each cell. Any cells
with too little weight (we use a weight that corresponds to approx-
imately 2 samples) are marked as requiring brute force computa-
tion. This is the end of Algorithm 1, and where our C++ plugin
hands control back to the RenderMan shader. The shader then goes
through each cell, and uses Monte Carlo ray tracing to compute an-
swers for any cells that needed to be brute forced (for our results
we shot a single ray to estimate these cells).

6 Results

6.1 Setup

All results are 512x512 and were generated on a dual quad-core
Xeon 2.33 GHz processor with 4 GB of memory using Pixar's Ren-
derMan Pro Server 15.2. Our plug-in is thread safe and is designed
to run in parallel (we used 8 threads for our results).

We used thetrace() call in RenderMan which �nds the nearest
hit point regardless of occluder surface. Other functions such as the
occlusion() function have options to cap the maximum distance
of a ray, which could reduce the working set of ray-traced geometry
and reduce paging to disk. Of course, with more dense geometry,
the problem of paging to disk will easily reoccur. The San Miguel
scene (Figure1) is the only scene that was computationally bound
by paging to disk, and the Sponza scene (Figure7) was limited by
computation (ray tracing and displacement).
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Figure 8: Here we show an example of our method with both matte
and glossy BRDFs with environment lighting.

6.2 San Miguel

In the San Miguel scene (Figure1a) we show a complex scene that
contains both large smooth areas, and areas of very high complex-
ity. The smooth areas are challenging because the human visual
system is drawn to any small errors or oscillations. Accurately cal-
culating occlusion for areas of high geometric detail and/or contact
shadows is di� cult because these areas can easily be missed or un-
dersampled.

The scene is 5.2 million triangle faces. Because of the high geo-
metric complexity of the scene RenderMan generated and shaded
an average of 5 micro polygons per pixel. Because of the complex-
ity of the scene and the incoherent nature of the rays, geometry was
constantly paged in and out of memory. While it is always possible
to increase memory on a machine, artists will in turn keep pro-
ducing larger models. RenderMan reported using 5.5GB of virtual
memory (with 2GB devoted to ray-traced geometry) and 3.5GB of
physical memory. This scene is well suited for our method because
the cost per ray is very high relative to the cost of �ltering over
nearby ray samples.

In Figure 1, we show equal time and equal quality comparisons
with strati�ed Monte Carlo sampling. Our method took 1 hr and 48
min, spending about 40% of the time in the �rst pass casting sparse
ray samples (13 rays per shading point), and the remaining time in
the second pass �ltering and casting rays for areas with very close
occluders (19 rays per shading point). Our method gave a 4x speed
up over Monte Carlo with 256 samples (7 hrs 4 min) as well as an
order of magnitude reduction in the number of ray casts. We also
show signi�cantly less noise versus Monte Carlo with 40 samples
using equal time. Our method is smoother than Monte Carlo with
256 samples in many areas, although our method does have some
areas with noise (inside the lip of the fountain) and overblurring
(contact shadows with the leaves on the ground). See section6.6
for more discussion on limitations and artifacts.

The �ltering operation in our method is more expensive than simple

Monte Carlo, which accounts for the discrepancy between our re-
duction in rays and speed up. One reason for the increased �ltering
cost is the increased algorithmic complexity of our �ltering (shown
in Algorithm 1). Another reason is that our �lter often needs more
samples to achieve a smooth result due to samples being unstrati�ed
when they are warped onto the hemisphere of the current receiver.

In Figure 1e we also show that our method can output spherical
harmonic occlusion. Our RenderMan shader takes the cell re�ec-
tion values returned from Algorithm 1, calculated per hemispherical
cell, and uses environment maps that represent low order spherical
harmonic basis functions [s0(! i); :::;sn(! i)] as the distant lighting
l(! i) for each cell (Equation2). As of version 15.2 RenderMan
does not support an e� cient method for producing spherical har-
monic occlusion using its point based algorithm.

6.3 Bumpy Sponza

In the bumpy Sponza scene we apply a displacement shader to show
that our method can handle complex occluders as well as high fre-
quency changes in receiver surface and normal orientation. The
scene only has 300,000 triangles (before displacement) and �t in-
side memory during our renders. In Figure7 we compare the qual-
ity of our method with point based occlusion. We use the Ren-
derMan point based occlusion implementation with high quality
settings (6x increase in micro polygon density for initial geome-
try pass, clamping turned on, rasterresolution set to 32, max solid
angle set to 0.01). For this scene our method used 32 rays per shad-
ing point and took 16 minutes, while Monte Carlo used 256 rays
and took 32 minutes. Our method reduces the number of ray casts
by an order of magnitude, and is still 2x faster than Monte Carlo
with 256 samples even when the scene �ts in memory and the cost
per ray is low.

Point based occlusion is a popular solution because it is fast and the
results are generally smooth (in this example point based occlusion
took 8 minutes). However, it can also have a number of disadvan-
tages. In Figure7d, we visualize the image error for our method
and point based occlusion (red is used for areas that are too dark,
and green for areas that are too bright). We can see that in some of
the crease areas point based occlusion can produce results that are
too dark. Our method is slightly too bright due to overblurring and
missing some details, but the amplitude of our errors is much less.

In Figures7e and7f our method has noise in some areas. Because
of the high frequency displacement many surfaces have nearby oc-
cluders which can trigger our method to fallback to brute force
Monte Carlo. A visualization of where and to what degree our
method used Monte Carlo sampling can be seen in Figure7a. In this
scene 74% of shading points used Monte Carlo for less than half of
their hemispherical cells. The higher the
 max

v is set, the more often
our method falls back to Monte Carlo. Point based occlusion is con-
sistently slightly too dark in this area, but it does produce smooth
results.

6.4 Glossy

In Figure 8, we show a glossy teapot scene demonstrating our
method's ability to handle di� use and glossy surfaces with spheri-
cal harmonic lighting. The di� erent colored shadows to the left and
right of the teapot show that we are capturing directional occlu-
sion. The shape of the shadow on the ground plane also changes as
the material goes from di� use to glossy. Our method very closely
matches ground truth with either a di� use or glossy BRDF and en-
vironment lighting.



Our Method, 22 rays
frame 20

Blinds Animation (brightness 2x)

Our Method, 22 rays
frame 60

Our Method, 22 rays
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Figure 9: Frames from our supplementary video (brightness multi-
plied by 2). Our method accurately captures the angular content of
the small slats.

6.5 Blinds Animation

We also provide a supplemental animation (frames shown in Fig-
ure9) that shows a set of blinds rotating together. The angular con-
tent of the occluders is very important in this example, and we show
that our method still handles this well. Our method has a low am-
plitude of error overall (Figures10a and10b). At object boundaries
the non-uniform distribution of samples can lead to some small er-
rors (in this case the edges of slats are too bright). The point based
solution is smooth, but the results are consistently too dark (Fig-
ures10d and10e).

6.6 Limitations and Artifacts

We now examine the limitations and possible artifacts that can oc-
cur in our method. In Figures10c and10f we show the artifacts that
can occur when we don't use enough samples in the �rst pass of our
algorithm (we use 4 and 1 rays per shading point for the �rst pass
in Figures10c and10f respectively). Because of our wide �lter-
ing, any undersampling in the �rst pass shows up as low amplitude
medium frequency error instead of high frequency noise. While
the amplitude of these errors is often low, spurious changes in the
derivative can be visually noticeable, especially in areas of constant
or linearly changing occlusion. Raising the sample count in the �rst
pass of our algorithm reduces, and at a certain point, eliminates this
problem.

In areas where we revert to brute force computation, our method
can show noise, such as in Figure1a near the lip of the fountain.
We can again reduce noise in these areas by increasing sampling
density, but this will in turn reduce performance. Our method can
also smooth out some areas of detail. In Figure1a some of the
contact shadows under the leaves and around the detailed geometry
of the door are slightly washed out as compared to ground truth.

7 Conclusion and Future Work

We have presented a new frequency analysis for occlusion that
incorporates distant lighting, general BRDFs, and high frequency
normal maps for complex receivers and occluders. In addition, we
have also provided a new rotationally-invariant �lter that is param-
eterized according to our analysis, and that is capable of sharing
samples across a large angular domain. Our results show that our
method can substantially reduce the number of rays cast, and can
lead to large speed up in scenes that are computationally bound by
ray tracing costs.

For future work we want to investigate methods for stratifying sam-
ples in such a way that the results will be strati�ed across multiple
receivers. We also want to investigate alternative ways to integrate

b) Our Method, 21 rays
error (20x)

e) Point Based Occlusion
error (20x)

d) Point Based Occlusion

c) Our Method, 10 rays
1st pass 4 rays, 2nd pass 6 rays

f) Our Method, 7 rays
1st pass 1 ray, 2nd pass 6 rays

a) Our Method, 22 rays
1st pass 16 rays, 2nd pass 6 rays

Blinds Error Analysis (brightness 2x)

Figure 10: We show the errors with point based occlusion and our
method for the blinds scene frame 60 (ambient occlusion brightness
is multiplied by 2x, green error values are areas that are too bright,
red error values are areas that are too dark). (a) (b) Our method
produces a scene with overall low amplitude error. (d) (e) Point
based occlusion produces an image that is consistently too dark. (c)
(f) Output from our method using a reduced ray count. The medium
frequency noise is due to too few rays stored in the �rst pass (4 and
1 rays in (c) and (f) respectively).

over sample point sets. If we could improve our accuracy when
dealing with smaller point sets of non-uniform density, we could
reduce our �lter radius and speed up the �ltering process substan-
tially.

In summary, directional occlusion is of increasing importance in
Monte Carlo rendering. We have taken an important step towards
fully exploiting the space-angle coherence. We expect many further
developments in this direction, based on a deeper analysis of the
characteristics of the occlusion function.
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Appendix A: Fourier Derivations

We temporarily de�neh and H to be 2D to make the derivation
more concise (this allows us to use a 2D convolution operator). The
second angular dimension for both of these functions will not be
important, and our �nal step will be to reduceH to 1D. We de�ne
h(x; v) to be constant acrossv, such that8v 2 R; h(x; v) = h(x;0).

m(x; v) =� (x) (10)

h(x; v) =
Z

f (x; t)k(x; t)dt (11)

h(x; v) =
Z Z

( f (s; t)k(s; t)) m(x � s; v� t)dsdt (12)

h(x; v) = ( f k) 
 m (13)

Becauseh(x) is constant acrossv it is not surprising that spectrum
H will only have frequencies along the
 v = 0 line.

M(
 x; 
 v) =� (
 v) (14)
H(
 x; 
 v) =(F 
 K)M (15)

H(
 x; 
 v) =
Z Z

F(
 x � s; 
 v � t)K(t; s)� (
 v) ds dt (16)

To reduce a 2D spectrum to 1D we must integrate across the di-
mension we want to remove. We integrate out the
 v dimension to
measure the spatial frequencies ofH along the
 x axis:

H(
 x) =
Z Z

F(
 x � s; � t)K(s; t) ds dt (17)


