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Figure 1: (a) A visualization of ambient occlusion produced by our method. Tleisesased 32 samples per shading point, 13 rays in
the sparse sampling pass (41 min) and 19 rays in the second pass Baithacontact shadows (1 hr 7 min). Total running time for both
passes was 1 hr 48 min. (b) Closeups of Monte Carlo using equal timgaf@ples, 1 hr 42 min), noise can be seen. (c) Closeups of our
method. (d) Closeups of Monte Carlo with equal quality (256 sampless 4 Imin). (e) At little extra cost our method can also compute
spherical harmonic occlusion for low frequency lighting. While computing@ method also outputs directional occlusion information for

9 spherical harmonic coecients (green is positive, blue is negative).
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1 Introduction
Ambient occlusion and directional (spherical harmonic) occlusion
have become a staple of production rendering because they capModern production rendering algorithms often compute low fre-
ture many visually important qualities of global illumination while ~ quency hemispherical occlusion, where the surrounding environ-
being reusable across multiple artistic lighting iterations. How- ment is approximated to either be a solid white dome (ambient oc-
ever, ray-traced solutions for hemispherical occlusion require many clusion), or a series of low frequency spherical harmonics. Two
rays per shading point (typically 256-1024) due to the full hemi- di erent bodies of work related to ambient occlusion were given
spherical angular domain. Moreover, each ray can be expensivescienti c Academy Awards in 20104cademyAwards 2010 and
in scenes with moderate to high geometric complexity. However, the movie Avatar used ray-traced ambient and spherical harmonic
many nearby rays sample similar areas, and the nal occlusion re- occlusion for lighting and nal renderingFlantaleoni et al. 2010
sultis often low frequency. We give a frequency analysis of shadow While fully sampling the surrounding illumination at each receiver
light elds using distant illumination with a general BRDF and nor-  is the completely accurate way to compute global illumination,
mal mapping, allowing us to share ray information even among these approximations of distant lighting work well in practice. An-
complex receivers. We also present a new rotationally-invariant |- other advantage is that the ambient occlusion and spherical har-
ter that easily handles samples spread over a large angular domainmonic calculations are independent of the nal lighting environ-
Our method can deliver 4x speed up for scenes that are computa-ment and can be reused throughout the lighting process.

tionally bound by ray tracing costs. Ray-traced occlusion is often very expensive to compute due to the

large number of incoherent ray casts. The authors of the PantaRay
system state that they typically shoot 512 or 1024 rays per shading
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a) standard methods  b) our method shoots ¢) our method reprojects lter is intuitive, easy to implement, and constructed using the fre-

trace many rays from a smaller number of rays and !lters nearby rays L . . .
each shading point and creates a ray database to compute occlusion quency anaIyS|S in Sectid® Results with our lter are shown in

_ mid hit Figuresl, 7, 8, and9.
ﬂ C? /4 C? depth
- 2 Previous Work
v ¢
Shadows and Ambient Occlusion: Ambient occlusion is an
approximation of global illumination that is simply the aggregate
visibility for a solid white domeZhukov et al. 1998Landis 2008
feceiver Spherical harmonic occlusion improves on this, computing the ag-

gregate visibility for a number of low order spherical harmonics.

Figure 2: (a) We show a simple scene in atland. Standard meth- We focus on the methods most closely related to our paper, and
(b) Our method shoots a sparse set of rays in a rst pass and savesNiques Méndez-Feliu and Sbert 2009

them to a point cloud. Red dots are ray hits. (c) In a second pass werpe pantaray system uses GPU ray tracing, various spatial hierar-
use our theory to reproject and weight nearby rays to compute di- ¢pies and geometric LOD to compute spherical harmonic occlu-
rectional or ambient occlusion. The green dot represents the target g;, [Pantaleoni et al. 2030 Our method is complementary be-
point of the u_noccluded ray (the intersection between the orginal cause we focus on reducing the number of rays cast, whereas Pan-
ray and the mid depth plane). taRay focuses on reducing the cost per ray. Another recent method

reduces cost per ray by using similar sample patterns across many

receivers so that they can process multiple receivers in parallel on
point to compute occlusiorPantaleoni et al. 2010 One of their the GPU Laine and Karras 2010 Pixar's RenderMan represents
test frames from the movie Avatar took over 16 hours and 520 bil- distant occluding geometry using an octree that contains point sam-
lion rays to compute an occlusion pass. While our scenes do notpled data as well as spherical harmonics at parent nodes, and raster
have the complexity of production environments, our method shows izes this data onto a coarse grid at each rece@brigtensen 2048
substantial performance bene ts with scenes of moderate complex-We compare our results to point based occlusion, and discuss the
ity. As scenes become more computationally bound by ray tracing, relevant tradeos with both methods in Sectidh

the bene ts of our method increase. . . N . .
Interactive techniques for approximating ambient occlusion are also

shooting fewer rays and sharing data across shading points (showrPolygon McGuire 2010. Because some polygons may be double

in Figure 2). We present a new frequency analysis of occlusion counted, the method approximates the aggregate occlusion using a
from an omni-directional distant light source that also includes nor- compensation map, whereas our method samples occlusion using
mal mapping and a general BRDF at the receiver point. Using this "y tracing and does not ser from double counting. Screen space
analysis, we develop a method to share rays across the full hemi-methods can be very ecient, but may miss geometry that is not
sphere of directions, vastly cutting down on the number of expen- directly visible to the cameraBiavoil and Sainz 2009 Since we

sive incoherent ray casts. Our method makes a number of importanthCUS on ray tracing our method accounts for all relevant occluders.
contributions:

Frequency Analysis and Reconstruction: Our method
builds upon recent sheared Itering techniques for re-
constructing light elds, motion blur, and shadows from
planar light sources Ghaietal. 2000 Egan etal. 2009
Egan etal. 2011 Other methods have also examined occlusion
in the Fourier domain3oler and Sillion 1998Durand et al. 2005
Ramamoorthi et al. 2005Lanman et al. 2008 We extend the
heory to include distant lighting, a general BRDF, and high
requency normal maps. We also introduce a rotationally invariant
Iter that uses the theory for sheared Itering but is able to orient
itself in any direction across a large angular domain.

Frequency Analysis of Distant Lighting: We present a fre-
quency analysis of distant lighting from all possible incoming di-
rections over the hemisphere in Sect®nOur work builds on the
recent analysis of Egan et aR(1] for shadows from a compact
planar area light souce. We rst derive new equations to handle
distant lighting by splitting up the spherical domain into linear sub-
domains (such as cube map faces). We then derive the appropriat
bandlimits and Iter sizes for each linear sub-domain. This theory
is used as the basis for our new rotationally-invariant Iter.

A number of other techniques have also shared data between neigh-
boring receiver points to cut down on computation. Irradiance
caching is used to Iter sparse samples of low frequency indirect
lighting [Ward et al. 198B Irradiance caching aggregates angu-
lar information, and then shares it spatially, whereas our method
is able to share samples across both space and angle. Radiance
caching Krivanek et al. 200shares recorded radiance values and
gradients between surface points while assuming that the visi-
bility of shared radiance samples does not change between re-
ceivers. Our method determines which samples are appropriate
to share by setting the Iter radius based on the minimum and
maximum occluder depths. Irradiance decomposition uses low fre-
Rotationally-Invariant Filter: We present a lter that uses the  quency radiance caching for far- eld components and switches to
above theory, modi ed such that it is rotationally-invariant (Sec- a heuristic for occluders closer than a xed depth chosen by the
tion 4). This property of our lter allows us to handle large angular user PArikan et al. 2005 Recently Lehtinen et al.201] devel-
domains without needing to stitch together linear sub-domains. The oped a method that locally reconstructs multiple points within a

General BRDFs and Normal Mapping: We also show how the
occlusion signal interacts with general BRDFs. We show that the
sum of the lighting and BRDF bandlimit determines the cufie-
qguencies for occlusion. Furthermore, as long as the surface BRDF
is bandlimited, high frequency changes in the normal do neta

our occlusion calculations. Our method takes advantage of this by
sparsely sampling occlusion, which greatly reduces the the num-
ber of expensive ray casts. We show results with sparse occlusion
sampling, glossy BRDFs and low frequency environment lighting
(Figure8).



a) Rsayascgf‘;?mlgtgizve)d by b) Occluders depths are varying BRDFr(x;! i;! o) (which includes the damped cosine term
P gie In range [#nin: maxl for compactness), the distant lightit@ ;), and occlusiorf (x;! ;).

) . Our method focuses on direct lighting with a xed camera such that
distant lighting I(v)

v Zmax T = - the viewing angle , is xed for a given spatial locatiorx,
central a_xis pf T 7 { P Rt
parameterlzatlon 1 [ [
receiver - - *reiceiver Z
L orging - h(X) = reGtDIC DFEG)dy e (1)
%

To compute ambient occlusion, we simply $@¢t;) to a constant
value of 1, andr(x;!;) to a clamped cosine maxf) ! ;0)
in Equation1 (where n(x) is the surface normal). For more

Figure 3: For our theoretical derivation we split up the environ-
ment into distinct faces and use a linearized angle. We parameter-

ize the receiver based on the spatialset x from the origin. The S ;

: . ; L accurate low frequency relighting, we replace the lightifig)

linearized anglevis the 0 set from the central_dlrectlon of the cube term with a set of low order spherical harmonic basis functions

map at a plane one unit away from the receiver. The occluders are [so(! 1); oo
)

: . : :5:8(! )], and a corresponding intermediate response func-
bounded by a range of distancizsn; Zna from the receiver. tion [h(x); :;h(0)] (visualized in Figurele). Using these interme-

diate values, we can then easily relight the scene by projecting any
. . . . _distant lightingl(! ;) into the orthonormal spherical harmonic ba-
pixel using the GPU. Unlike these methods, the signal processing sis, taking the resulting coecients [o; :::;1,], and performing a dot
framework used by our method smoothly scales our lIter and tells product:

us how much information to share.

Sparse Transport Computation: Precomputed Radiance X

Transport is the foundation for current relighting meth- h(p= hIX; : 2

ods [Sloan etal. 2002 Ng et al. 2003 However, the pre- i=0

computation time required for these methods is often prohibitive

when using standard Monte Carlo sampling. A number of methods Directional and ambient occlusion are primarily used to aid in the
have used various techniques to sparsely sample light transportrealistic approximation of slightly glossy or matte components of
Row-column sampling uses shadow maps to sparsely computea BRDF. If a BRDF has sharper specular re ections this is usually
light transport for a single surface point to all lights (one row), or a calculated more directly using a dérent re ection algorithm.

single light to all surface points (one columitjdsan et al. 200[7

The big advantage of row-column sampling is the batch visi- 3.1.2 Distant Lighting in Primal Domain

bility computation achieved by using shadow maps, whereas

our method uses ray tracing to avoid shadow map artifacts. The above angular parameterization using not easy to analyze
Huang et al. sparsely precompute the light transport matrix by in a Fourier context. We could expand the lighting into spherical
only densely sampling the angular domain at selected “dense” harmonics, but proceeding to analyze the spatial-angular occlusion
vertices Huang and Ramamoorthi 20[L@ur method extends this  of f(x;! ) and subsequent transport becomes intractable. Thus, like
by more intelligently sharing rays across space and angle. OurDurand et al. 2005, we use the Fourier basis with a linearized
method also computes Iter widths based on the range of depths of measure of angle.

the occluders. ) ) )
We rst reparameterize the circle of angles in atland to a square

map (the analog of a cube map in 3D). For each map face we de ne

3 Theory a linearized anglg measured against that map's central axis of pro-

. . . . . ) jection. Thevmeasures a direction vector's set from the axis of
We rst discuss the basic re ection equation and derive equations parameterization at a plane 1 unit away (shown in Fig@yrsimilar
for occlusion from distant lighting in the primal domain. We then previous methodsSoler and Sillion 1998 Durand et al. 2005
look at preliminary Fourier derivations taken from previous work, Egan et al. 201]1 This parameteriztion allows us to analyze how
before deriving new equations that give insight into occlusion and g relevant signals (distant lighting, occlusion and BRDF) interact,
re ection under distant lighting. Our nal reconstruction uses a ¢ opposed to using spherical harmonics. We analyze the contri-
Iter that is based on our theory but uses geometric measures thaty tion of each lighting “face” separately, and the nal answer is

can rotate to any given sample in the hemispherical domain. the sum of all face contributions. Our nal lter uses the follow-
. . o ing derivations, but with a simpler geometric measure that does not

3.1 Occlusion from Distant Lighting require reparameterization to cube maps.

311 Preliminaries We de ne visibility along a ray ag(x; v) wherex is a spatial mea-
sure perpendicular to the central axis of projection (Fi@)reWe

The re ected radiancé(x; ! ,) at a surface poink in direction! o rst look at a single planar occluder de ned by a binary visibility

can be written as follows: functiong(x) at constant distancefrom the receiver. We will ex-
tend this to occluders with a range of depths later.

z
h(x;! o) = reaG! sl DFeG! ) dl f(x\V) = g(x+2v) : 3)

The re ected radiance is computed by integrating over all incoming We now have a re-parameterized BRE; v) and distant lighting
light directions! ;. Inside the integral is a product of the spatially functionl(v). With this change of variables we have to adjust for



(a) occluder spectrum F

(b) transport spectrum K

(c) step 1: convolve

(d) step 2: integrate

(e) Inal function

for varying depth occluder for combined BRDF across W, over W, H(W) delned
and lighting across W,
ax convolution integration
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Figure 4: (a) The occluder spectrum F in the Fourier domain. (b) The combinediigland BRDF response has small angular extent for
low frequency transport ('), but may have large spatial extent if the normal varies rapidlf¥9). (c) The inner integral of Equatiof

is a convolution across «. Note that F eectively becomes bandlimited by th&2 bandlimit of K. (d) The outer integral of Equatioh
integrates over . (e) The nalresultis H ), the Fourier spectrum of the spatial occlusion functigr)h

the Jacobiai@=@ywhich we incorporate intt(v) (note that Ja- ers and a surface with a general BRDF and normal maps. Both of
cobian calculations will not be necessary for the nal rotationally these are novel contributions of our paper.
invariant version of our Iter). Now the re ection equation fbrx)

is: L . .
Response Function in the Fourier Domain: The response

function spectrunkK( ; ) is shown in Figuretb. Because and

Z | are multiplied the spectruid is the convolutiorR L. Becausd.
h(x) = r(x; VI (V) dv has no spatial dimension we can conclude that the spatial bandlimit
7 of K, 7 is simply the spatial bandlimit d®. The angular ban-
1 i max 1 i
= e VIVEX+ 2) dv : @ ﬁhmlt of K, ™ is the sum of the angular bandlimits fBrand

We now combine the BRDF and lightim@x; v)I(v) into a new com-
bined response functide(x; v),

Normal Mapping in the Fourier Domain: Rapid variation in
the normal rotates the BRDF and causes the specklsnspatial
bandlimit, 7'® to be large. However, rapid rotation in the normal
7 does not aect the angular bandlimit. To see that this is true we can
split up the 2D Fourier transform into two 1D transforms, and rst
hG) =" k(xvg(x+2v) dv: ®) take the Fourier transform mfor a given xed value ofx. After
transforming inv each slice of the angular transform along= vy
is zero whereap > 7' and therefore the spatial Fourier transform
of this slice is zero. Therefore if the BRDF at evetyocation is
bandlimited by '®, then the nal spectrunk will be bandlimited
by [ as well. We call the the portion of the spectrum that is
non-zero after after bandlimiting by, the “visible frequencies”
of F, as seen in Figurg.

3.2 Fourier Analysis
3.2.1 Preliminaries

When we can express a two-dimensional functibrin terms

of a one-dimensional functiog in the form given in Equa-
tion 3, previous work has shown that the Fourier transform
of f(), which we nameF(), lies along a line segment in the
Fourier domain$hinya 1993Chai et al. 200pDurand et al. 2005
Egan et al. 2000

Lighting and Surface Re ection in the Fourier Domain:

Taking the Fourier transform di(x) in Equation5 is not trivial
because the response functik(x; v) has two dimensions but one
of the dimensions is integrated out (see Appendix A for the deriva-

F( x =G( ) (y zx: (6) tion). In the end we get the following:
whereG() is the 1D Fourier transform of(), and is the delta
function. Intuitively, if you have a 1D function embedded in a 2D zZ Z !

domain, it makes sense that the frequency spectrum is also 1D.

H( x) = F( x s t)K(s;t)ds. dt; @)

If all occluders are planar and lie along a single depthen the
occlusion spectrum corresponds exactly to Equaiain practical wheresis a temporary variable used to compute the inner 1D con-

scenes with a range of deptte,f; Znax the occlusion spectruri . P : :
is a double wedge determined by the distance between the occlude?’omnon across  (shown in Figuredc). Thet variable is used to

- : compute the outer integral across thgdimension of the resultant
wedge can be thaudhtof 25 & Spestrum fhat s Swept ot by manySPSCUUM (a5 seen n Figute). Finally we are lefwit( ), the
line segments that correspondztwalues betweerzf,n; Znax. This spectrum of occlusion across the spatial axis (Figefe
is shown in Figureda.
Discussion:  The above analysis includes a number of important
results. First, we have derived bandlimits for the occlusion spec-
trum from distant lighting. We split the angular domain of direc-
We now derive the occlusion spectrum for distant lighting, as well tions into sub-domains, and then reparameterized each sub-domain
as the interaction between the spectra considering complex occlud-separately using a linearized angle formulation.

3.2.2 Fourier Spectrum for Distant Lighting



Second, our frequency analysis of occlusion can handle surfaces

with a general BRDF and high frequency normal maps. We have
shown that the transport spectriénmay have high frequencies in
the spatial domaindue to high frequency changes in the normal.
However, an important result is that the visible portion of the oc-
clusion spectrunt is still low frequency in theangular domain
and is bandlimited by J® (Figure4c).

Our method directly reconstructs visibilifi(x; V) using sparse ray

casting. We can use sparse sampling because the compact shape of

the sheared lter in the Fourier domain lets us pack Fourier repli-

cas closer together. Our method densely samples the combined

lighting-BRDF termk(x; v) which is much cheaper to sample and
may include high frequency normal maps. Attempting to share the
integrated produdt(x) directly, as in irradiance caching, has less
bene t because of the possible high spatial frequenciés$(iny).

3.3 Sheared Filtering Over Linear Sub-Domains

Now that we have de ned the sparse shape of the visible occluder

spectrum, we can design a sheared lter that compactly captures v

the frequency content of the signal we care about. We can then
transform the lter back to the primal domain where it is used
to reconstruct our nal answer, while allowing for sparse sam-
pling and the sharing of information across pixél$hi et al. 2000
Egan et al. 2009Egan et al. 2011 The shape of the sheared lter
will guide our design of our rotationally-invariant Iter in Sectidn

The visible parts of the occlusion spectrimithat we need to cap-
ture are shown in Figur. The Fourier footprint for a standard
reconstruction lter is shown in FigurBa, and a sheared lter that
tightly bounds the visible parts df is shown in Figuredb. By
applying a scale and shear we can transform the Iter shown in Fig-
ure5a to the one shown in Figugsb.

We can see from the measurements in Fidutieat, in the Fourier
domain, our lter is scaled along the, axis and sheared in, per
unit . In the primal domain we need to scale along thexis by
the inverse amount, and sheawiper unitx:

max " 1 ! 1 I,
primalScales —— - (8)
\r/nax Zn]in Zmﬁé
1 1
rimalShear = —_— 9
P 2 Zmin Zmax ( )

where g}jx represents the smallest wavelength that can be dis-

played. We set g}j‘x to be (05=shadirgDiamete), meaning that
the highest frequency that can be captured is half a wavelength pe
output diameter. We set]® to be 2.0, which approximates that the
BRDF * lighting function can be captured with two wavelengths per
unit of linearized angle (45 degrees).

In areas of sharp contact shadows the visible portiofr ahay
extend beyond the 7% bandlimit of the standard lter. In this
case we must make sure that our Iter does not capture any por-
tion of F outside the 7% bandlimit. We check this by testing if

T =Zmin > g]f" and if so we revert to brute force Monte Carlo.
Our implementation stores separag, values for di erent por-
tions of the hemisphere, see Sectibfor details.

We can now use Equatio®sand9 to construct a lter that operates
over a linearized sub-domain of the sphere (as shown in Figajes
Intuitively this takes a nearby sample, and warps it to create an ef-
fective ray that originates at the current receiver point, pictured in
Figure5d. However, splitting the sphere into multiple sub-domains
requires stitching together the results from each Itering operation.

r

(a) standard elter in (b) sheared slter in

Fourier domain(V\{,, W) Fourier domain(V\{,, W)

slope zpax I V\(/max/ Zmax
slope N :
Zmin ] 2\ max / ] 2\ max

- :

.

max
2W\max W1 2

(c) sheared slter in
primal ray space (x, v)

(d) the sheared elter lets us
share nearby samples, this
is the inspiration for our

neighbor receiver x rotationally invariant elter

sample origin , position

elective ray
at receiver

v/
neighbor/ d,
sample, .

receiver

elective
ray at
receiver

', shear axis corresponds
to some depth d

Figure 5: (a) The visible spectrum of F is shown, as well as the
Fourier transform of a standard Iter that is axis-aligned in x and
v. (b) A sheared lter that tightly bounds the visible parts of F. (c)
The theoretical sheared Iter graphed iix; V) space. The sheared
Iter e ectively reprojects rays along the shear axis which is based
on harmonic average of depth bounfin; Znax]. However, the
sheared Iter uses a linearized angleghat depends on a xed axis
of projection. (d) A visualization of how a sheared Iter shares
samples in the primal domain. We use this as inspiration for the
rotationally invariant Iter presented in Sectiofthat does not re-
quire a xed axis of projection.

We solve this problem by introducing our rotationally-invariant |-
ter.

4 Rotationally-Invariant Filter

We now develop our rotationally-invariant Iter that allows us to
easily Iter over large angular domains. The sheared lIter from the
previous section essentially has two outputs: what Iter weight to
apply to a given sample, and also what is the@ive ray direction
when we warp a nearby sample to the receiver point. The direc-
tional information is useful when we bucketective ray directions

to account for non-uniform sampling densities across the receiver.

Implementing a set of nite linear subdomains has a number of
drawbacks. There may be discontinuities where the linear subdo-
mains meet, and we have to account for the Jacobian of the lin-
earization in the transfer functiok(x;v). One possible strategy
would be to subdivide the sphere into even more subdomains. Of
course this may reduce possible artifacts but we would still have
to worry about discontinuities and Jacobians. Our approach is to
take the limit of subdivision where each sample that we consider is
de ned to be in its own in nitesimal subdomain. This leads to a
rotationally-invariant Iter that uses the theory from Secti®@and

is easy to implement.

Figure5d and Equatior® together show that warping a sample ray



a) target points are either b) esective directions point

hit points or intersections to targets, eeective distance 1 Fllte”ng algorlthm for one Shadlng point

with mid-depth plane measures distance to origini /I'1. Calculate hemisphere cell info
ray, perpendicular to directio 1 foreach sin SamplelmgeCachedo
o 2 if sisOccludedhen
! 3 targetPoint= shitPoint;
|\ eective 4 if InCorrectHemi(tagetPoint)then
! direction v 5 (x; v) = ComputeFilterCoords( targetPoin);
| 6 cell = GetCell{);
! ) 7 UpdateCellMinMaxDepttugll, s);
T dsancex 8 end

9 end

Figure 6: (a) To use our rotationally invariant Iter Iter we rst 10 end ) )

compute target positions for the current receiver. Unoccluded rays foreachcellin HemisphereCellArado .

use an intersection with a plane that goes through the harmonté ~ cell:spatialRadius= ComputeSpatialRadiusgll);
average of Zmin; Znay] for the current receiver. (b) The ective di- 13 cell:midDepth= ComputeMidDepthgell);
rections for the samples simply connect the current receiver to thé end

target positions. To calculate ective distance we compute the in- /2 Filter over neighboring samples
tersection of the original ray and a plane that goes through thgy cellResults= InitializeArray(umcCell3;

current receiver and is perpendicular to theegtive direction. 16 foreach sin SamplelmgeCachedo
17 if sisOccludedhen
18 focusPoint= shitPoint

else
initCell = GetlnitialCell(s);
targetPoint= ComputeTargeg initCell);
end
if InCorrectHemi(tagetPoint)== FALSEthen continue;

to an e ective ray originating from the current receiver is based oﬁ
the shear, and the shear in turn is based on the harmonic meai) of
Zmin @NdZnax. If we consider each sample to be in its own in nites-
imally small subdomain, then for occluded rays we can say th
the occluder hit point is the only occlusion distarxthat we care . -
about. In this czfse the ective r):/ay direction is simply the vector (x V)_z ComputgFﬂterCoords(targetPonnb;

from the receiver to the sample hit point. If the ray is unocclude _ceII = GetCell{); L

we make a ray “target’ point where the ray intersects a mid depth I IsMarkedForBruteForce(celthen continue;
plane based on the harmonic mean of occluders in a surroundingzt]e- weight = ComputerFilterWeighi(/ cell:s patialRadiuj

: - : : ; (BRDF,light) = ComputeBRDFandLightingy;
glecigill]hgecglig%atlon of the depth plane will be explained in mo (A AddWeightedSamplegliResulticellindex,

30 weight, BRDF, light, sivisibility);

To compute a lter weight we must compute tlecoordinate for 31 end

; o ; . . 33 NormalizeWeights(cellResults);
the sample. Using an in nitesimal subdomain our axis of projec,
co . L en return cellResults

tion is de ned to be the same as ourestive ray direction. The ) ] ) )

x measure needs to be tangent to our axis of projection, and weAlgorithm 1: Our algorithm for Itering results at each shading
compute the intersection point between the sample ray and planepoint (this is implemented in our-3- RenderMan plugin). For
that is perpendicular to the ective ray direction and goes through ~ €ach shading point we return an array of values, one per hemi-
the receiver point. Th& measure is simply the @et vector from  sphere cell. Each value either represents a Itered BRDF * lighting
the receiver to this intersection point. Our rotationally-invariant |- value, or a ag that tells the calling RenderMan shader to brute
ter with the computed target point for a given sample is shown in force the corresponding hemispherical cell.

Figure6a, and the lter e ective direction and spatiad value are

shown in Figuresb.

. . o _ 5 Implementation
Given a ray target point we compute areetive direction that orig-

inates from the origin, and then compute the tangecoordinate
for the ray sample. These computations are tightly bound with the
derivations in Sectio®. We used Equatiof and the intuitive no-
tion of the Iter shear (Figurésd) to guide setting the ective di-
rection for a sample. Thecoordinate angrimalS calefrom Equa-
tion 8 are used as the input and scale respectively for computing

Our implementation takes a two pass approach: sampling followed
by Itering. Our rst pass shoots a sparse set of rays (4 - 32 rays
per shading point) and writes the rays to a point cloud. This is
similar to common Monte Carlo implementation, except for the low
number of rays used (Figub). The second pass reads in the point
cloud and lters over a large number of nearby ray samples at each

fter weights. shading point to compute a smooth and accurate result (Fgire
Discussion:  Our rotationally-invariant Iter operates on an in We implemented our algorithm by writing shaders andet (lu-
nite numbér of of small subd)(l)mains and it ispfair to ask how this gn _for 2 RenderMan c_om_pllant rende_ré?l){ar 2009, The_a core.

h i . TN . h Itering algorithm runs inside our plugin for each shading point
a ects the earlier Fourier derivations. In Equatidhand9 the and can be seen in Algorithm 1. At a high level we compute depth
anly Pourier bandlimit that is aected is the ransfer functiony bounds for di erent sections of the hemisphere (lines 1 to 14 in Al-
angular bandlimit. Instead of computing™ for a xed set of lin- gorithm 1), then use these depth bounds to Iter neighboring sam-
ear subdomains, we can instead precompute the larg&&tover ples (lines 15 to 35).

a range of dierent localized areas and orientations both for each

BRDF and for the distant lighting. As stated before, tHE* value

for the transfer spectruiid is the sum of angular bandlimits for the  Computing Bounds for the Hemisphere The rst thing we
BRDF and lighting. do is compute thez,in; Znax depth bounds for the current receiver



a) Our Method )
32 rays per shading point, 16 min b) error for entire C) erst inset d) error for erst e) second inset f) error for secon
image (20x) inset (10x) inset (10x)

OUR METHOD
32 RAYS

POINT BASED

Visualization of where we apply  Monte Carlo 256 rays: 32 min, Point Based Occlusion: 8 min
brute force Monte Carlo

Figure 7: This scene shows complex occluders and receivers with displacermag@ur method with 32 rays per shading point (9 rays in
the rst pass, 23 rays in the second pass). As an inset we also sh@ualization of where our method reverted back to brute force Monte
Carlo. We decide whether to Iter over neighboring samples or use Moatt@t each hemisphere cell, so many shading points use a mix
of both methods. In (c) and (d) the error in our method comes frombhweing and missing occlusion within some creases. Point based
occlusion has larger error and over darkens the creases. Grem ealues are areas that are too bright, red error values are areas Hre

too dark. In (e) and (f) our method can be seen to have some nois¢odome cells of the hemisphere requiring Monte Carlo integration).
The point based result is consistently too dark, but smoother.

(lines 1 to 14). To compute tighter depth bounds we divide the ple distancexand the cell's spatial radius we can compute the lter
hemisphere of visible directions into cells of equal projected area weight (line 27). Using the ective incoming light directiow we
and compute depth bounds per cell (our implementation subdividescan also compute the BRDF and lighting response (line 28). Many
the disk into 8x8 cells). We also lter results per cell, which helps implementations let the user fade out occlusion beyond a certain
to compensate for possible non-uniform sample densities. distance, so that distant occluders are not couri{iuire 201Q.

. ) . . This is especially necessary for indoor scenes. We have incorpo-
In our implementation, a user-speci ed screen space radius deter-rated this in our method by testing the distance from the receiver to
mines the set of potential neighbor samples (for our results we usedip o sample target point and reducing visibility accordingly.
a radius of 8-16 pixels). For each neighbor sample that is occluded
and whose hit point is in the correct hemisphere, we compute the pfter we have processed all of the samples, we normalize the total
e ective sample distanceand e ective directiorv (line 5 as de- ¢contripution per cell based on the weight in each cell. Any cells
scribed in sectiod). We then use the directionto lookup the ~ yith too little weight (we use a weight that corresponds to approx-
appropriate cell (line 6) and update the cell's depth bounds (line 7). jmately 2 samples) are marked as requiring brute force computa-
(ﬂon. This is the end of Algorithm 1, and where out#€ plugin

ands control back to the RenderMan shader. The shader then goes

through each cell, and uses Monte Carlo ray tracing to compute an-
swers for any cells that needed to be brute forced (for our results
qwe shot a single ray to estimate these cells).

After all samples are processed, we compute the spatial radius an
mid depth for each cell (lines 12 and 13). We compute the spa-
tial radius by multiplying the current micro polygon diameter by
primalScale (from Equation8). In Equation9 we can see that
the shear value is simply the harmonic average of the minimum an
maximum depths. Therefore we store the harmonic averaagof
and zy. for the cell's mid depth. If a cell has zero samples, or if 6 Results
M7 i > g}jx (see Sectio), the ComputeSpatialRadius()

function marks the cell as requiring brute force computation.
6.1 Setup

Filtering Samples  Now that we haveZyin; zZnad depth bounds
at each cell we can Iter over neighboring samples (lines 15 to 35 All results are 512x512 and were generated on a dual quad-core

in Algorithm 1). We rst compute the target point of each sample X€0n 2.33 GHz processor with 4 GB of memory using Pixar's Ren-

(lines 17 to 22). For occluded samples, the target point is simply the derMa_n Pro Server 15.2. Our plug-in is thread safe and is designed

hit point of the occluded ray (line 18). For non-occluded samples, 0 funin parallel (we used 8 threads for our results).

we use a two step process to compute the target point. We rst . i

lookup an initial cell based purely on the ray direction (line 20). We We used thdrace() call in RenderMan which nds the nearest

construct a plane that is perpendicular to the central direction of the hit pointregardless of occluder surface. Other functions such as the

cell and whose distance to the current receiver is the same as the?cclusion() ~ function have options to cap the maximum distance

mid depth of the cell. We set the target point to be the intersection Of @ ray, which could reduce the working set of ray-traced geometry

of the sample ray with this plane (line 21). and reduce paging to disk. Of course, with more dense geometry,
the problem of paging to disk will easily reoccur. The San Miguel

Once we have the target point we can compute the nal sample dis- scene (Figurd) is the only scene that was computationally bound

tancex and e ective directiorv (line 24). Using the directionwe by paging to disk, and the Sponza scene (Fighir@as limited by

can lookup the nal cell for the sample (line 25). Using the sam- computation (ray tracing and displacement).



Our Method Ground Truth Monte Carlo, which accounts for the discrepancy between our re-
16 rays per shading point 2048 rays per shading point duction in rays and speed up. One reason for the increased Itering
cost is the increased algorithmic complexity of our Itering (shown
in Algorithm 1). Another reason is that our Iter often needs more
samples to achieve a smooth result due to samples being unstrati ed
when they are warped onto the hemisphere of the current receiver.

In Figure 1e we also show that our method can output spherical
harmonic occlusion. Our RenderMan shader takes the cell re ec-
tion values returned from Algorithm 1, calculated per hemispherical
cell, and uses environment maps that represent low order spherical
harmonic basis functionss{(! ;); ::;;s(! i)] as the distant lighting

I(! ;) for each cell (Equatior2). As of version 15.2 RenderMan
does not support an ecient method for producing spherical har-
monic occlusion using its point based algorithm.

DIFFUSE MATERIAL

6.3 Bumpy Sponza

In the bumpy Sponza scene we apply a displacement shader to show
that our method can handle complex occluders as well as high fre-
quency changes in receiver surface and normal orientation. The
scene only has 300,000 triangles (before displacement) and t in-
side memory during our renders. In Figuteve compare the qual-
ity of our method with point based occlusion. We use the Ren-
derMan point based occlusion implementation with high quality
settings (6x increase in micro polygon density for initial geome-
try pass, clamping turned on, rasterresolution set to 32, max solid
angle setto 0.01). For this scene our method used 32 rays per shad-
] ing point and took 16 minutes, while Monte Carlo used 256 rays
6.2 San Miguel and took 32 minutes. Our method reduces the number of ray casts
by an order of magnitude, and is still 2x faster than Monte Carlo
In the San Miguel scene (Figul@) we show a complex scene that  with 256 samples even when the scene ts in memory and the cost
contains both large smooth areas, and areas of very high complex-per ray is low.
ity. The smooth areas are challenging because the human visual
system is drawn to any small errors or oscillations. Accurately cal- Point based occlusion is a popular solution because it is fast and the
culating occlusion for areas of high geometric detail/andontact results are generally smooth (in this example point based occlusion
shadows is di cult because these areas can easily be missed or un-took 8 minutes). However, it can also have a number of disadvan-
dersampled. tages. In Figure&’d, we visualize the image error for our method
and point based occlusion (red is used for areas that are too dark,
nd green for areas that are too bright). We can see that in some of
he crease areas point based occlusion can produce results that are
oo dark. Our method is slightly too bright due to overblurring and
smissing some details, but the amplitude of our errors is much less.

GLOSSY MATERIAL

Figure 8: Here we show an example of our method with both matte
and glossy BRDFs with environment lighting.

The scene is 5.2 million triangle faces. Because of the high geo-
metric complexity of the scene RenderMan generated and shade
an average of 5 micro polygons per pixel. Because of the complex-t
ity of the scene and the incoherent nature of the rays, geometry wa
constantly paged in and out of memory. While it is always possible
to increase memory on a machine, artists will in turn keep pro-
ducing larger models. RenderMan reported using 5.5GB of virtual
memory (with 2GB devoted to ray-traced geometry) and 3.5GB of

physical memory. This scene is well suited for our method because \;qnte Carlo. A visualization of where and to what degree our

the cost per ray is very high relative to the cost of Itering over thod used Monte Carlo sampling can be seen in Figaurén this
nearby ray samples. scene 74% of shading points used Monte Carlo for less than half of

In Figure 1, we show equal time and equal quality comparisons their hemispherical cells. The higherthe“'j‘X is set, the more oﬁen
with strati ed Monte Carlo sampling. Our method took 1 hr and 48  ©Ur method falls back to Monte Carlo. Point based occlusion is con-
min, spending about 40% of the time in the rst pass casting sparse sistently slightly too dark in this area, but it does produce smooth
ray samples (13 rays per shading point), and the remaining time in "esults.

the second pass lItering and casting rays for areas with very close

occluders (19 rays per ;hading point). Our methoq gave a 4x speedg 4 Glossy

up over Monte Carlo with 256 samples (7 hrs 4 min) as well as an
order of magnitude reduction in the number of ray casts. We also . )
show signi cantly less noise versus Monte Carlo with 40 samples N Figure 8, we show a glossy teapot scene demonstrating our
using equal time. Our method is smoother than Monte Carlo with Method's ability to handle diuse and glossy surfaces with spheri-
256 samples in many areas, although our method does have som@_al harmonic lighting. The dierent colored sha_1dow§ to t_he leftand
areas with noise (inside the lip of the fountain) and overblurring "ght of the teapot show that we are capturing directional occlu-
(contact shadows with the leaves on the ground). See segon  SION: The shape of the shadow on the ground plane also changes as

for more discussion on limitations and artifacts. the material goes from QUsg to glosgy. Our method very closely
matches ground truth with either a dise or glossy BRDF and en-

The lItering operation in our method is more expensive than simple vironment lighting.

In Figures7e and7f our method has noise in some areas. Because
of the high frequency displacement many surfaces have nearby oc-
cluders which can trigger our method to fallback to brute force



Blinds Animation (brightness 2x) Blinds Error Analysis (brightness 2x)

Our Method, 22 rays Our Method, 22 rays Our Method, 22 rays a) Our Method, 22 rays  b) Our Method, 21 rays ¢) Our Method, 10 rays
frame 20 —_— frame 60 —_— frame 100 1st pass 16 rays, 2nd pass 6 rays  error (20x) 1st pass 4 rays, 2nd pass 6 rq
d) Point Based Occlusion e) Point Based Occlusion f) Our Method, 7 rays

. . . . error (20x) 1st pass 1 ray, 2nd pass 6 ra
Figure 9: Frames from our supplementary video (brightness multi-

plied by 2). Our method accurately captures the angular content of
the small slats.

6.5 Blinds Animation

We also provide a supplemental animation (frames shown in Fig-
ure9) that shows a set of blinds rotating together. The angular con- Figure 10: We show the errors with point based occlusion and our
tent of the occluders is very important in this example, and we show method for the blinds scene frame 60 (ambient occlusion brightness
that our method still handles this well. Our method has a low am- is multiplied by 2x, green error values are areas that are too bright,
plitude of error overall (Figure0a and10b). At object boundaries  red error values are areas that are too dark). (a) (b) Our method
the non-uniform distribution of samples can lead to some small er- produces a scene with overall low amplitude error. (d) (e) Point
rors (in this case the edges of slats are too bright). The point basedbased occlusion produces an image that is consistently too dark. (c)
solution is smooth, but the results are consistently too dark (Fig- (f) Output from our method using a reduced ray count. The medium
ures10d and10e). frequency noise is due to too few rays stored in the rst pass (4 and
1raysin (c) and (f) respectively).
6.6 Limitations and Artifacts

We now examine the limitations and possible artifacts that can oc- over sample point sets. If we could improve our accuracy when
cur in our method. In FigureBOc and10f we show the artifacts that ~ dealing with smaller point sets of non-uniform density, we could
can occur when we don't use enough samples in the rst pass of our reduce our lter radius and speed up the ltering process substan-
algorithm (we use 4 and 1 rays per shading point for the rst pass tially.

in Figures10c and10f respectively). Because of our wide lter- L L . L .
ing, any undersampling in the rst pass shows up as low amplitude In summary, directional occlusion is of increasing importance in
medium frequency error instead of high frequency noise. While Monte Carlp rendering. We have taken an important step towards
the amplitude of these errors is often low, spurious changes in the fUlly exploiting the space-angle coherence. We expect many further
derivative can be visually noticeable, especially in areas of constant d€velopments in this direction, based on a deeper analysis of the
or linearly changing occlusion. Raising the sample countin the rst characteristics of the occlusion function.

pass of our algorithm reduces, and at a certain point, eliminates this
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Appendix A: Fourier Derivations

We temporarily de neh andH to be 2D to make the derivation
more concise (this allows us to use a 2D convolution operator). The
second angular dimension for both of these functions will not be
important, and our nal step will be to redudé¢ to 1D. We de ne
h(x; V) to be constant acrosssuch thaBv 2 R; h(x; V) = h(x; 0).

m(x; V) :éx) (10)

h(x;v) = f(xt)k(x; t)dt (12)
Z Z

h(x;v) = (f(stk(st)mx sv t)dsdt (12)

h(xv) =(fk) m 13)

Becauseh(x) is constant acrossit is not surprising that spectrum
H will only have frequencies along the, = 0 line.

M(x W=(V) (14)
H( « V) =(ZF ZK)M (15)
H( v V)= F( x s v DKt 9 ( ydsdt  (16)
To reduce a 2D spectrum to 1D we must integrate across the di-

mension we want to remove. We integrate out theimension to
measure the spatial frequenciedbhlong the , axis:

Z Z

H( x) = F( x s DK(st)dsdt 17
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